187
Views
3
CrossRef citations to date
0
Altmetric
Electrical separations

Effect of electric potentials on the removal of Cu and Zn in soil by electrokinetic remediation

, , , &
Pages 2439-2448 | Received 05 Jul 2019, Accepted 14 Sep 2020, Published online: 05 Oct 2020

References

  • Yang, J. S.; Kwon, M. J.; Choi, J. Loughlin the Transport Behavior of As, Cu, Pb, and Zn during Electrokinetic Remediation of a Contaminated Soil Using Electrolyte Conditioning. Chemosphere 2015, 117, 79. DOI: 10.1016/j.chemosphere.2014.05.079.
  • Thomé, A.; Reddy, K. R.; Reginatto, C.; Cecchin, I. Review of Nanotechnology for Soil and Groundwater Remediation: Brazilian Perspectives. Water Air Soil Pollut. 2015, 226(4), 1–20. DOI: 10.1007/s11270-014-2243-z.
  • Liu, L. W.; Li, W.; Guo, M. Remediation Techniques for Heavy Metal-contaminated Soils: Principles and Applicability. Sci. Total Environ. 2018, 633, 206–219. DOI: 10.1016/j.scitotenv.2018.03.161.
  • Vocciante, M.; Caretta, A.; Ferro, S. Enhancements in ElectroKinetic Remediation Technology: Environmental Assessment in Comparison with Other Configurations and Consolidated Solutions. Chem. Eng. J. 2016, 289, 123–134. DOI: 10.1016/j.cej.2015.12.065.
  • López-Vizcaíno, R. L.; Yustres, A.; Navarro, V. Multiphysics Implementation of Electrokinetic Remediation Models for Natural Soils and Porewaters. Electrochim. Acta 2017, 225, 93–104. DOI: 10.1016/j.electacta.2016.12.102.
  • Miao, T.; Pan, T.; Multiphysics, A. Model for Evaluating Electrokinetic Remediation of Nuclear Waste-Contaminated Soils. Water Air Soil Pollut. 2015, 226(3), 77. DOI: 10.1007/s11270-014-2292-3.
  • Lu, H. P.; Li, Z. H.; Paz-Ferreiro, J. Combining Phytoextraction and Biochar Addition Improves Soil Biochemical Properties in a Soil Contaminated with Cd. Chemosphere 2015, 119, 209–216. DOI: 10.1016/j.chemosphere.2014.06.024.
  • Venegas, A.; Rigol, A.; Vidal, M. Viability of Organic Wastes and Biochars as Amendments for the Remediation of Heavy Metal-contaminated Soils. Chemosphere 2015, 119, 190–198. DOI: 10.1016/j.chemosphere.2014.06.009.
  • Wang, Y. Y.; Peng, B.; Li, C. Bacterial Community Dynamics during Bioremediation of Cr (Vi)-contaminated Soil. Appl. Soil Ecol. 2015, 85, 50–55. DOI:10.1016/j.apsoil.2014.09.002.
  • Jelusic, M.; Lestan, D. Remediation and Reclamation of Soils Heavily Contaminated with Toxic Metals as a Substrate for Greening with Ornamental Plants and Grasses. Chemosphere 2015, 138, 1001–1007. DOI: 10.1016/j.chemosphere.2014.12.047.
  • Suzuki, T.; Niinae, M.; Choso, T. EDDS-enhanced Electrokinetic Remediation of Heavy Metal-contaminated Clay Soils under Neutral pH Conditions. Colloids Surf. A 2014, 440, 145–150. DOI: 10.1016/j.colsurfa.2012.09.050.
  • Isoyama, M.; Wada, S. I. Remediation of Pb-contaminated Soils by Washing with Hydrochloric Acid and Subsequent Immobilization with Calcite and Allophanic Soil. J. Hazard. Mater. 2007, 143, 636–642. DOI: 10.1016/j.jhazmat.2007.01.008.
  • Giannis, A.; Tay, E.; Wang, J. Impact of Vertical Electrokinetic-flushing Technology to Remove Heavy Metals and Polycyclic Aromatic Hydrocarbons from Contaminated Soil. Electrochim. Acta 2012, 86, 72–79. DOI: 10.1016/j.electacta.2012.04.034.
  • Habibul, N.; Hu, Y.; Sheng, G. P. Microbial Fuel Cell Driving Electrokinetic Remediation of Toxic Metal Contaminated Soils. J. Hazard. Mater. 2016, 318, 9–14. DOI: 10.1016/j.jhazmat.2016.06.041.
