394
Views
10
CrossRef citations to date
0
Altmetric
Flotation

Direct hematite flotation from an iron ore tailing using an innovative biosurfactant

, , , , &
Pages 2978-2988 | Received 07 Sep 2020, Accepted 04 Jan 2021, Published online: 17 Jan 2021

References

  • Praes, P. E.; de Albuquerque, R. O.; Luz, A. F. O. Recovery of Iron Ore Tailings by Column Flotation. J. Minerals Mater. Character. Eng. 2013, 1, 212–216. DOI: https://doi.org/10.4236/jmmce.2013.15033.
  • Rea, S. M.; McSweeney, N. J.; Dwyer, R. B.; Bruckard, W. J. Application of Biotechnology in Iron Ore Beneficiation. In Iron Ore; Liming, L., Ed.; Mineralogy, Processing and Environmental Sustainability, 2015; pp 373–391. Woodhead Publishing: Cambridge, UK.
  • Galvão, J. L. B.; Andrade, H. D.; Brigolini, G. J.; Peixoto, R. A. F.; Mendes, J. C. Reuse of Iron Ore Tailings from Tailings Dams as Pigment for Sustainable Paints. J. Cleaner Prod. 2018, 200, 412–422. DOI: https://doi.org/10.1016/j.jclepro.2018.07.313.
  • Pattanaik, A.; Venugopal, R. Investigation of Adsorption Mechanism of Reagents (Surfactants) System and Its Applicability in Iron Ore Flotation–an Overview. Colloid Interface Sci. Commun. 2018, 25, 41–65. DOI: https://doi.org/10.1016/j.colcom.2018.06.003.
  • Dwyer, R.; Bruckard, W. J.; Rea, S.; Holmes, R. J. Bioflotation and Bioflocculation Review: Microorganisms Relevant for Mineral Beneficiation. Mineral Process. Extract. Metall. 2012, 121(2), 65–71. DOI: https://doi.org/10.1179/1743285512Y.0000000005.
  • Merma, A. G.; Torem, M. L.; Morán, J. J.; Monte, M. B. On the Fundamental Aspects of Apatite and Quartz Flotation Using a Gram Positive Strain as a Bioreagent. Miner. Eng. 2013, 48, 61–67. DOI: https://doi.org/10.1016/j.mineng.2012.10.018.
  • Kumar, R.; Mandre, N. R. Characterization and Beneficiation of Iron Ore Tailings by Selective Flocculation. Transactions of the Indian Institute of Metals. 2016, 69(7), 1459–1466. DOI: https://doi.org/10.1007/s12666-015-0667-9.
  • Olivera, C. A. C.; Merma, A. G.; Puelles, J. G. S.; Torem, M. L. On the Fundamentals Aspects of Hematite Bioflotation Using a Gram Positive Strain. Miner. Eng. 2017, 106, 55–63. DOI: https://doi.org/10.1016/j.mineng.2016.10.017.
  • De Mesquita, L. M. S.; Lins, F. F.; Torem, M. L. Interaction of a Hydrophobic Bacterium Strain in a Hematite–quartz Flotation System. Int. J. Miner. Process. 2003, 71(1–4), 31–44. DOI: https://doi.org/10.1016/S0301-7516(03)00028-0.
  • Botero, A. E. C.; Torem, M. L.; de Mesquita, L. M. S. Surface Chemistry Fundamentals of Biosorption of Rhodococcus Opacus and Its Effect in Calcite and Magnesite Flotation. Miner. Eng. 2008, 21(1), 83–92. DOI: https://doi.org/10.1016/j.mineng.2007.08.019.
  • Pollmann, K.; Kutschke, S.; Matys, S.; Raff, J.; Hlawacek, G.; Lederer, F. L. Bio-recycling of Metals: Recycling of Technical Products Using Biological Applications. Biotechnol. Adv. 2018, 36(4), 1048–1062. DOI: https://doi.org/10.1016/j.biotechadv.2018.03.006.
  • Nitschke, M.; Pastore, G. M. Biosurfactants: Properties and Applications. in portuguese. Quím. Nova.2002, 25(5), 772–776. DOI: https://doi.org/10.1590/S0100-40422002000500013.
