115
Views
1
CrossRef citations to date
0
Altmetric
Adsorption

Comparative study of the adsorption and photo-reduction of hexavalent chromium onto AlPO4-11 and SAPO-31 substituted Fe2O3 from aqueous solutions: Synthesis, characterization, kinetic and thermodynamic studies

, &
Pages 2011-2025 | Received 09 Jun 2020, Accepted 06 Aug 2020, Published online: 28 Aug 2020

References

  • Eckenfelder, W. W. Industrial Water Pollution Control, Second ed.; McGraw-Hill: New York, 1989.
  • Fergusson, J. E. The Heavy Elements: Chemistry, Environmental Impact and Helth Effects; Pergamon Press: Oxford, 1990.
  • Nasrallah, N.; Kebir, M.; Koudri, Z.; Trari, M. Photocatalytic Reduction of Cr (VI) on the Novel Hetero-system CuFe2O4/CdS. J. Hazard. Mater. 2011, 185, 1398–1404. DOI: 10.1016/j.jhazmat.2010.10.061.
  • Kebir, M.; Chabani, M.; Nasrallah, N. Bensmaili A., Trari M., Coupling Adsorption with Photocatalysis Process for the Cr(VI) Removal. Desalination. 2011, 270, 166–173. DOI: 10.1016/j.desal.2010.11.041.
  • Aid, A.; Amokrane, S.; Nibou, D.; Mekatel, E.; Trari, M.; Hulea, V. Modeling Biosorption of Cr (VI) onto Ulva Compressa L. From Aqueous Solutions. Wat. Sci. Tech. 2018, 77(1), 60–69. DOI: 10.2166/wst.2017.509.
  • Dakiky, M.; Khamis, M.; Manassra, A.; Mereb, M. Selective Adsorption of chromium(VI) in Industrial Wastewater Using Low-cost Abundantly Available Adsorbants. Adv. Environ. Res. 2002, 6, 533–540. DOI: 10.1016/S1093-0191(01)00079-X.
  • Ladjali, S.; Amokrane, S.; Mekatel, E. H.; Nibou, D. Adsorption of Cr(VI) on Stipa Tenacissima L (Alfa): Characteristics, Kinetics and Thermodynamic Studies. J. Sep. Sci. Tech. 2019, 54(6), 876–887. DOI: 10.1080/01496395.2018.1521833.
  • Kallo, D.; Applications of Natural Zeolites in Water and Wastewater Treatment. Reviews in Mineralogy and Geochemistry. Min. Soc. Amer. 2001, 45, 519–550.
  • Rengaraj, S.; Joo, C. K.; Kim, Y.; Yi, J. Kinetics of Removal of Chromium from Water and Electronic Process Wastewater by Ion Exchange Resins: 1200 H, 1500 Hand IRN97H. J. Hazard. Mater. 2003, B102, 257–275. DOI: 10.1016/S0304-3894(03)00209-7.
  • Barkat, M.; Nibou, D.; Chegrouche, S.; Mellah, A. Kinetics and Thermodynamics Studies of Chromium (VI) Ions Adsorption onto Activated Carbon from Aqueous Solutions. Chem. Eng. Proc. Pro. Intens. 2009, 48(1), 38–47. DOI: 10.1016/j.cep.2007.10.004.
  • Mekatel, H.; Amokrane, S.; Bellal, B.; Trari, M.; Nibou, D. Photocatalytic Reduction of Cr (VI) on Nanosized Fe2O3 Supported on Natural Algerian Clay: Characteristics, Kinetic and Thermodynamic Study. Chem. Eng. J. 2012, 200, 611–618. DOI: 10.1016/j.cej.2012.06.121.
  • Leyva-Ramos, R.; Jacobo-Azuara, A.; Diaz-Flores, P. E.; Guerrero-Coronado, R. M.; Mendoza-Barron, J.; Berber-Mendoza, M. S. Adsorption of chromium(VI) from an Aqueous Solution on a Surfactant-modified Zeolites. Coll. Surf. A: Phy. Eng. Aspects. 2008, 330, 35–41. DOI: 10.1016/j.colsurfa.2008.07.025.
