204
Views
11
CrossRef citations to date
0
Altmetric
Adsorption

Enhanced adsorption of Cr (VI) from aqueous solution by zirconium impregnated chitosan microspheres: mechanism and equilibrium

, , , , , , & show all
Pages 2532-2545 | Received 28 Jun 2020, Accepted 21 Oct 2020, Published online: 04 Nov 2020

References

  • Wu, S.; Ge, Y.; Wang, Y.; et al. Adsorption of Cr(VI) on nano Uio-66-NH2 MOFs in water[J]. Environ. Technol. 2018, 39(15), 1937–1948.
  • Qi, Y.; Jiang, M.; Y L, C.; et al. Novel reduction of Cr(VI) from wastewater using a naturally derived microcapsule loaded with rutin-Cr(III) complex[J]. J. Hazard. Mater. 2015, 285, 336–345. DOI: 10.1016/j.jhazmat.2014.12.008.
  • Gorzin, F.; Bahri Rasht Abadi, M. M. Adsorption of Cr(VI) from Aqueous Solution by Adsorbent Prepared from Paper Mill Sludge: Kinetics and Thermodynamics studies[J]. Adsorpt. Sci. Technol. 2017, 36(1–2), 149–169. DOI: 10.1177/0263617416686976.
  • Kanchi, S.; Bisetty, K.; Kumar, G.; et al. Development of green energy waste activated carbon for removal of trivalent chromium: equilibrium and kinetic Modeling[J]. Sep. Ence Technol. 2014, 49(4), 513–522.
  • Wang, G.; Hua, Y.; Su, X.; Komarneni, S.; Ma, S.; Wang, Y.; et al. Cr(VI) adsorption by montmorillonite nanocomposites[J]. Appl. Clay Sci. 2016, 124-125, 111–118. DOI: 10.1016/j.clay.2016.02.008.
  • Miretzky, P.; Cirelli, A. F. Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: a review[J]. J. Hazard. Mater. 2010, 180(1–3), 1–19. DOI: 10.1016/j.jhazmat.2010.04.060.
  • S M, A.; Vishalakshi, B.; H R, C.; et al. Heterocyclic modification of chitosan for the adsorption of Cu (II) and Cr (VI) ions[J]. Sep. Sci. Technol. 2018, 53(13), 1979–1990.
  • Xie, B.; Chao, S.; Zhe, X.; et al. One-step removal of Cr(VI) at alkaline pH by UV/sulfiteprocess: reduction to Cr(III) and in situ Cr(III)precipitation[J]. Chem. Eng. J. 2016, 308, 791–797. DOI: 10.1016/j.cej.2016.09.123.
  • Gong, Y.; Gai, L.; Tang, J.; Fu, J.; Wang, Q.; Zeng, E. Y.; Reduction of Cr(VI) in simulated groundwater by FeS-coated iron magnetic nanoparticles[J]. Sci. Total Environ. 2017, 595, 743–751. DOI: 10.1016/j.scitotenv.2017.03.282.
  • Tytłak, A.; Oleszczuk, P.; Dobrowolski, R. Sorption and desorption of Cr(VI) ions from water by biochars in different environmental conditions[J]. Environ. Sci. Pollut. Res. 2015, 22(8), 5985–5994. DOI: 10.1007/s11356-014-3752-4.
  • Liu, Y.; Jin, X.; Chen, Z. The Formation of iron nanoparticles by eucalyptus leaf extract and used to remove Cr(VI)[J]. Sci. Total Environ. 2018, 627, 470–479. DOI: 10.1016/j.scitotenv.2018.01.241.
  • Wiśniewska, M.; Fijałkowska, G.; Szewczuk-Karpisz, K. The mechanism of anionic polyacrylamide adsorption on the montmorillonite surface in the presence of Cr(VI) ions[J]. Chemosphere. 2018, 211, 524–534. DOI: 10.1016/j.chemosphere.2018.07.198.
  • Chao, L.; Luo, W.; Luo, T.; et al. A study on adsorption of Cr (VI) by modified rice straw: characteristics, performances and mechanism[J]. J. Cleaner Prod. 2018, 196, S1487430186X.
  • Babel, S.; Kurniawan, T. A. Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan[J]. Chemosphere. 2004, 54(7), 951–967. DOI: 10.1016/j.chemosphere.2003.10.001.
  • Zhu, T.; Huang, W.; Zhang, L.; Gao, J.; Zhang, W.; Adsorption of Cr(VI) on cerium immobilized cross-linked chitosan composite in single system and coexisted with orange ii in binary system[J]. Int. J. Biol. Macromol. 2017, 103, 605. DOI: 10.1016/j.ijbiomac.2017.05.051.
  • D W, C.; B H, J.; Jeong, Y.; et al. Synthesis of hydrous zirconium oxide-impregnated chitosan beads and their application for removal of fluoride and lead[J]. Appl. Surf. Sci. 2016, 372, 13–19. DOI: 10.1016/j.apsusc.2016.03.068.
  • Wang, Z.; Yang, J.; Li, Y.; et al. Simultaneous degradation and removal of crvi from aqueous solution with Zr-based metal-organic frameworks bearing inherent reductive sites[J]. Chem. - Eur. J. 2017, 23(61), 15415–15423.
  • Davarnejad, R.; Z K, D.; Kennedy, J. F. Cr(VI) adsorption on the blends of henna with chitosan microparticles: experimental and statistical analysis[J]. Int. J. Biol. Macromol. 2018, 116, 281–288. DOI: 10.1016/j.ijbiomac.2018.04.189.
