197
Views
6
CrossRef citations to date
0
Altmetric
Graphene

Effectiveness of graphene quantum dot nanoparticles in the presence of hydrogen peroxide for the removal of ciprofloxacin from aqueous media: response surface methodology

, , , , , , & ORCID Icon show all
Pages 2124-2140 | Received 01 Jan 2020, Accepted 03 Aug 2020, Published online: 20 Aug 2020

References

  • Rahdar, A.; Rahdar, S.; Ahmadi, S.; Fu, J. Adsorption of Ciprofloxacin from Aqueous Environment by Using Synthesized Nanoceria. Ecol. Chem. Eng. S. 2019, 26, 299–311. DOI: 10.1515/eces-2019-0021.
  • Gulkowska, A.; Leung, H. W.; So, M. K.; Taniyasu, S.; Yamashita, N.; Yeung, L. W.; Richardson, B. J.; Lei, A. P.; Giesy, J. P.; Lam, P. K. Removal of Antibiotics from Wastewater by Sewage Treatment Facilities in Hong Kong and Shenzhen, China. Water Res. 2008, 42, 395–403. DOI: 10.1016/j.watres.2007.07.031.
  • Pawlowski, A. C.; Wang, W.; Koteva, K.; Barton, H. A.; McArthur, A. G.; Wright, G. D. A Diverse Intrinsic Antibiotic Resistome from A Cave Bacterium. Nat. Commun. 2016, 7, 13803. DOI: 10.1038/ncomms13803.
  • Grenni, P.; Ancona, V.; Caracciolo, A. B. Ecological Effects of Antibiotics on Natural Ecosystems: A Review. Microchem. J. 2018, 36, 25–39. DOI: 10.1016/j.microc.2017.02.006.
  • Elsaim, M. H. Removal of Ciprofloxacin Hydrochloride from Aqueous Solution by Pomegranate Peel Grown in Alziedab Agricultural Scheme-River Nile State, Sudan. Biochemistry. 2017, 5, 89–96. DOI: 10.11648/j.ab.20170505.12.
  • Kümmerer, K. Antibiotics in the Aquatic Environment–a Review–part I. Chemosphere. 2009, 75, 417–434. DOI: 10.1016/j.chemosphere.2008.11.086.
  • Kagle, J.; Porter, A. W.; Murdoch, R. W.; Rivera-Cancel, G.; Hay, A. G. Biodegradation of Pharmaceutical and Personal Care Products. Adv. Appl. Microbiol. 2009, 67, 65–108. DOI: 10.1016/S0065-2164(08)01003-4.
  • Liu, C.; Nanaboina, V.; Korshin, G. V.; Jiang, W. Spectroscopic Study of Degradation Products of Ciprofloxacin, Norfloxacin and Lomefloxacin Formed in Ozonated Wastewater. Water Res. 2012, 46, 5235–5246. DOI: 10.1016/j.watres.2012.07.005.
  • Batt, A. L.; Kim, S.; Aga, D. S. Comparison of the Occurrence of Antibiotics in Four Full-scale Wastewater Treatment Plants with Varying Designs and Operations. Chemosphere. 2007, 68, 428–435. DOI: 10.1016/j.chemosphere.2007.01.008.
  • Zuccato, E.; Castiglioni, S.; Bagnati, R.; Melis, M.; Fanelli, R. Source, Occurrence and Fate of Antibiotics in the Italian Aquatic Environment. J. Hazard. Mater. 2010, 179, 1042–1048. DOI: 10.1016/j.jhazmat.2010.03.110.
  • Turel, I.; GOLOBIC, A. Crystal Structure of Ciprofloxacin Hydrochloride 1.34-hydrate. Anal. Sci. 2003, 19, 329–330. DOI: 10.2116/analsci.19.329.
  • Jiang, W. T.; Chang, P. H.; Wang, Y. S.; Tsai, Y.; Jean, J. S.; Li, Z.; Krukowski, K. Removal of Ciprofloxacin from Water by Birnessite. J. Hazard. Mater. 2013, 250, 362–369. DOI: 10.1016/j.jhazmat.2013.02.015.
  • Xu, X.; He, J.; Li, Y.; Fang, Z.; Xu, S. Adsorption and Transport of Ciprofloxacin in Quartz Sand at Different pH and Ionic Strength. Open J. Soil Sci. 2014, 15,470. DOI: 10.4236/ojss.2014.412041.