  • Jamshaid, I. M.; Cecil, F.; Khalil, A.; Munawar, I.; Mushtaq, M.; Naeem, M. A.; Bokhari, T. H. Kinetic Study of Cr(III) and Cr(VI) Biosorption Using Rosa Damascena Phytomass: A Rose Waste Biomass. J. Chem. 2013, 25, 2099–20103.
  • Vignesha, K.; Priyankab, R.; Rajarajanc, M.; Suganthia, A. Photoreduction of Cr(VI) in Water Using Bi2O3–ZrO2 Nanocomposite under Visible Light Irradiation. Mate. Sci. Eng. B. 2013, 178(2), 149–157. DOI: 10.1016/j.mseb.2012.10.035.
  • Venditti, F.; Ceglie, A.; Palazzo, G.; Colafemmina, G.; Lopez, F. Removal of Chromate from Water by a New CTAB-silica Gelatin Composite. J. Coll. Inter. Sci. 2007, 310, 353–361. DOI: 10.1016/j.jcis.2007.02.019.
  • Samani, M. R.; Borghei, S. M.; Olad, A.; Chaichi, M. J. Influence of Polyaniline Synthesis Conditions on Its Capability for Removal and Recovery of Chromium from Aqueous Solution. Iran. J. Chem. Chem. Eng. 2011, 30(3), 97–100.
  • Ba, S.; Ennaciri, K.; Yaacoubi, A.; Alagui, A.; Bacaoui, A. Activated Carbon from Olive Wastes as an Adsorbent for Chromium Ions Removal. Iran. J. Chem. Chem. Eng. 2018, 37(6), 107–123.
  • Aghaie, H.; Barmaki, Z.; Seif, A.; Monajjemi, M. Kinetic and Thermodynamic Study of Chromium Picolinate Removing from Aqueous Solution onto the Functionalized Multi-walled Carbonnanotubes. Iran. J. Chem. Chem. Eng. 2020. Articles in Press, Accepted Manuscript, Available Online from 15 February.
  • Hu, B.; Ai, Y.; Jin, J.; Hayat, T.; Alsaedi, A.; Zhuang, L.; Wang, X. Efficient Elimination of Organic and Inorganic Pollutants by Biochar and Biochar-based Materials. Biochar. 2020, 2, 47–64. DOI: 10.1007/s42773-020-00044-4.
  • Zhongshan, C.; Sai, Z.; Yang, L.; Nju, S.; Samar, O.; Suhu, W.; Xiangxue, W. Synthesis and Fabrication of g-C3N4-based Materials and Their Application in Elimination of Pollutants, Sci. Total Env. 2020, 731, 139054. DOI: 10.1016/j.scitotenv.2020.139054.
  • Alharbi, N. S.; Hu, B.; Hayat, T.; Rabah, S. O.; Alsaedi, A.; Zhuang, L.; Wang, X. Efficient Elimination of Environmental Pollutants through Sorption-reduction and Photocatalytic Degradation Using Nanomaterials. Fron. Chem. Sci. Eng. 2020. DOI: 10.1007/s11705-020-1923-z.
  • Dyer, A. An Introduction to Zeolite Molecular Sieve; Ed. John Wiley: London, 1988.
  • Flanigen, E. M.; Patton, R. L.; Wilson, S. T. Studies in Surface Science and Catalysis, Innovotion in Zeolite Materials Science. In Proceedings of International Symposium Nieuwpoort (Belgium) 1987; Gorbet, P. J., Mortier, W. J., Vansant, E. F., Chulz-Ekolff, G. Eds, Amsterdam – Oxford- New York- Tokyo, 1988.
  • Wilson, S. T.; Lok, B. M.; Messina, C. A.; Cannan, T. R.; Flanigen, E. M. Aluminophosphate Molecular Sieves: A New Class of Microporous Crystalline Inorganic Solids. J. Am. Chem. Soc. 1982, 104, 1146–1147. DOI: 10.1021/ja00368a062.
