147
Views
6
CrossRef citations to date
0
Altmetric
Hydrocyclone

Experimental investigation on interaction of vortex finder diameter and length in a small hydrocyclone for solid-liquid separation

, , , , &
Pages 733-748 | Received 16 Jan 2021, Accepted 24 May 2021, Published online: 09 Jun 2021

References

  • Yu, J. F.; Fu, J. Separation Performance of an 8 mm Mini-hydrocyclone and Its Application to the Treatment of Rice Starch Wastewater. Sep. Sci. Technol. 2020, 55(2), 313–320. DOI: 10.1080/01496395.2019.1565772.
  • Gama, A. J. A.; Neves, G. A.; Barros, P. L.; Neto, A. T. T.; Alves, J. J. N. Hydrocyclone Performance for Bentonite Clay Purification. Chem. Eng. Res. Des. 2020, 161, 168–177. DOI: 10.1016/j.cherd.2020.07.005.
  • Zhang, Y. K.; Yang, M.; Liu, P. K. Sediment-containing Sewage Separation Using Intermittent-discharge Columnar Hydrocyclones. Water. 2020, 12(10), 2883. DOI: 10.3390/w12102883.
  • Wang, H. L.; Zhang, Y. H.; Wang, J. G.; Liu, H. L. Cyclonic Separation Technology: Researches and Developments. Chin. J. Chem. Eng. 2012, 20(2), 212–219.
  • Ni, L.; Tian, J.; Song, T.; Jong, Y.; Zhao, J. Optimizing Geometric Parameters in Hydrocyclones for Enhanced Separations: A Review and Perspective. Sep. Purif. Rev. 2019, 48(1), 30–51.
  • Razmi, H.; Soltani, G. A.; Mohebbi, A. CFD Simulation of an Industrial Hydrocyclone Based on Multiphase Particle in Cell (MPPIC) Method. Sep. Purif. Technol. 2019, 209, 851–862. DOI: 10.1016/j.seppur.2018.06.073.
  • Tian, J. Y.; Ni, L.; Song, T.; Zhao, J. N. CFD Simulation of Hydrocyclone-separation Performance Influenced by Reflux Device and Different Vortex-finder Lengths. Sep. Purif. Technol. 2020, 233, 116013. DOI: 10.1016/j.seppur.2019.116013.
  • Song, T.; Yao, Y.; Ni, L. Response Surface Method to Study the Effect of Conical Surface and Vortex-finder Lengths on De-foulant Hydrocyclone with Reflux Ejector. Sep. Purif. Technol. 2020, 253, 117511. DOI: 10.1016/j.seppur.2020.117511.
  • Patra, G.; Chakraborty, S.; Meikap, B. C. Role of Vortex Finder Depth on Pressure Drop and Performance Efficiency in a Ribbed Hydrocyclone. S. Afr. J. Chem. Eng. 2018, 25, 103–109.
  • Ni, L.; Tian, J. Y.; Zhao, J. N. Experimental Study of the Relationship between Separation Performance and Lengths of Vortex Finder of a Novel De-foulant Hydrocyclone with Continuous Underflow and Reflux Function. Sep. Sci. Technol. 2017, 52(1), 142–154. DOI: 10.1080/01496395.2016.1250780.
  • Martinez, L. F.; Lavin, A. G.; Mahamud, M. M.; Bueno, J. L. Vortex Finder Optimum Length in Hydrocyclone Separation. Chem. Eng. Process. 2008, 47(2), 192–199.
  • Chu, L. Y.; Luo, Q. Hydrocyclone with High Sharpness of Separation. Filtr. Sep. 1994, 31(7), 733–720. DOI: 10.1016/0015-1882(94)80156-8.
  • Vega-Garcia, D.; Brito-Parada, P. R.; Cilliers, J. J. Optimising Small Hydrocyclone Design Using 3D Printing and CFD Simulations. Chem. Eng. J. 2018, 350, 653–659. DOI: 10.1016/j.cej.2018.06.016.
  • He, F. Q.; Wang, H. L.; Wang, J. G.; Li, S. F.; Fan, Y.; Xu, X. Experimental Study of Mini-hydrocyclones with Different Vortex Finder Depths Using Particle Imaging Velocimetry. Sep. Purif. Technol. 2020, 236, 116296. DOI: 10.1016/j.seppur.2019.116296.
  • Yang, T.; Geng, S.; Yang, C.; Huang, Q. Hydrodynamics and Mass Transfer in an Internal Airlift Slurry Reactor for Process Intensification. Chem. Eng. Sci. 2018, 184, 126–133. DOI: 10.1016/j.ces.2018.03.040.
  • Han, T.; Liu, H.; Xiao, H.; Chen, A.; Huang, Q. Experimental Study of the Effects of Apex Section Internals and Conical Section Length on the Performance of Solid–liquid Hydrocyclone. Chem. Eng. Res. Des. 2019, 145, 12–18. DOI: 10.1016/j.cherd.2019.02.040.
  • Geng, S. J.; Li, Z.; Liu, H. Y.; Yang, C.; Gao, F.; He, T. B.; Huang, Q. S. Hydrodynamics and Mass Transfer in a Slurry External Airlift Loop Reactor Integrating Mixing and Separation. Chem. Eng. Sci. 2020, 211, 115294. DOI: 10.1016/j.ces.2019.115294.