  • Zouboulis, A. I.; Matis, K. A.; Lazaridis, N. K.; Golyshin, P. N. The Use of Biosurfactants in Flotation: Application for the Removal of Metal Ions. Miner. Eng. 2003, 16(11), 1231–1236. DOI: https://doi.org/10.1016/j.mineng.2003.06.013.
  • Khoshdast, H.; Sam, A.; Manafi, Z. The Use of Rhamnolipid Biosurfactants as a Frothing Agent and a Sample Copper Ore Response. Miner. Eng. 2012, 26, 41–49. DOI: https://doi.org/10.1016/j.mineng.2011.10.010.
  • Rufino, D. R.; Luna, J. M.; Takaki, G. M. C.; Sarubbo, L. A. Characterization and Properties of the Biosurfactant Produced by Candida Lipolytica UCP 0988. Electron. J. Biotechnol. 2014, 17(1), 6. DOI: https://doi.org/10.1016/j.ejbt.2013.12.006.
  • Fazaelipoor, M. H.; Khoshdast, H.; Ranjbar, M. Coal Flotation Using a Biosurfactant from Pseudomonas Aeruginosa as a Frother. Korean J. Chem. Eng. 2010, 27(5), 1527–1531. DOI: https://doi.org/10.1007/s11814-010-0223-6.
  • Merma, A. G.; Castaneda, C. O.; Torem, M. L.; Santos, B. Comparison Study of Hematite Bioflotation by R. Erythropolis and Its Biosurfactant: Experiments and Neural Network Modeling. Chem. Eng. Trans. 2018, 65, 439–444.
  • Merma, A. G.; Olivera, C. A. C.; Hacha, R. R.; Torem, M. L.; Dos Santos, B. F. Optimization of Hematite and Quartz Bioflotation by Artificial Neural Network (ANN). J. Mater. Res. Technol. 2019, 8(3), 3076–3087.
  • Didyk, A. M.; Sadowski, Z. Flotation of Serpentinite and Quartz Using Biosurfactants. Physicochem. Probl. Miner. Process. 2012, 48(2), 607–618.
  • Olivera, C. A. C.;, 2018. Flotation of the Hematite-quartz System Using the Soluble Biosurfactant Produced by Rhodococcus Erythropolis. PhD Thesis - Department of Chemical Engineering and Materials, Pontifical Catholic University of Rio de Janeiro. Rio de Janeiro, 148. (in portuguese).
  • Puelles, J. G. S.;, 2016 Hematite Flotation Using a Crude Biosurfactant Extracted from Rhodococcus Opacus. MSc. Dissertation - Department of Chemical Engineering and Materials, Pontifical Catholic University of Rio de Janeiro. Rio de Janeiro, 112.
  • Kinnunen, P.; Miettinen, H.; Bomberg, M. Review of Potential Microbial Effects on Flotation. Minerals. 2020, 10(533), 1–14.
  • Czemierska, M.; Szcześ, A.; Pawlik, A.; Wiater, A.; Jarosz-Wilkołazka, A. Production and Characterisation of Exopolymer from Rhodococcus Opacus. Biochem. Eng. J. 2016, 112, 143–152.
  • Kuyukina, M. S.; Ivshina, I. B. Rhodococcus Biosurfactants: Biosynthesis, Properties, and Potential Applications. In Biology of Rhodococcus; Springer: Berlin, Heidelberg, 2010; pp 291–313.
  • Szymanska, A.; Sadowski, Z. Effects of Biosurfactants on Surface Properties of Hematite. Adsorption. 2010, 16(4–5), 233–239.
  • Natarajan, K. A.; Deo, N. Role of Bacterial Interaction and Bioreagents in Iron Ore Flotation. Int. J. Miner. Process. 2001, 62(1–4), 143–157.
  • Kolahdoozan, M.; Tabatabaei Yazdi, S. M.; Yen, W. T.; Hosseini Tabatabaei, R.; Shahverdi, A. R.; Oliazadeh, M.; Manafi, Z. Bioflotation of the Low Grade Sarcheshmeh Copper Sulfide. Trans. Indian Inst. Met. 2004, 57(5), 485–490.