  • Oliver, S.; Kuperman, A.; Ozin, G. A. A New Model for Aluminophosphate Formation: Transformation of A Linear Chain Aluminophosphate to Chain, Layer, and Framework Structures. Angew. Chem. Int. Ed. 1998, 37, 46–62. DOI: 10.1002/(SICI)1521-3773(19980202)37:1/2<46::AID-ANIE46>3.0.CO;2-R.
  • Bilba, A.; Azzouz, A.; Naum, N.; Nibou, D. Synthesis and Characterization of an Aluminophosphate Material with AlPO-15 Framework Type Structure. Stu. Surf. Sci. Catal. 1994, 84, 605–612.
  • Khemaissia, S.; Nibou, D.; Amokrane, S.; Lebaili, N. Use of AlPO-11, SnAPO-11, SAPO-31 and SAPO-41 Elaborated Solid Materials as Catalysts in Ammonia Alkylation Reaction. J. Appl. Sci. 2007, 7(16), 2371–2375. DOI: 10.3923/jas.2007.2371.2375.
  • Hulea, V.; Bilba, N.; Lupascu, M.; Dumitriu, E.; Nibou, D.; Lebaili, S.; Kessler, H. Study of the Transalkylation of Aromatic Hydrocarbons over SAPO-5 Catalyts. Microp. Mate. 1997, 8, 201–206. DOI: 10.1016/S0927-6513(96)00059-4.
  • Hong, M.; Shiguang, L.; John Falconer, L.; Richard, D. N. Hydrogen Purification Using a SAPO-34 Membrane. J. Memb. Sci. 2008, 307, 277–283. DOI: 10.1016/j.memsci.2007.09.031.
  • Baerlicher, C.; Meier, W. M.; Olson, D. H. Atlas Of Zeolite Framework Types, 5th Revised ed.; Elsevier: Amesterdam, 2001.
  • Houhoune, F.; Nibou, D.; Amokrane, S.; Barkat, M. Modelling and Adsorption Studies of Removal Uranium (VI) Ions on Synthesised Zeolite NaY. Des. Wat. Treat. 2013, 51(28–30), 5583–5591. DOI: 10.1080/19443994.2013.769756.
  • Nibou, D.; Mekatel, H.; Amokrane, S.; Barkat, M.; Trari, M. Adsorption of Zn2+ Ions onto NaA and NaX Zeolites: Kinetic, Equilibrium and Thermodynamic Studies. J. Hazard. Mater. 2010, 173, 637–646. DOI: 10.1016/j.jhazmat.2009.08.132.
  • Barkat, M.; Nibou, D.; Amokrane, S.; Chegrouche, S.; Mellah, A. Uranium (VI) Adsorption on Synthesized 4A and P1 Zeolites: Equilibrium, Kinetic, and Thermodynamic Studies. Com. Rend. Chim. 2015, 18(3), 261–269. DOI: 10.1016/j.crci.2014.09.011.
  • Nibou, D.; Amokrane, S.; Lebaili, N. Use of NaX Porous Materials in the Recovery of Iron Ions. Desalination. 2010, 250(1), 459–462. DOI: 10.1016/j.desal.2009.09.076.
  • Khemaissia, S.; Nibou, D.; Amokrane, S.; Lebaili, N. Elaboration and Characterization of High Silica ZSM-5 and Mordenite Solid Microporous Materials. J. Appl. Sci. 2007, 7(5), 720–723. DOI: 10.3923/jas.2007.720.723.
  • Mekatel, E. H.; Trari, M.; Nibou, D.; Ibtissam, S.; Amorkrane, S. Preparation and Characterization of α-Fe2O3 Supported Clay as Novel Photocatalyst for Hydrogen Evolution. Inter. J. Hydro. Energ. 2019, 44(21), 10309–10315. DOI: 10.1016/j.ijhydene.2019.03.007.
  • Barquist, K.; Larsen, S. C. Chromate Adsorption on Bifunctional, Magnetic Zeolite Composites. Micro. Meso. Mater. 2010, 130, 197–202. DOI: 10.1016/j.micromeso.2009.11.005.