  • Danalıoğlu, S. T.; Bayazit, Ş. S.; Kerkez, Ö.; Alhogbi, B. G.; Salam, M. A. Removal of Ciprofloxacin from Aqueous Solution Using Humic Acid-and Levulinic Acid-coated Fe3O4 Nanoparticles. Chem. Eng. Res. 2017, 23, 259–267. DOI: 10.1016/j.cherd.2017.05.018.
  • Arslan-Alaton, I.; Dogruel, S. Pre-treatment of Penicillin Formulation Effluent by Advanced Oxidation Processes. J. Hazard. Mater. 2004, 112, 105–113. DOI: 10.1016/j.jhazmat.2004.04.009.
  • Tyagi, V. K.; Lo, S.-L. Application of Physico-chemical Pretreatment Methods to Enhance the Sludge Disintegration and Subsequent Anaerobic Digestion: An up to Date Review. Rev. Environ. Sci. Biotechnol. 2011, 10, 215. DOI: 10.1007/s11157-011-9244-9.
  • Daneshvar, N.; Khataee, A. Removal of Azo Dye CI Acid Red 14 from Contaminated Water Using Fenton, UV/H2O2, UV/H2O2/Fe (II), UV/H2O2/Fe (III) and UV/H2O2/Fe (III)/oxalate Processes: A Comparative Study. J. Environ. Sci. Health C. 2006, 41, 315–328. DOI: 10.1080/10934520500423196.
  • Azari, A.; Salari, M.; Dehghani, M. H.; Alimohammadi, M.; Ghaffari, H.; Sharafi, K.; Shariatifar, N.; Baziar, M. Efficiency of Magnitized Graphene Oxide Nanoparticles in Removal of 2, 4-Dichlorophenol from Aqueous Solution. J. Mazandaran Univ. Med. Sci. 2017, 144, 265–281.
  • Shirazi, E.; Torabian, A.; Nabi-Bidhendi, G. Carbamazepine Removal from Groundwater: Effectiveness of the TiO2/UV, Nanoparticulate Zero-Valent Iron, and Fenton (NZVI/H2O2) Processes. Clean Soil Air Water 41(11), 1062–1072. DOI: 10.1002/clen.201200222.
  • Zhang, W.; Gao, H.; He, J.; Yang, P.; Wang, D.; Ma, T.; Xia, H.; Xu, X.; et al. Removal of Norfloxacin Using Coupled Synthesized Nanoscale Zero-valent Iron (Nzvi) with H2O2 System: Optimization of Operating Conditions and Degradation Pathway. Sep. Purif. Technol. 2017, 172, 158–167. DOI: 10.1016/j.seppur.2016.08.008.
  • Hernando, M.; Mezcua, M.; Fernández-Alba, A.; Barceló, D. Environmental Risk Assessment of Pharmaceutical Residues in Wastewater Effluents, Surface Waters and Sediments. Talanta. 2006, 69, 334–342. DOI: 10.1016/j.talanta.2005.09.037.
  • Bremner, D. H.; Di Carlo, S.; Chakinala, A. G.; Cravotto, G. Mineralisation of 2, 4-dichlorophenoxyacetic Acid by Acoustic or Hydrodynamic Cavitation in Conjunction with the Advanced Fenton Process. Ultrason. Sonochem. 2008, 15, 416–419. DOI: 10.1016/j.ultsonch.2007.06.003.
  • Fazlzadeh, M.; Rahmani, A.; Nasehinia, H. R. Degradation of Sulfathiazole Antibiotics in Aqueous Solutions by Using Zero Valent Iron Nanoparticles and Hydrogen Peroxide. Koomesh. 2016, 18, 350–356.
  • ShirzadSiboni, M.; Samadi, M. T.; Rahmani, A. R.; Khataee, A. R.; Bordbar, M. M. R. S. Photocatalytic Removal of Hexavalet Chromium and Divalent Nickel from Aqueous Solution by UV Irradiation in the Presence of Titanium Dioxide Nanoparticles. Iran. J. Health Environ. 2010, 3, 261–270.
  • Mohammadi, A. S.; Asgari, G.; Ebrahimi, A.; Hossein Movahedian, A.; Zahra, S. Application of Several Advanced Oxidation Processes for Degradation of 4-chlorophenol from Aqueous Solution. Int J Environ Health Eng 2013, 38. DOI: 10.4103/2277-9183.122423.
  • Amin, H.; Amer, A.; Fecky, A.; Ibrahim, I. Treatment of Textile Wastewater Using H2O2/UV System. Physicochem. Prob. Miner. J. 2008, 42, 17–28.
  • Grieser, H. F.; Ashokkumar, M. The Mechanism of Sonophotocatalytic Degradation of Methyl Orange and Its Products in Aqueous Solutions. Ultrason. Sonochem. 2011, 18, 974–980. DOI: 10.1016/j.ultsonch.2011.03.017.