  • Hosseini, T. R.; Kolahdoozan, M.; Tabatabaei, Y. S. M.; Oliazadeh, M.; Noaparast, M.; Eslami, A. F. S. A. R.; Alfantazi, A. Bioflotation of Sarcheshmeh Copper Ore Using Thiobacillus Ferrooxidans Bacteria. Miner. Eng. 2005, 18(3), 371–374.
  • Yüce, A. E.; Tarkan, H. M.; Doan, M. Z. Effect of Bacterial Conditioning and the Flotation of Copper Ore and Concentrate. Afr. J. Biotechnol. 2006, 5(5), 448–452.
  • Kumar, A.; Ramarao, V. V.; Sharma, K. D. Microbial Induced Flotation Studies on Sphalerite Ore. J. Mater. Sci. Eng. A. 2013, 3(7A), 488.
  • Mehrabani, J. V.; Noaparast, M.; Mousavi, S. M.; Dehghan, R.; Rasooli, E.; Hajizadeh, H. Depression of Pyrite in the Flotation of High Pyrite Low-grade Lead–zinc Ore Using Acidithiobacillus Ferrooxidans. Miner. Eng. 2010, 23(1), 10–16.
  • Fuerstenau, D. W.; Pradip. Zeta Potentials in the Flotation of Oxide and Silicate Minerals. Adv. Coll. Interfac. Sci. 2005, 114, 9–26.
  • Morais, P. A.; 2019. Bioflotation of Iron Ore Tailingsllar Using a Biosurfactant Extracted from Rhodococcus Opacus. Master Dissertation – Chemical Engineering and Materials Department – Pontifical Catholic University of Rio de Janeiro (in portuguese).
  • Lang, S.; Philp, J. C. Surface-active Lipids in Rhodococci. Antonie Van Leeuwenhoek. 1998, 74(1–3), 59–70.
  • Ortiz, A.; Teruel, J. A.; Espuny, M. J.; Marqués, A.; Manresa, Á.; Aranda, F. J. Interactions of a Bacterial Biosurfactant Trehalose Lipid with Phosphatidylserine Membranes. Chem. Phys. Lipids. 2009, 158(1), 46–53.
  • White, D. A.; Hird, L. C.; Ali, S. T. Production and Characterization of a Trehalolipid Biosurfactant Produced by the Novel Marine Bacterium Rhodococcus Sp., Strain PML026. J. Appl. Microbiol. 2013, 115(3), 744–755.
  • Kuyukina, M. S.; Ivshina, I. B.; Baeva, T. A.; Kochina, O. A.; Gein, S. V.; Chereshnev, V. A. Trehalolipid Biosurfactants from Nonpathogenic Rhodococcus Actinobacteria with Diverse Immunomodulatory Activities. New Biotechnol. 2015, 32(6), 559–568.
  • Christova, N.; Stoineva, I. Trehalose Biosurfactants. In Biosurfactants Research Trends and Applications; CRC Press: Boca Raton, 2014; pp 183–190.
  • Bulatovic, S. M.;. Handbook of Flotation Reagents: Chemistry, Theory and Practice: Volume 1: Flotation of Sulfide Ores; Elsevier: Ontario, Canada, 2007.
  • Hansen, H. B.; Wetche, T. P.; Raulund-Rasmussen, K.; Borggaard, O. K. Stability Constants for Silicate Adsorbed to Ferrihydrite. Clay Miner. 1994, 29(3), 341–350.
  • Jordan, N.; Marmier, N.; Lomenech, C.; Giffaut, E.; Ehrhardt, J. J. Sorption of Silicates on Goethite, Hematite, and Magnetite: Experiments and Modelling. J. Colloid Interface Sci. 2007, 312(2), 224–229.
  • Jolstera, R.; Gunneriusson, L.; Forsling, W. Adsorption and Surface Complex Modeling of Silicates on Maghemite in Aqueous Suspensions. J. Colloid Interface Sci. 2010, 342(2), 493–498.
  • Yang, X.; Roonasi, P.; Holmgren, A. A Study of Sodium Silicate in Aqueous Solution and Sorbed by Synthetic Magnetite Using in Situ ATR-FTIR Spectroscopy. J. Colloid Interface Sci. 2008, 328(1), 41–47.
