560
Views
21
CrossRef citations to date
0
Altmetric
Extraction

Microwave-assisted extraction of phenolic compounds from Cannabis sativa L.: optimization and kinetics study

, , , , , & show all
Pages 2047-2060 | Received 28 Apr 2020, Accepted 29 Jul 2020, Published online: 19 Aug 2020

References

  • Jiang, H. E.; Li, X.; Zhao, Y. X.; Ferguson, D. K.; Hueber, F.; Bera, S.; Wang, Y. F.; Zhao, L. C.; Liu, C. J.; Li, C. S. A New Insight into Cannabis Sativa (Cannabaceae) Utilization from 2500-year-old Yanghai Tombs, Xinjiang, China. J. Ethnopharmacol. 2006, 108, 414–422. DOI: 10.1016/j.jep.2006.05.034.
  • Karche, T.; Singh, M. R. The Application of Hemp (Cannabi Sativa L.) For Green Economy: A Review. Tur. J. Bot. 2019, 43, 710–723. DOI: 10.3906/bot-1907-15.
  • Andre, C. M.; Larondelle, Y.; Evers, D. Dietary Antioxidants and Oxidative Stress from a Human and Plant Perspective: A Review. Curr. Nutri. Food. Sci. 2016, 6, 2–12. DOI: 10.2174/157340110790909563.
  • Andre, C. M.; Hausman, J. F.; Guerriero, G. Cannabis Sativa: The Plant of the Thousand and One Molecules. Front Plant Sci. 2016, 7, 1–17. DOI: 10.3389/fpls.2016.00019.
  • ElSohly, M. A.; Radwan, M. M.; Gul, W.; Chandra, S.; Galal, A. Phytochemistry of Cannabis Sativa L. In Phytocannabinoids; Kinghorn, A. D., Falks, H., Gibbons, S., Kobayashi, J., Eds.; Springer: Switzerland, 2017; pp 1–36.
  • Pellati, F.; Borgonetti, V.; Brighenti, V.; Biagi, M.; Benvenuti, S.; Corsi, L. Cannabis Sativa L. And Nonpsychoactive Cannabinoids: Their Chemistry and Role against Oxidative Stress, Inflammation, and Cancer. Biomed. Res. Int. 2018, 2018, 1–15. DOI: 10.1155/2018/1691428.
  • Maroon, J.; Bost, J. Review of the Neurological Benefits of Phytocannabinoids. Surg. Neurol. Int. 2018, 9, 91–104. DOI: 10.4103/sni.sni_45_18.
  • Pollastro, F.; Minassi, A.; Fresu, L. G. Cannabis Phenolics and Their Bioactives. Cannabis Phenolics and their Bioactivities. Current Medicinal Chemistry 2018, 24 24 25, 1160–1185. 10 doi:10.2174/0929867324666170810164636
  • Takeuchi, T.; Pereira, C.; Braga, M.; Maróstica, M.; Leal, P.; Meireles, M. Low-pressure Solvent Extraction (Solid-liquid Extraction, Microwave Assisted, and Ultrasound Assisted) from Condimentary Plants. In Extracting Bioactives for Food Products: Theory and Applications; Angela, M., Meireles, A., Eds.; Taylor & Francis Group: New York, 2009; pp 137–218.
  • Jurinjak Tušek, A.; Benković, M.; Valinger, D.; Jurina, T.; Belščak-Cvitanović, A.; Gajdoš Kljusurić, J. Optimizing Bioactive Compounds Extraction from Different Medicinal Plants and Prediction through Nonlinear and Linear Models. Ind. Crop. Prod. 2018, 126, 449–458. DOI: 10.1016/j.indcrop.2018.10.040.
  • Liu, Y.; She, X.-R.; Huang, J.-B.; Liu, M.-C.; Zhan, M.-E. Ultrasonic-extraction of Phenolic Compounds from Phyllanthus Urinaria: Optimization Model and Antioxidant Activity. Food. Sci. Tech. 2018, 38, 286–293. DOI: 10.1590/1678-457x.21617.
