249
Views
7
CrossRef citations to date
0
Altmetric
Adsorption

Activated carbon processed from Citrus sinensis: Synthesis, characterization and application for adsorption-based separation of toxic pesticides from soils

, &
Pages 2026-2035 | Received 08 Jun 2020, Accepted 10 Aug 2020, Published online: 30 Aug 2020

References

  • Lal, R. Soils and Sustainable Agriculture. A Review. Agron Sus Develop. 2008, 28, 57–64. DOI: 10.1051/agro:2007025.
  • Wang, J.; Dong, J. K. What Drives Environmental Degradation? Evidence from 14 Sub-Saharan African Countries. Sci. Total Environ. 2019, 656, 165–173. DOI: 10.1016/j.scitotenv.2018.11.354.
  • Wang, G. T. China’s Population: Problems, Thoughts and Policies; Routledge, 2019.
  • Shekdar, A. V. AV, Sustainable Solid Waste Management: An Integrated Approach for Asian Countries. Waste Manag. 2009, 29, 1438–1448. DOI: 10.1016/j.wasman.2008.08.025.
  • Tiwari, B.; Kharwar, S.; Tiwari, D. N. Pesticides and Rice Agriculture. In Cyanobacteria. 2019, 303–325.
  • Fuoco, R.; Giannarelli, S. Integrity of Aquatic Ecosystems: An Overview of a Message from the South Pole on the Level of Persistent Organic Pollutants (Pops). Microchem. J. 2019, 148, 230–239. DOI: 10.1016/j.microc.2019.04.076.
  • Fang, W.; Peng, Y.; Muir, D.; Lin, J.; Zhang, X. A Critical Review of Synthetic Chemicals in Surface Waters of the US, the EU and China. Env Int. 2019, 131, 104994. DOI: 10.1016/j.envint.2019.104994.
  • Yang, L.; Zhang, Z. Degradation of Six Typical Pesticides in Water by VUV/UV/chlorine Process: Evaluation of the Synergistic Effect. Water Res. 2019, 161, 439–447. DOI: 10.1016/j.watres.2019.06.021.
  • Mulla, S. I.; Ameen, F.; Talwar, M. P.; Eqani, S. A.; Bharagava, R. N.; Saxena, G.; Ninnekar, H. Z. Organophosphate Pesticides: Impact on Environment, Toxicity, and Their Degradation. G. Saxena, R. N. Bharagava (eds.), In Bioremediation of Industrial Waste for Environmental Safety; Springer: Singapore, 2020; pp 265–290.
  • Topping, C. J.; Aldrich, A.; Berny, P. Overhaul Environmental Risk Assessment for Pesticides. Science. 2020, 367(6476), 360–363. DOI: 10.1126/science.aay1144.
  • Dhananjayan, V.; Jayakumar, S.; Ravichandran, B. Conventional Methods of Pesticide Application in Agricultural Field and Fate of the Pesticides in the Environment and Human Health. Rakhimol, K. R., Thomas, S., Volova, T., & Jayachandran, K. (Eds.), In Controlled Release of Pesticides for Sustainable Agriculture; Springer: Cham, 2020; pp 1–39.
  • Ma, J.; Wu, G.; Li, S.; Tan, W.; Wang, X.; Li, J.; Chen, L. Magnetic Solid-phase Extraction of Heterocyclic Pesticides in Environmental Water Samples Using Metal-organic Frameworks Coupled to High Performance Liquid Chromatography Determination. J Chromat A. 2018, 1553, 57–66. DOI: 10.1016/j.chroma.2018.04.034.
  • Wen, Y.; Niu, Z.; Ma, Y.; Ma, J.; Chen, L. Graphene Oxide-based Microspheres for the Dispersive Solid-phase Extraction of Non-steroidal Estrogens from Water Samples. J Chromat A. 2014, 1368, 18–25. DOI: 10.1016/j.chroma.2014.09.049.
  • Farsi, A.; Javid, N.; Malakootian, M. Investigation of Adsorption Efficiency of Cu 2+ and Zn 2+ by Red Soil and Activated Bentonite from Acid Copper Mine Drainage. Desalin. Water Treat. 2019, 144, 172–184. DOI: 10.5004/dwt.2019.23672.