  • Mei, J.; Zhang, H.; Li, Z.; Ou, H.; A novel tetraethylenepentamine crosslinked chitosan oligosaccharide hydrogel for total adsorption of Cr(VI)[J]. Carbohydr. Polym. 2019, 224, 115–154. DOI: 10.1016/j.carbpol.2019.115154.
  • Nam, A.; Choi, U. S.; Yun, S. T.;, et al. Evaluation of amine-functionalized acrylic ion exchange fiber for chromium (VI) removal using flow-through experiments modeling and real wastewater[J]. J. Ind. Eng. Chem. 2018, S1226086X–S18302582X.
  • Xu, D.; Lu, J.; Yan, S.; et al. Aminated EVOH nanofiber membranes for Cr(VI) adsorption from aqueous solution[J]. RSC Adv. 2018, 8(2), 742–751.
  • Lin, X.; Liu, J.; Wan, S.; He, X.; Cui, L.; Wu, G.; A novel strategy for Cr(VI) removal from aqueous solution via CYPH@IL101/chitosan capsule[J]. Int. J. Biol. Macromol. 2019, 136, 35–47. DOI: 10.1016/j.ijbiomac.2019.05.125.
  • Ferrero, F.; Tonetti, C.; Periolatto, M. Adsorption of chromate and cupric ions onto chitosan-coated cotton gauze[J]. Carbohydr. Polym. 2014, 110, 367–373. DOI: 10.1016/j.carbpol.2014.04.016.
  • W S W, N.; L C, T. Hanafiah M A K M. adsorption of dyes and heavy metal ions by chitosan composites: a review[j] .Carbohydr. Polym. 2011, 83(4), 1446–1456. DOI: 10.1016/j.carbpol.2010.11.004.
  • Chethan, P. D.; Vishalakshi, B.; Synthesis of ethylenediamine modified chitosan microspheres for removal of divalent and hexavalent ions[J]. Int. J. Biol. Macromol. 2015, 75, 179–185. DOI: 10.1016/j.ijbiomac.2015.01.032.
  • Wang, G.; Wang, S.; Sun, W.; et al. Synthesis of a novel illite@carbon nanocomposite adsorbent for removal of Cr(VI) from wastewater[J]. J. Environ. Ences. 2017, 57(7), 62–71.
  • Li, T.; Shen, J.; Huang, S.; Li, N.; Ye, M.; et al. Hydrothermal carbonization synthesis of a novel montmorillonite supported carbon nanosphere adsorbent for removal of Cr (VI) from waste water[J]. Appl. Clay Sci. 2014, 93-94(may), 48–55.
  • Chen, L. F.; Liang, H. W.; Lu, Y.; et al. Synthesis of an attapulgite clay@carbon nanocomposite adsorbent by a hydrothermal carbonization process and their application in the removal of toxic metal ions from water[J]. Langmuir. 2011, 27(14), 8998–9004.
  • Hasan, Z.; Jeon, J.; Jhung, S. H. Adsorptive removal of naproxen and clofibric acid from water using metal-organic frameworks[J]. J. Hazard. Mater. 2012, 209-210(4), 151–157. DOI: 10.1016/j.jhazmat.2012.01.005.
  • Osvaldo, K.; L V A, G.; J C P D, M.; et al. Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse[J]. Bioresour. Technol. 2007, 98(6), 1291–1297.
  • Kayranli, B.;. Adsorption of textile dyes onto iron based waterworks sludge from aqueous solution; isotherm, kinetic and thermodynamic study[J]. Chem. Eng. J. 2011, 173(3), 782–791. DOI: 10.1016/j.cej.2011.08.051.
  • Tanhaei, B.; Ayati, A.; Lahtinen, M.; Sillanpää, M.; Preparation and characterization of a novel chitosan/Al2O3/magnetite nanoparticles composite adsorbent for kinetic, thermodynamic and isotherm studies of methyl orange adsorption[J]. Chem. Eng. J. 2015, 259, 1–10. DOI: 10.1016/j.cej.2014.07.109.
  • G S, S.; Bhattacharyya, K. G. Kinetics of adsorption of metal ions on inorganic materials: a review [J]. Adv. Colloid Interface Sci. 2011, 162(1), 39–58. DOI: 10.1016/j.cis.2010.12.004.
  • Suksabye, P.; Cr, T. P. VI) Adsorption from electroplating plating wastewater by chemically modified coir pith[J]. J. Environ. Manage. 2003, 69(4), 1–8.
  • Y G, Z.; H Y, S.; S D, P.; et al. Synthesis, characterization and properties of ethylenediamine-functionalized Fe 3 O 4 magnetic polymers for removal of Cr(VI) in wastewater[J]. J. Hazard. Mater. 2010, 182(1), 295–302.
  • Han, X.; Liu, Y.; Xiong, L.; et al. Facile assembly of polyaniline/graphene oxide composite hydrogels as adsorbent for Cr(VI) removal[J]. Polym. Compos. 2018, 40(S2), E1777–E1785.
  • Liu, Q.; Liu, Q.; Liu, B.; Hu, T.; Liu, W.; Yao, J.; Green synthesis of tannin-hexamethylendiamine based adsorbents for efficient removal of Cr(VI)[J]. J. Hazard. Mater. 2018, 352, 27–35. DOI: 10.1016/j.jhazmat.2018.02.040.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.