  • Marinakis, K. I.; Shergold, H. L. Influence of Sodium Silicate Addition on the Adsorption of Oleic Acid by Fluorite, Calcite and Barite. Int. J. Miner. Process. 1985, 14(3), 177–193.
  • Qi, G. W.; Klauber, C.; Warren, L. J. Mechanism of Action of Sodium Silicate in the Flotation of Apatite from Hematite. Int. J. Miner. Process. 1993, 39(3–4), 251–273.
  • Bicca, F. C.; Fleck, L. C.; Ayub, M. A. Z. Production of Biosurfactant by Hydrocarbon-degrading Rhodococcus Ruber and Rhodococcus Erythropolis. Revista De Microbiologia. 1999, 30(3), 231–236.
  • Huo, T. L.;, 1998. The Effect of Dynamic Surface Tension on Oxygen Transfer Coefficient in Fine Bubble Aeration System. PhD Thesis - Department of Civil Engineering, University of California. Los Angeles, 204.
  • Hacha, R. R.; Torem, L. M.; Merma, A. G.; da Silva Coelho, V. F. Electroflotation of Fine Hematite Particles with Rhodococcus Opacus as a Biocollector in a Modified Partridge–Smith Cell. Miner. Eng. 2018, 126, 105–115.
  • Sammon, C.; Yarwood, J.; Everall, N. A FTIR–ATR Study of Liquid Diffusion Processes in PET Films: Comparison of Water with Simple Alcohols. Polymer. 2000, 41(7), 2521–2534.
  • Potapova, E.;, 2009. Studies on the Adsorption of Flotation Collectors on Iron Oxides. Doctoral dissertation, Lulea tekniska universitet.
  • Deo, N.; Natarajan, K. A.; Somasundaran, P. Mechanisms of Adhesion of Paenibacillus Polymyxa onto Hematite, Corundum and Quartz. Int. J. Miner. Process. 2001, 62(1–4), 27–39.
  • Nishiuchi, Y.; Baba, T.; Yano, I. Mycolic Acids from Rhodococcus, Gordonia, and Dietzia. J. Microbiol. Methods. 2000, 40(1), 1–9.
  • Wang, W.; Wang, H.; Wu, Q.; Zheng, Y.; Cui, Y.; Yan, W.; Peng, T. Comparative Study on Adsorption and Depressant Effects of Carboxymethyl Cellulose and Sodium Silicate in Flotation. J. Mol. Liq. 2018, 268, 140–148.
  • Zhang, Z.; Cao, Y.; Ma, Z.; Liao, Y. Impact of Calcium and Gypsum on Separation of Scheelite from Fluorite Using Sodium Silicate as Depressant. Sep. Purif. Technol. 2019, 215, 249–258.
  • Silva, J. P. P.; Baltar, C. A. M.; Gonzaga, R. S. G.; Peres, A. E. C.; Leite, J. Y. P. Identification of Sodium Silicate Species Used as Flotation Depressants. Mining. Metallurg. Explorat. 2012, 29(4), 207–210.
  • Lopes, G. M.; Peres, A. E. C.; Pereira, C. A.; Antônio, L. M., 2011. The Use of Sodium Silicate as a Dispersant/depressant in the Mineral Industry. Proceeding of the XXIV ENTMME, Salvador-Brasil (in portuguese).
  • Kim, G.; Choi, J.; Silva, R. A.; Song, Y.; Kim, H. Feasibility of Bench-scale Selective Bioflotation of Copper Oxide Minerals Using Rhodococcus Opacus. Hydrometallurgy. 2017, 168, 94–102.
  • Lopes, G. M.; Lima, R. M. F. Iron Ore Direct Flotation Using Sodium Oleate. Rem: Revista Escola De Minas. 2009, 62(3), 323–329.
  • Arantes, R. D. S.; Souza, T. F. D.; Lima, R. M. F. Influence of Sodium Silicate Modulus on Iron Ore Flotation: Fundamental Studies. Tecnol Metal Mater Min. 2017, 14(1), 39–45.
  • Nascimento, D. R.; Pereira, R. D.; Lima, R. M. F. Influence of Sodium Silicate on Floatability and Charge of Hematite and Quartz with Sodium Oleate. Latin Am. Appl. Res. 2013, 43, 189–191.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.