  • Abouzlam, M.; Ouvrard, R.; Mehdi, D.; Pontlevoy, F.; Gombert, B.; Karpel Vel Leitner, N.; Boukari, S.; et al. An Optimal Control of a Wastewater Treatment Reactor by Catalytic Ozonation. Control Eng. Pract. 2013, 21, 105–112. DOI: 10.1016/j.conengprac.2012.09.016.
  • Khataee, A. R.; Bordbar, M. M.R, S. Photocatalytic Removal of Hexavalet Chromium and Divalent Nickel from Aqueous Solution by UV Irradiation in the Presence of Titanium Dioxide Nanoparticles. Iran. J. Health Environ. 2010, 3, 261–270.
  • Ghodke, S.; Sonawane, S.; Gaikawad, R.; Mohite, K. TIO2/Nanoclay Nanocomposite for Phenol Degradation in Sonophotocatalytic Reactor. Can. J. Chem. Eng. 2012, 90, 1153–1159. DOI: 10.1002/cjce.20630.
  • Pang, Y. L.; Abdullah, A. Z.; Bhatia, S. Review on Sonochemical Methods in the Presence of Catalysts and Chemical Additives for Treatment of Organic Pollutants in Wastewater. Desalination. 2011, 277, 1–14. DOI: 10.1016/j.desal.2011.04.049.
  • Tahir, K.; Nazir, S.; Li, B.; Khan, A. U.; Khan, Z. U.; Ahmad, A.; Khan, Q. U.; Zhao, Y. Enhanced Visible Light Photocatalytic Inactivation of Escherichia Coli Using Silver Nanoparticles as Photocatalyst. J. Photochem. Photobiol. B: Biol. 2015, 153, 261–266. DOI: 10.1016/j.jphotobiol.2015.09.015.
  • Li, X.-Q.; Elliott, D. W.; Zhang, W.-X. Zerovalent Iron Nanoparticles for Abatement of Environmental Pollutants: Materials and Engineering Aspects. Crit. Rev. Solid State Mater. Sci. 2006, 14, 111–123. DOI: 10.1080/10408430601057611.
  • Zhang, W.; Li, L.; Lin, K.; Xiong, B.; Li, B.; Lu, S.; Guo, M.; Cui, X. Synergetic Degradation of Fe/Cu/C for Groundwater Polluted by Trichloroethylene. Water Sci. Technol. 2012, 65, 2258–2264. DOI: 10.2166/wst.2012.146.
  • Khan, F. U.; Chen, Y., .; Khan, N. U., .; Khan, Z. U.; Khan, A. U.; Ahmad, A.; Tahir, K.; Wang, L.; Khan, M. R.; Wan, P. Antioxidant and Catalytic Applications of Silver Nanoparticles Using Dimocarpus Longan Seed Extract as a Reducing and Stabilizing Agent. J. Photochem. Photobiol. B: Biol. 2016, 164, 344–351. DOI: 10.1016/j.jphotobiol.2016.09.042.
  • Tahir, K.; Li, B.; Khan, S.; Nazir, S.; Khan, Z. U.; Khan, A. U.; Islam, R. U. Enhanced Chemocatalytic Reduction of Aromatic Nitro Compounds by Biosynthesized Gold Nanoparticles. J. Alloys Compd. 2015, 651, 322–327. DOI: 10.1016/j.jallcom.2015.08.109.
  • Khan, Z. U. H.; Khan, A.; Shah, A.; Wan, P.; Chen, Y.; Khan, G. M.; Khan, A. U.; Tahir, K.; Muhammad, N.; Khan, H. U. Enhanced Photocatalytic and Electrocatalytic Applications of Green Synthesized Silver Nanoparticles. J. Mol. Liq. 2016, 220, 248–257. DOI: 10.1016/j.molliq.2016.04.082.
  • Khan, A. U.; Yuan, Q.; Khan, Z. U. H.; Ahmad, A.; Khan, F. U.; Tahir, K.; Shakeel, M.; Ullah, S. An Eco-benign Synthesis of AgNPs Using Aqueous Extract of Longan Fruit Peel: Antiproliferative Response against Human Breast Cancer Cell Line MCF-7, Antioxidant and Photocatalytic Deprivation of Methylene Blue. J. Photochem. Photobiol. B: Biol. 2018, 183, 367–373. DOI: 10.1016/j.jphotobiol.2018.05.007.