  • Honarmandrad, Z.; Javid, N.; Malakootian, M. Efficiency of Ozonation Process with Calcium Peroxide in Removing Heavy Metals (Pb, Cu, Zn, Ni, Cd) from Aqueous Solutions. SN Appl. Sci. 2020, 2, 703. DOI: 10.1007/s42452-020-2392-1.
  • Lu, W.; Li, J.; Sheng, Y.; Zhang, X.; You, J.; Chen, L. One-pot Synthesis of Magnetic Iron Oxide Nanoparticle-multiwalled Carbon Nanotube Composites for Enhanced Removal of Cr (VI) from Aqueous Solution. J. Colloid Inter. Sci. 2017, 505, 1134–1146. DOI: 10.1016/j.jcis.2017.07.013.
  • Bahrami, M.; Amiri, M. J.; Beigzadeh, B. Adsorption of 2, 4-dichlorophenoxyacetic Acid Using Rice Husk Biochar, Granular Activated Carbon, and Multi-walled Carbon Nanotubes in a Fixed Bed Column System. Water Sci. Technol. 2018, 78, 1812–1821. DOI: 10.2166/wst.2018.467.
  • Javid, N.; Malakootian, M. Removal of Bisphenol A from Aqueous Solutions by Modified-carbonized Date Pits by ZnO Nano-particles. Desalin. Water Treat. 2017, 95, 144–151. DOI: 10.5004/dwt.2017.21592.
  • Javid, N.; Nasiri, A.; Malakootian, M. Removal of Nonylphenol from Aqueous Solutions Using Carbonized Date Pits Modified with ZnO Nanoparticles. Desalin. Water Treat. 2019, 141, 140–148. DOI: 10.5004/dwt.2019.23428.
  • Derylo-Marczewska, A.; Blachnio, M.; Marczewski, A. W.; Swiatkowski, A.; Buczek, B. Adsorption of Chlorophenoxy Pesticides on Activated Carbon with Gradually Removed External Particle Layers. Chem. Eng. J. 2017, 308, 408–418. DOI: 10.1016/j.cej.2016.09.082.
  • Derylo-Marczewska, A.; Blachnio, M.; Marczewski, A. W.; Seczkowska, M.; Tarasiuk, B. Phenoxyacid Pesticide Adsorption on Activated Carbon–equilibrium and Kinetics. Chemosphere. 2019, 214, 349–360. DOI: 10.1016/j.chemosphere.2018.09.088.
  • Lonappan, L.; Liu, Y.; Rouissi, T.; Brar, S. K.; Surampalli, R. Y. Development of Biochar-based Green Functional Materials Using Organic Acids for Environmental Applications. J Cleaner Produc. 2020, 244, 118841. DOI: 10.1016/j.jclepro.2019.118841.
  • Cossutta, M.; Vretenar, V.; Centeno, T. A.; Kotrusz, P.; McKechnie, J.; Pickering, S. J. A Comparative Life Cycle Assessment of Graphene and Activated Carbon in A Supercapacitor Application. J Cleaner Produc. 2020, 242, 118468. DOI: 10.1016/j.jclepro.2019.118468.
  • Feng, Z.; Chen, H.; Li, H.; Yuan, R.; Wang, F.; Chen, Z.; Zhou, B. Preparation, Characterization, and Application of Magnetic Activated Carbon for Treatment of Biologically Treated Papermaking Wastewater. Sci. Total Environ. 2020, 713, 136423–136435.
  • Arami, A.; Yousefi Limaee, N.; Mahmoodi, N. M.; Tabrizi, N. S. Removal of Dyes from Colored Textile Waste Water by Orange Peel Adsorbent. Equilibrium and Kinetic Studies. J. Coll. Inter. Sci. 2005, 228, 371–376. DOI: 10.1016/j.jcis.2005.03.020.
  • Doulati, A. F.; Badii, K. H.; Yousefi Limaee, N.; Mahmoodi, N. M.; Arami, M.; Shafaei, S. Z.; Mirhabibi, A. R. Numerical Modeling and Laboratory Studies on the Removal of Direct Red 23 and Direct Red 80 Dyes from Textile Effluents Using Orange Peel a Low – Cost Adsorbent. Dyes Pigment. 2007, 73, 178–185. DOI: 10.1016/j.dyepig.2005.11.011.