  • Haddad, D.; Mellah, A.; Nibou, D.; Khemaissia, S. Promising Enhancement in the Removal of Uranium Ions by Surface-modified Activated Carbons: Kinetic and Equilibrium Studies. J. Environ. Eng. 2018, 144(5), 04018027. DOI: 10.1061/(ASCE)EE.1943-7870.0001349.
  • Zeng, Y.; Woo, H.; Lee, G.; Park, J. Adsorption of Cr(VI) on Hexadecylpyridinium Bromide (HDPB) Modified Natural Zeolites. Micro. Meso. Mater. 2010, 130, 83–91. DOI: 10.1016/j.micromeso.2009.10.016.
  • Ferhat, D.; Nibou, D.; Mekatel, E. H.; Amokrane, S. Adsorption of Ni2+ Ions onto NaX and NaY Zeolites: Equilibrium, Kinetic, Intra Crystalline Diffusion and Thermodynamic Studies. Iran. J. Chem. Chem. Eng. 2019, 38(6), 63–81.
  • Liu, S. S.; Chen, Y. Z.; Zhang, L. D.; Hua, G. M.; Xu, W.; Li, N.; Zhang, Y. Enhanced Removal of Trace Cr(VI) Ions from Aqueous Solution by Titanium oxide-Ag Composite Adsorbents. J. Hasard. Mater. 2011, 190, 723–728. DOI: 10.1016/j.jhazmat.2011.03.114.
  • Traecy, M. M. J.; Higging, J. B. Collection of Simulated X Patterns for Zeolites, 4th Revised ed.; Elsevier: Amesterdam, 2001.
  • Engelhardt, G. Introduction to Zeolite Science and Practice. H. Van Bekkum, E.M.Flanigen, J.C. Jansen (Eds.). Elsevier: Amesterdam, 1991.
  • Wilson, S. T.; Lok, B. M.; Messina, C. A.; Cannan, T. R.; Flanigen, E. M. Intra Zeolite Chemistry. G.D. Stucky and F.G. Dwyer (Eds.). ACS Symp. Series. 1983, 218, 79–106.
  • Nibou, D. Elaboration and Characterization of Solid Microporous Materials. PhD thesis, University of Science and Technology Houari Boumediene, Algeria, 1999.
  • Esmaeili, A.; Ghasemi, S.; Zamani, F. Investigation of Cr(VI) Adsorption by Dried Brown Algae Sargassum Sp. And Its Activated Carbon. Iran. J. Chem. Chem. Eng. 2012, 31(4), 11–19.
  • Barrer, R. Zeolites and Clay Minerals as Sorbents and Molecular Sieves; Ed. London, UK: Academic Press, 1978.
  • Wang, C.; Shia, H.; Li, Y. Synthesis and Characteristics of Natural Zeolite Supported Fe3+-TiO2 Photocatalysts. App. Surf. Sci. 2011, 257, 6873–6877. DOI: 10.1016/j.apsusc.2011.03.021.
  • Mirtta, P.; Sarkara, D.; Chakrabartia, S.; Dutta, B. K. Reduction of Hexa-valent Chromium with Zero-valent Iron: Batch Kinetic Studies and Rate Model. Chem. Eng. J. 2011, 171, 54–60. DOI: 10.1016/j.cej.2011.03.037.
  • Yang, S.; Li, Q.; Chen, L.; Chen, Z.; Pu, Z.; Wang, H.; Wang, X. Ultrahigh Sorption and Reduction of Cr(VI) by Two Novel Core-shell Composites Combined with Fe3O4 and MoS2. J. Hazard. Mater. 2019, 120797. DOI: 10.1016/j.jhazmat.2019.120797.
  • Zhong, X.; Lu, Z.; Liang, W.; Hu, B. The Magnetic Covalent Organic Framework as A Platform for High-performance Extraction of Cr(VI) and Bisphenol A from Aqueous Solution. J. Hazard. Mater. 2020, 122353. DOI: 10.1016/j.jhazmat.2020.122353.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.