  • Virkutyte, J.; Sillanpää, M.; Latostenmaa, P. Electrokinetic Soil Remediation—Critical Overview. Sci. Total Environ. 2002, 289, 97–121. DOI: 10.1016/S0048-9697(01)01027-0.
  • Bahemmat, M.; Farahbakhsh, M.; Kianirad, M. Humic Substances-enhanced Electroremediation of Heavy Metals Contaminated Soil. J. Hazard. Mater. 2016, 312, 307–318. DOI: 10.1016/j.jhazmat.2016.03.038.
  • Ahmad, N.; Muhammad, R.; Tajuddin, H. A.; Misran, M. Effect of Glycolipids on the Stability and Electrophoretic Mobility of Decanoic Acid Vesicles. Colloids Surf. A Physicochem. Eng. Asp. 2014, 443, 96–101. DOI: 10.1016/j.colsurfa.2013.10.045.
  • Probstein, R. F.; Hicks, R. E. Removal of Contaminants from Soils by Electric Fields. Science 1993, 260, 498–503. DOI: 10.1126/science.260.5107.498.
  • Shapiro, A. P.; Probstein, R. F. Removal of Contaminants from Saturated Clay by Electroosmosis. Environ. Sci. Technol. 1993, 27, 283–291. DOI: 10.1021/es00039a007.
  • Abriata, J. P.; Laughlin, D. E. The Third Law of Thermodynamics and Low Temperature Phase Stability. Prog. Mater. Sci. 2004, 49, 367–387. DOI: 10.1016/S0079-6425(03)00030-6.
  • Jiradecha, C.; Urgun-Demirtas, M.; Pagilla, K. Enhanced Electrokinetic Dissolution of Naphthalene and 2, 4-DNT from Contaminated Soils. J. Hazard. Mater. 2006, 136, 61–67. DOI: 10.1016/j.jhazmat.2005.11.014.
  • Hua, Z.; Wei, D. Enhanced Electrokinetic Remediation of Pyrene-Contaminated Soil through pH Control and Rhamnolipid Addition. Environ. Eng. Sci. 2016, 33, 7.
  • Cang, L.; Fan, G. P.; Zhou, D. M.; Wang, Q. Y. Enhanced-electrokinetic Remediation of Copper-pyrene Co-contaminated Soil with Different Oxidants and pH Control. Chemosphere 2013, 90, 2326–2331. DOI: 10.1016/j.chemosphere.2012.10.062.
  • Zou, H.; Du, W.; Zhu, R. Enhanced Electrokinetic Remediation of Pyrene-contaminated Soil through pH Control and Rhamnolipid Addition. Environ. Eng. Sci. 2016, 33, 0019.
  • Fu, R.; Wen, D.; Xia, X.; Gu, Y. Electrokinetic Remediation of Chromium (Cr)-contaminated Soil with Citric Acid (CA) and Polyaspartic Acid (PASP) as Electrolytes. Chem. Eng. J. 2017, 316, 601–608. DOI: 10.1016/j.cej.2017.01.092.
  • Deflaun, M. F.; Condee, C. W. Electrokinetic Transport of Bacteria. J. Hazard. Mater. 1997, 55, 263–277. DOI: 10.1016/S0304-3894(97)00023-X.
  • Luo, Q.; Zhang, X.; Qian, Y. The Use of Non-uniform Electrokinetics to Enhance in Situ Bioremediation of Phenol-contaminated Soil. J. Hazard. Mater. 2005, 121, 187–194. DOI: 10.1016/j.jhazmat.2005.02.007.
  • Xu, W.; Wang, C.; Sun, H. A Laboratory Feasibility Study on A New Electrokinetic Nutrient Injection Pattern and Bioremediation of Phenanthrene in A Clayey Soil. J. Hazard. Mater. 2010, 184, 798–804. DOI: 10.1016/j.jhazmat.2010.08.111.
  • Wei, D.; Hua, Z.; Chao, S. Y. Surfactant-enhanced Electrokinetic Remediation of Chromium and Phenanthrene. Environ. Eng. Sci. 2017, 10, 0567.
  • Dermont, G.; Bergeron, M.; Mercier, G.; Richer-Laflèche, M. Soil Washing for Metal Removal: A Review of Physical/Chemical Technologies and Field Applications. J. Hazard. Mater. 2008, 152, 1–31. DOI: 10.1016/j.jhazmat.2007.10.043.