  • Tahir, K.; Nazir, S.; Li, B.; Khan, A. U.; Khan, Z. U.; Ahmad, A.; Khan, F. U. An Efficient Photo Catalytic Activity of Green Synthesized Silver Nanoparticles Using Salvadora Persica Stem Extract. Sep. Purif. Technol. 2015, 150, 316–324. DOI: 10.1016/j.seppur.2015.07.012.
  • Ghamkhari, A.; Rahdar, A.; Rahdar, S.; Susan, M. A. Dual Responsive Superparamagnetic Nanocomposites: Synthesis, Characterization and Adsorption of Nitrate from Aqueous Solution. Nano-Struct. Nano-Object. 2019, 19, 100371. DOI: 10.1016/j.nanoso.2019.100371.
  • Rahdar, S.; Ahmadi, S. The Removal of Amoxicillin with Zno Nanoparticles in Combination with US-H2O2 Advanced Oxidation Processes from Aqueous Solutions. Iran. J. Health Sci. 2019, 15, 36–45.
  • Igwegbe, C. A.; Ahmadi, S.; Rahdar, S.; Ramazani, A.; Mollazehi, A. R. Efficiency Comparison of Advanced Oxidation Processes for Ciprofloxacin Removal from Aqueous Solutions: Sonochemical, Sono-nano-chemical and Sono-nano-chemical/persulfate Processes. Environ. Eng. Res. 2019, 21. DOI: 10.4491/eer.2018.058.
  • Ahmadi, S.; Igwegbe, C. A.; Rahdar, S. The Application of Thermally Activated Persulfate for Degradation of Acid Blue 92 in Aqueous Solution. Int. J. Ind. Chem. 2019, 1, 1–2. DOI: 10.1007/s40090-019-0188-1.
  • Rahdar, S.; Igwegbe, C. A.; Rahdar, A.; Ahmadi, S. Efficiency of Sono-nano-catalytic Process of Magnesium Oxide Nano Particle in Removal of Penicillin G from Aqueous Solution. Desalination Water Treat. 2018, 106, 330–335. DOI: 10.5004/dwt.2018.22102.
  • Ahmadi, S.; Mohammadi, L.; Igwegbe, C. A.; Rahdar, S.; Banach, A. M. Application of Response Surface Methodology in the Degradation of Reactive Blue 19 Using H2O2/MgO Nanoparticles Advanced Oxidation Process. Int. J. Ind. Chem. 2018, 9, 241–253. DOI: 10.1007/s40090-018-0153-4.
  • Rahdar, S.; Igwegbe, C. A.; Ghasemi, M.; Ahmadi, S. Degradation of Aniline by the Combined Process of Ultrasound and Hydrogen Peroxide (US/H2O2). MethodsX. 2019, 6, 492–499. DOI: 10.1016/j.mex.2019.02.033.
  • Montgomery, D. C. Design and Analysis of Experiments: Response Surface Method and Designs; John Wiley and Sons, Inc: New York, 2005. DOI: 10.1002/ep.11743.
  • Ahmadi, M.; Vahabzadeh, F.; Bonakdarpour, B.; Mofarrah, E.; Mehranian, M. Application of the Central Composite Design and Response Surface Methodology to the Advanced Treatment of Olive Oil Processing Wastewater Using Fenton’s Peroxidation, J. Hazard. Mater. 2005, 123, 187–195. DOI: 10.1016/j.jhazmat.2005.03.042.
  • Saldaña-Robles, A.; Guerra-Sánchez, R.; Maldonado-Rubio, M. I.; Peralta-Hernández, J. M. Optimization of the Operating Parameters Using RSM for the Fenton Oxidation Process and Adsorption on Vegetal Carbon of MO Solutions. J. Ind. Eng. Chem. 2014, 20, 848–857. DOI: 10.1016/j.jiec.2013.06.015.
  • Li, Z.; Hong, H.; Liao, L.; Ackley, C. J.; Schulz, L. A.; MacDonald, R. A.; Mihelich, A. L.; Emard, S. M. A Mechanistic Study of Ciprofloxacin Removal by Kaolinite. Colloids Surf. B. 2011, 88, 339–344. DOI: 10.1016/j.colsurfb.2011.07.011.
  • Wang, S.; Chen, Z.-G.; Cole, I.; Li, Q. Structural Evolution of Graphene Quantum Dots during Thermal Decomposition of Citric Acid and the Corresponding Photoluminescence. Carbon. 2015, 82, 304–313. DOI: 10.1016/j.carbon.2014.10.075.