  • Teslić, N.; Bojanić, N.; Rakić, D.; Takači, A.; Zeković, Z.; Fišter, A.; Bodroža-Solarov, M.; Pavlić, B. Defatted Wheat Germ as Source of polyphenols—Optimization of Microwave-assisted Extraction by RSM and ANN Approach. Chem. Eng. Process. 2019, 143, 208634. DOI: 10.1016/j.cep.2019.107634.
  • Iglesias-Carres, L.; Mas-Capdevila, A.; Bravo, F. I.; Aragones, G.; Muguerza, B.; Arola-Arnal, A. Optimization of a Polyphenol Extraction Method for Sweet Orange Pulp (Citrussinensis L.) To Identify Phenolic Compounds Consumed from Sweet Oranges. Plos One. 2019, 14, e0211267. DOI: 10.1371/journal.pone.0211267.
  • Routray, W.; Orsat, V. Microwave-assisted Extraction of Flavonoids: A Review. Food Bioprocess Tech. 2012, 5, 409–424. DOI: 10.1007/s11947-011-0573-z.
  • E Silva, A. S.; de Magalhāes, W. T.; Moreira, L. M.; Rocha, M. V. P.; Bastos, A. K. P. Microwave-assisted Extraction of Polysaccharides from Arthrospira (Spirulina) Platensis Using the Concept of Green Chemistry. Algal Res. 2018, 35, 178–184. DOI: 10.1016/j.algal.2018.08.015.
  • AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Arlington VA, 1995.
  • Pinelo, M.; Laurie, V. F.; Waterhouse, A. L. A Simple Method to Separate Red Wine Nonpolymeric and Polymeric by Solid Phase Extraction. J. Agric. Food Chem. 2006, 54, 2839–2844. DOI: 10.1021/jf052814a.
  • Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. DOI: 10.1016/S0891-5849(98)00315-3.
  • Brand-Williams, W.; Cuvelier, M. E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT. 1995, 28, 25–30. DOI: 10.1016/S0023-6438(95)80008-5.
  • Benzie, I. F.; Strain, J. J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. DOI: 10.1006/abio.1996.0292.
  • Karacabey, E.; Bayindirli, L.; Artik, N.; Mazza, G. Modelling Solid-liquid Extraction Kinetics of Trans-resveratrol and trans-ε-viniferin from Grape Cane. J. Food Process. Eng. 2011, 36, 13–112.
  • Peleg, M. An Empirical Model for the Description of Moisture Sorption Curves. J. Food Sci. 1988, 53, 1216–1219. DOI: 10.1111/j.1365-2621.1988.tb13565.x.
  • Lin, C. H.; Jingwen, P.; Ali, A. Extraction Kinetics of Ziziphus Jujuba Fruit Using Solid-liquid Extraction. J. Eng. Sci. Technol. 2018, 13, 27–39.
  • Jokić, S.; Velić, D.; Bilić, M.; Bucić-Kojić, A.; Planinić, M.; Tomas, S. Modelling of the Process of Solid-liquid Extraction of Total Polyphenols from Soybeans. Czech J. Food Sci. 2010, 28, 206–212. DOI: 10.17221/200/2009-CJFS.
  • Bucić-Kojić, A.; Planinić, M.; Tomas, S.; Bilić, N.; Velić, D. Study of Solid-liquid Extraction Kinetics of Total Polyphenols from Grape Seeds. J. Food Eng. 2007, 81, 236–242. DOI: 10.1016/j.jfoodeng.2006.10.027.
  • Le Man, H.; Behera, S. K.; Park, H. S. Optimization of Operational Parameters for Ethanol Production from Korean Food Waste Leachate. Int. J. Environ. Sci. Technol. 2010, 7, 157–164. DOI: 10.1007/BF03326127.
  • Salehi, M.; Marash, P.; Salehi, M.; Ghannad, R. Optimization of the FeCo Nanowire Fabrication Embedded in Anodic Aluminum Oxide Template by Response Surface Methodology. J. Ultrafine Grained Nanostruct. Mater. 2014, 47, 27–35.