  • Hesas, R. H.; Arami-Niya, A.; Daud, W. M.; Sahu, J. N. Preparation and Characterization of Activated Carbon from Apple Waste by Microwave-assisted Phosphoric Acid Activation: Application in Methylene Blue Adsorption. BioResources. 2013, 8, 2950–2966.
  • Ahmad, M. A.; Ahmad, N.; Bello, O. S. Adsorptive Removal of Malachite Green Dye Using Durian Seed-based Activated Carbon. Water Air Soil Pollut. 2014, 225, 2057.
  • Munagapati, V. S.; Wen, J. C.; Pan, C. L.; Gutha, Y.; Wen, J. H. Enhanced Adsorption Performance of Reactive Red 120 Azo Dye from Aqueous Solution Using Quaternary Amine Modified Orange Peel Powder. J. Mol. Liq. 2019, 285, 375–385. DOI: 10.1016/j.molliq.2019.04.081.
  • De Sousa Krueger, M. D.; Volkmann, A. C.; Rainert, K. T. Removal of Textile Dye Remazol Brilliant Blue Reactive (RBBR) Using Fibers of Citrullus Lanatus (Watermelon) and Cocos Nucifera (Green Coconut) as Adsorbent Material. Revista Eletrônica Gestão, Educação Tecnologia Ambiental. 2019, 23, 5.
  • Mamun, K. R.; Chakrabarty, S. A Comparative Study of the Adsorption Capacity of Tea Leaves and Orange Peel for the Removal of Fe (III) Ion from Wastewater. J. Chem. Health Risk. 2019, 9, 107–115.
  • Mireles, S.; Parsons, S. J.; Trad, T.; Cheng, C. L.; Kang, J. Lead Removal from Aqueous Solutions Using Biochars Derived from Corn Stover, Orange Peel, and Pistachio Shell. Int. J. Environ. Sci. Technol. 2019, 16, 1–10.
  • Senophiyah-Mary, J.; Thomas, T.; Loganath, R.; Meenambal, T. Removal of Copper from Bioleachate of E-Waste Using Orange Activated Carbon (OAC) and Comparison with Commercial Activated Carbon (CAC). Waste Valor Recycle. Springer, Singapore. 2019, 373–380.
  • Wei, Q.; Chen, Z.; Cheng, Y.; Wang, X.; Yang, X.; Wang, Z. Preparation and Electrochemical Performance of Orange Peel Based-activated Carbons Activated by Different Activators. Colloid Surf A Physicochem Eng Aspect. 2019, 574, 221–227. DOI: 10.1016/j.colsurfa.2019.04.065.
  • Topare, N. S.; Joshi, P. Characterization of Activated Carbon Prepared from Citrus Sinensis (Orange) Peels by X-Ray Fluorescence Spectroscopy (XRF). Emerg Trend Chem Eng. 2019, 2, 50–52.
  • Ahmad, K. S. Adsorption Evaluation of Herbicide Iodosulfuron Followed by Cedrus Deodora Sawdust-derived Activated Carbon Removal. Soil Sed Contam Int J. 2019, 28, 65–80. DOI: 10.1080/15320383.2018.1536692.
  • Ahmad, K. S. Evaluating the Adsorption Potential of Alachlor and Its Subsequent Removal from Soils via Activated Carbon. Soil Sed Contam Int J. 2018, 27, 249–266. DOI: 10.1080/15320383.2018.1470604.
  • Dhelipan, M.; Arunchander, M.; Sahu, A. K.; Kalpana, D. Activated Carbon from Orange Peels as Supercapacitor Electrode and Catalyst Support for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cell. J. Saudi Chem. Soc. 2017, 21, 487–494. DOI: 10.1016/j.jscs.2016.12.003.
  • Xie, Z.; Guan, W.; Ji, F.; Song, Z.; Zhao, Y. Production of Biologically Activated Carbon from Orange Peel and Landfill Leachate Subsequent Treatment Technology. J. Chem. 2014, 2014, 1–9. DOI: 10.1155/2014/491912.
  • Mafra, M. R.; Igarashi-Mafra, L.; Zuim, D. R.; Vasques, E. C.; Ferreira, M. A. Adsorption of Remazol Brilliant Blue on an Orange Peel Adsorbent. Brazilian J. Chem. Eng. 2013, 30, 657–665. DOI: 10.1590/S0104-66322013000300022.