  • Liu, H. Y.; Li, Z.; Geng, S. J.; Gao, F.; He, T. B.; Huang, Q. S. Influences of Top Clearance and Liquid Throughput on the Performances of an External Loop Airlift Slurry Reactor Integrated Mixing and Separation. Chin. J. Chem. Eng. 2020, 28(6), 1514–1521.
  • Silva, N. K. G.; Silva, D. O.; Vieira, L. G. M.; Barrozo, M. A. S. Effects of Underflow Diameter and Vortex Finder Length on the Performance of a Newly Designed Filtering Hydrocyclone. Powder Technol. 2015, 286, 305–310. DOI: 10.1016/j.powtec.2015.08.036.
  • Muschelknautz, U.;. Comparing Efficiency per Volume of Uniflow Cyclones and Standard Cyclones. Chem. Ing. Tech. 2021, 93(1–2), 91–107. DOI: 10.1002/cite.202000149.
  • Baltrenas, P.; Chlebnikovas, A. Removal of Fine Solid Particles in Aggressive Gas Flows in a Newly Designed Multi-channel Cyclone. Powder Technol. 2019, 356, 480–492. DOI: 10.1016/j.powtec.2019.08.018.
  • Baltrenas, P.; Chlebnikovas, A. The Investigation of the Structure and Operation of a Multi-channel Cyclone, Separating Fine Solid Particles from an Aggressive Dispersed Gas and Vapour Flow. Powder Technol. 2018, 333, 327–338. DOI: 10.1016/j.powtec.2018.04.043.
  • Goncalves, S. M.; Kyriakidis, Y. N.; Ullmann, G.; Barrozo, M. A. D.; Vieira, L. G. M. Design of an Optimized Hydrocyclone for High Efficiency and Low Energy Consumption. Ind. Eng. Chem. Res. 2020, 59(37), 16437–16449.
  • Kyriakidis, Y. N.; Silva, D. O.; Barrozo, M. A. S.; Vieira, L. G. M. Effect of Variables Related to the Separation Performance of a Hydrocyclone with Unprecedented Geometric Relationships. Powder Technol. 2018, 338, 645–653. DOI: 10.1016/j.powtec.2018.07.064.
  • Hwang, K.; Chou, S. Designing Vortex Finder Structure for Improving the Particle Separation Efficiency of a Hydrocyclone. Sep. Purif. Technol. 2017, 172, 76–84. DOI: 10.1016/j.seppur.2016.08.005.
  • He, F. Q.; Zhang, Y. H.; Wang, J. G.; Yang, Q.; Wang, H. L.; Tan, Y. H. Flow Patterns in Mini-hydrocyclones with Different Vortex Finder Depths. Chem. Eng. Technol. 2013, 36(11), 1935–1942.
  • Vieira, L. G. M.; Barrozo, M. A. S. Effect of Vortex Finder Diameter on the Performance of a Novel Hydrocyclone Separator. Miner. Eng. 2014, 57, 50–56. DOI: 10.1016/j.mineng.2013.11.014.
  • Tang, B.; Xu, Y.; Song, X.; Sun, Z.; Yu, J. Numerical Study on the Relationship between High Sharpness and Configurations of the Vortex Finder of a Hydrocyclone by Central Composite Design. Chem. Eng. J. 2015, 278, 504–516. DOI: 10.1016/j.cej.2014.11.022.
  • Vieira, L. G. M.; Silverio, B. C.; Damasceno, J. J. R.; Barrozo, M. A. S. Performance of Hydrocyclones with Different Geometries. Can. J. Chem. Eng. 2011, 89(4), 655–662.
  • Ghodrat, M.; Kuang, S. B.; Yu, A. B.; Vince, A.; Barnett, G. D.; Barnett, P. J. Numerical Analysis of Hydrocyclones with Different Vortex Finder Configurations. Miner. Eng. 2014, 63, 125–138. DOI: 10.1016/j.mineng.2014.02.003.
  • Cui, B.; Zhang, C.; Wei, D.; Lu, S.; Feng, Y. Effects of Feed Size Distribution on Separation Performance of Hydrocyclones with Different Vortex Finder Diameters. Powder Technol. 2017, 322, 114–123. DOI: 10.1016/j.powtec.2017.09.010.
  • Zhao, Q.; Cui, B.; Wei, D.; Song, T.; Feng, Y. Numerical Analysis of the Flow Field and Separation Performance in Hydrocyclones with Different Vortex Finder Wall Thickness. Powder Technol. 2019, 345, 478–491. DOI: 10.1016/j.powtec.2019.01.030.
  • Yang, C.; Mao, Z. Numerical Simulation of Multiphase Reactors with Continuous Liquid Phase; Academic Press: London, 2014.
  • Hsu, C. Y.; Wu, R. M. Effect of Overflow Depth of a Hydrocyclone on Particle Separation. Drying Technol. 2010, 28(7), 916–921. DOI: 10.1080/07373937.2010.490770.
  • Supachart, P.; Rattanaphan, S.; Soison, P.; Swasdisevi, T.; Wongsarivej, P. Effect of Cylindrical Section Length and Regression Model of Euler Number as Correlated with Vortex Finder and Cone Lengths of a Hydrocyclone. Mater Today-Proc. 2018, 5(5), 11123–11134.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.