  • Teng, D.; Fang, Y.; Song, X.; Gao, Y. Optimization of Enzymatic Hydrolysis Parameters for Antioxidant Capacity of Peptide from Goat Placenta. Food Bioprod. Process. 2011, 89, 202–208. DOI: 10.1016/j.fbp.2010.05.001.
  • Dragović-Uzelac, V.; Elez Grofulić, I.; Jukić, M.; Penić, M.; Dent, M. The Influence of Microwave-assisted Extraction on the Isolation of Sage (Salvia Officinalis L.) Polyphenols. Food Technol. Biotechnol. 2012, 50, 377–383.
  • Simić, V. M.; Rajković, K. M.; Stojičević, S. S.; Veličković, D. T.; Nikolić, N. Č.; Lazić, L. M.; Karabegović, I. T. Optimization of Microwave-assisted Extraction of Total Polyphenolic Compounds from Chokeberries by Response Surface Methodology and Artificial Neural Network. Sep. Purif. Technol. 2015, 160, 89–97. DOI: 10.1016/j.seppur.2016.01.019.
  • Li, D. C.; Jiang, J. G. Optimization of the Microwave-assisted Extraction Conditions of Tea Polyphenols from Green Tea. Int. J. Food. Sci. Nutr. 2010, 61, 837–845. DOI: 10.3109/09637486.2010.489508.
  • Cao, J.; Hao, L.; Zhang, L.; Xu, M.; Ge, H.; Kang, C.; Yu, J.; Wang, Z. (2016) Optimization of Microwave-assisted Extraction of Total Flavonoids from China-hemp Leaves and Evaluation of Its Antioxidant Activities, in International Conference on Applied Biotechnology, ed by Liu, H., Song, C., Ram, A. Springer, Singapore, pp 555–567.
  • Drinić, Z.; Vladić, J.; Koren, A.; Zeremski, T.; Stojanov, N.; Kiprovski, B.; Vidović, S. Microwave-assisted Extraction of Cannabinoids and Antioxidants from Cannabis Sativa Aerial Parts and Process Modelling. J. Chem. Technol. Biotechnol. 2019, 95, 831–839. DOI: 10.1002/jctb.6273.
  • Yu, H.-C.; Huang, S.-M.; Lin, W.-M.; Kuo, C.-H.; Shieh, C.-J. Comparison of Artificial Neural Networks and Response Surface Methodology Towards an Efficient Ultrasound-assisted Extraction of Chlorogenic Acid From. Lonicera Japonica. Mol.. 2019, 24, 2304–2318. DOI: 10.3390/molecules24122304.
  • Jurinjak Tušek, A.; Benković, M.; Belščak-Cvitanović, A.; Valinger, D.; Jurina, T.; Gajdoš Kljusurić, J. Kinetics and Thermodynamics of the Solid-liquid Extraction Process of Total Polyphenols, Antioxidants and Extraction Yield from Asteraceae Plants. Ind. Crop. Prod. 2016, 91, 205–214. DOI: 10.1016/j.indcrop.2016.07.015.
  • Kusuma, H. S.; Mahfud, M. Comparison of Kinetic Models of Oil Extraction from Sandalwood by Microwave-assisted Hydrodistillation. Int. Food Res. J. 2017, 24, 1697–1702.
  • Harouna-Oumarou, H. A.; Fauduet, H.; Porte, C.; Ho, Y.-S. Comparison of Kinetic Models for the Aqueous Solid-liquidextraction of Tilia Sapwood in a Continuous Stirred Tank Reactor. Chem. Eng. Commun. 2007, 194, 537–552. DOI: 10.1080/00986440600992511.
  • Radojković, M.; Zeković, Z.; Jokić, S.; Vidović, S.; Lepović, Ž.; Milošević, S. Optimization of Solid-liquid Extraction of Antioxidants from Black Mulberry Leaves by Response Surface Methodology. Food Technol. Biotechnol. 2012, 50, 167–176.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.