  • Rahdar, S.; Rahdar, A.; Igwegbe, C. A.; Moghaddam, F.; Ahmadi, S. Synthesis and Physical Characterization of Nickel Oxide Nanoparticles and Its Application Study in the Removal of Ciprofloxacin from Contaminated Water by Adsorption: Equilibrium and Kinetic Studies. Equilib. Kinet. Stud. 2019, 141, 386–393. DOI: 10.5004/dwt.2019.23473.
  • Xu, H.; Shenghai, Z.; Lili, X.; Huanhuan, W.; Shouzhu, L.; Qunhui, Y. Fabrication of a Nitrogen-doped Graphene Quantum Dot from MOF-derived Porous Carbon and Its Application for Highly Selective Fluorescence Detection of Fe 3+. ‎J. Mater. Chem. 2015, 3, 291–297. DOI: 10.1039/C4TC01991A.
  • Liu, Y.; Liu, C.-Y.; Zhang, Z.-Y. Synthesis and Surface Photochemistry of Graphitized Carbon Quantum Dots. ‎J. Colloid Interface Sci. 2011, 356, 416–421. DOI: 10.1016/j.jcis.2011.01.065.
  • Wang, L.; Wang, Y.; Xu, T.; Liao, H.; Yao, C.; Liu, Y.; Li, Z.; Chen, Z.; Pan, D.; Sun, L.; et al. Gram-scale Synthesis of Single-crystalline Graphene Quantum Dots with Superior Optical Properties. Nat. Commun. 2014, 2, 5357. DOI: 10.1038/ncomms6357.
  • Cayuela, A.; Soriano, M. L.; Carrillo-Carrión, C.; Valcárcel, M. Semiconductor and Carbon-based Fluorescent Nanodots: The Need for Consistency. Chem. Commun. 2016, 52, 1311–1326. DOI: 10.1039/C5CC07754K.
  • Mourabet, M.; El Rhilassi, A.; El Boujaady, H.; Bennani-Ziatni, M.; Taitai, A. Use of Response Surface Methodology for Optimization of Fluoride Adsorption in an Aqueous Solution by Brushite. Arab. J. Chem. 2017, 10, 3292–3302. DOI: 10.4172/2157-7048.1000161.
  • Zarei, H.; Mahvi, A. H.; Nasseri, S.; Nabizadeh Noudehi, R.; Shemirani, F. Modeling Adsorption on Fluoride and Application of Box–Behnken Design and Response Surface Methodology for Arsenic (V) Removal from Aqueous Solution Using Nano-Scale Alumina on Multi Walled Carbon Nanotube. Iran. J. Health Saf. Environ. 2015, 8, 309–322.
  • Kalra, S. S.; Mohan, S.; Sinha, A.; Singh, G., .; editors. Advanced Oxidation Processes for Treatment of Textile and Dye Wastewater: A Review. 2nd International conference on environmental science and development. IACSIT Press Singapore: Singapore, 2011.
  • Nidheesh, P. V.; Gandhimathi, R.; Ramesh, S. T. Degradation of Dyes from Aqueous Solution by Fenton Processes: A Review. Environ. Sci. Pollut. Res. 2013, 20, 2099–2132. DOI: 10.1007/s11356-012-1385-z.
  • HeidariFarsani, M.; Ahmadi, S.; Moghaddam, M.; Shirmardi, M.; Mengelizadeh, N.; Heidari Farsani, A.; Naeimabadi, A. The Effectiveness of the UV/H2O2/UV/H2O2 and ZrO2/SiO2 Processes in Removal of the Nickel from the Aqueous Environments. J. N. Khorasan Univ. Med. Sci. Winter. 2013, 5, 751. DOI: 10.29252/jnkums.5.4.741.
  • Monteagudo, J.; Duran, A.; Guerra, J.; Garcia- Pena, F.; Coca, P. Solar TiO< Sub> 2</sub Assisted Photocatalytic Degradation of IGCC Power Station Effluents Using a Fresnel Lens. Chemosphere. 2008, 7, 161–167. DOI: 10.1016/j.chemosphere.2007.10.067.
  • Molinari, R.; Pirillo, F.; Loddo, V.; Palmisano, L. Heterogeneous Photocatalytic Degradation of Pharmaceuticals in Water by Using Polycrystalline TiO2 and a Nanofiltration Membrane Reactor. Catal. Today. 2006, 118, 205–213. DOI: 10.1016/j.cattod.2005.11.091.
  • Malakootian, M.; Hashemi Cholicheh, M. Survey of Photocatalytic Processes Efficacy Using Silica and Zirconia Nanoparticles in the Bivalent Nickel Removal of Aqueous Solutions and Determining the Optimum Removal Conditions. J. Mazandaran Univ. Med. Sci. 2012, 22, 87–96. [Persian].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.