  • Djilani, C.; Zaghdoudi, R.; Modarressi, A.; Rogalski, M.; Djazi, F.; Lallam, A. Elimination of Organic Micropollutants by Adsorption on Activated Carbon Prepared from Agricultural Waste. Chem. Eng. J. 2012, 189-190, 203–212. DOI: 10.1016/j.cej.2012.02.059.
  • Manthey, J. A.; Grohmann, K. Phenols in Citrus Peel Byproducts. Concentrations of Hydroxycinnamates and Polymethoxylated Flavones in Citrus Peel Molasses. J. Agric. Food Chem. 2001, 49, 3268–3273. DOI: 10.1021/jf010011r.
  • Mansour, H. F.; Gomaa, A. A.; Gamal, A. M. Potential Application of Orange Peel (OP) as an Eco-friendly Adsorbent for Textile Dyeing Effluents. J Textile Apparel. Technol Manage. 2012, 7(3), 1–13.
  • Ayranci, E.; Hoda, N. Adsorption Kinetics and Isotherms of Pesticides onto Activated Carbon-cloth. Chemosphere. 2005, 60, 1600–1607. DOI: 10.1016/j.chemosphere.2005.02.040.
  • Gupta, V. K.; Gupta, B.; Rastogi, A.; Agarwal, S.; Nayak, A. Pesticides Removal from Waste Water by Activated Carbon Prepared from Waste Rubber Tire. Water Res. 2011, 45, 4047–4055. DOI: 10.1016/j.watres.2011.05.016.
  • Hameed, B. H.; Salman, J. M.; Ahmad, A. L. Adsorption Isotherm and Kinetic Modeling of 2, 4-D Pesticide on Activated Carbon Derived from Date Stones. J. Hazard. Mater. 2009, 163, 121–126. DOI: 10.1016/j.jhazmat.2008.06.069.
  • Salman, J. M.; Hameed, B. H. Adsorption of 2, 4-dichlorophenoxyacetic Acid and Carbofuran Pesticides onto Granular Activated Carbon. Desalination. 2010, 256, 129–135. DOI: 10.1016/j.desal.2010.02.002.
  • Vukčević, M. M.; Kalijadis, A. M.; Vasiljević, T. M.; Babić, B. M.; Laušević, Z. V.; Laušević, M. D. Production of Activated Carbon Derived from Waste Hemp (Cannabis Sativa) Fibers and Its Performance in Pesticide Adsorption. Microporous Mesoporous Mater. 2015, 214, 156–165. DOI: 10.1016/j.micromeso.2015.05.012.
  • Suo, F.; Liu, X.; Li, C.; Yuan, M.; Zhang, B.; Wang, J.; Ji, M.; Lai, Z.; Ji, M. Mesoporous Activated Carbon from Starch for Superior Rapid Pesticides Removal. Int J Biol Macromolecules. 2019, 121, 806–813. DOI: 10.1016/j.ijbiomac.2018.10.132.
  • Chang, K. L.; Lin, J. H.; Chen, S. T. Adsorption Studies on the Removal of Pesticides (Carbofuran) Using Activated Carbon from Rice Straw Agricultural Waste. World Acad. Sci. Eng. Technol. 2011, 5, 04–21.
  • Javida, N.; Honarmandradb, Z.; Malakootianc, M. Ciprofloxacin Removal from Aqueous Solutions by Ozonation with Calcium Peroxide. Desalin. Water Treat. 2020, 174, 178–185. DOI: 10.5004/dwt.2020.24855.
  • Meimand, M. M.; Javid, N.; Malakootian, M. Adsorption of Sulfur Dioxide on Clinoptilolite/Nano Iron Oxide and Natural Clinoptilolite. Health Scope. 2019, 8, 8.
  • Malakootiana, M.; Yousefic, Z.; Limonib, Z. K. Removal of Lead from Battery Industry Wastewater by Chlorella Vulgaris as Green Micro-algae (Case Study: Kerman, Iran). Desalin. Water Treat. 2019, 141, 248–255. DOI: 10.5004/dwt.2019.23485.
  • Malakootian, M.; Mansoorian, H. J.; Hosseini, A.; Khanjani, N. Evaluating the Efficacy of Alumina/carbon Nanotube Hybrid Adsorbents in Removing Azo Reactive Red 198 and Blue 19 Dyes from Aqueous Solutions. Proc Safety Environ Rrotect. 2015, 96, 125–137. DOI: 10.1016/j.psep.2015.05.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.