  • Seo, S. J.; Kim, J. H.; Shin, J. W.; Park, J. Y. Treatment of Artificial and Real Co-contaminated Soil by an Enhanced Electrokinetic-Fenton Process with a Soil Flushing Method. Water Air Soil Pollut. 2015, 226(4), 1–14.
  • Sun, T. R.; Ottosen, L. M.; Jensen, P. E. Pulse Current Enhanced Electrodialytic Soil Remediation—Comparison of Different Pulse Frequencies. J. Hazard. Mater. 2012, 237–238, 299–306. DOI: 10.1016/j.jhazmat.2012.08.043.
  • Méndez, E.; Pérez, M.; Bustos, E. Effects of Electrode Material on the Efficiency of Hydrocarbon Removal by an Electrokinetic Remediation Process. Electrochim. Acta 2012, 86, 148–156.
  • Souilah, O.; Akretche, D. E.; Cameselle, C. Electroremediation of Contaminated Soil by Heavy Metals Using Ion Exchange Fibers. Electrochim. Acta 2012, 86, 138–141. DOI: 10.1016/j.electacta.2012.04.089.
  • Huang, S.; Yang, Y. Spatial Distribution and Ecological Risk Assessment of Heavy Metals in Soil around Lead-zinc Mining Area. Environ. Sci. Technol. 2016, 9, 477.
  • Zhu, F.; Ren, W. T. Effect of Electric Field Intensity on Fe (Ш) Enhanced Electrokinetic Remediation of Zn-contaminated Soil. Ecol. Environ. Sci. 2017, 26, 1250.
  • Zeng, X. B.;. Some Deliberations on the Issues of Heavy Metals in Farmlands of China. J. Acta Pedol. Sin. 2013, 50, 186.
  • Zheng, N.; Wang, Q.; Zheng, D. Health Risk of Hg, Pb, Cd, Zn, and Cu to the Inhabitants around Huludao Zinc Plant in China via Consumption of Vegetables. Sci. Total Environ. 2007, 383, 81–89. DOI: 10.1016/j.scitotenv.2007.05.002.
  • Zeng, L. P.; Qin, J. H.; Dong, S. Y. Accumulation of Heavy Metals Copper, Zinc, and Cadmium in Cassava Varieties and the Associated Human Health Risk. J. Agron. Environ. Sci. 2017, 36, 1044.
  • Acar, Y. B.; Alshawabkeh, A. N. Principles of Electrokinetic Remediation. Environ. Sci. Technol. 1993, 27, 2638–2647. DOI: 10.1021/es00049a002.
  • Liu, H.; Cang, L.; Hao, X. Z.; Wang, Y. X. Field-scale Electrokinetic Remediation of Heavy Metal Contaminated Sites. Chin. J. Environ. Eng. 2016, 7,1673–9108.
  • Huang, T.; Zhou, L. L.; Liu, L. F.; Xia, M. Ultrasound-enhanced Electrokinetic Remediation for Removal of Zn, Pb, Cu and Cd in Municipal Solid Waste Incineration Fly Ashes. Waste Manage. 2018, 75, 226–235. DOI: 10.1016/j.wasman.2018.01.029.
  • Yue, S.; Long, C.; Hong, T. X.; Song, W.; Dong, M. Z. Migration and Decomplexation of Metal-chelate Complexes Causing Metal Accumulation Phenomenon after Chelate-enhanced Electrokinetic Remediation. J. Hazard. Mater. 2019, 377, 106–112. DOI: 10.1016/j.jhazmat.2019.05.055.
  • Kim, D. H.; Jo, S. U.; Baek, K. Ex Situ Pilot Scale Electrokinetic Restoration of Saline Soil Using Pulsed Current. Sep. Purif. Technol. 2013, 120, 282–288. DOI: 10.1016/j.seppur.2013.10.007.
  • Rojo, A.; Hansen, H. K.; Monárdez, O. Electrokinetic Remediation of Mine Tailings by Applying a Pulsed Variable Electric Field. Miner. Eng. 2014, 55, 52–56. DOI: 10.1016/j.mineng.2013.09.004.
  • Zhang, J.; Xu, Y.; Xu, Z. P. Enhanced Remediation of Cr (Vi)-contaminated Soil by Incorporating a Calcined-hydrotalcite-based Permeable Reactive Barrier with Electrokinetics. J. Hazard. Mater. 2012, 239–240, 128–134.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.