156
Views
2
CrossRef citations to date
0
Altmetric
Extraction

Preparation of adsorbent from nickel slag for removal of phosphorus from glyphosate by-product salt

, &
Pages 2393-2406 | Received 27 Feb 2022, Accepted 07 Apr 2022, Published online: 18 Apr 2022

References

  • Xie, M.; Liu, Z.; Xu, Y. Removal of Glyphosate in Neutralization Liquor from the Glycine-dimethylphosphit Process by Nanofiltration. J. Hazard. Mater. 2010, 181(1–3), 975–980. DOI: 10.1016/j.jhazmat.2010.05.109.
  • Liu, Z.; Zhu, M.; Yu, P.; Xu, Y.; Zhao, X. Pretreatment of Membrane Separation of Glyphosate Mother Liquor Using a Precipitation Method. Desalination. 2013, 313, 140–144. DOI: 10.1016/j.desal.2012.12.011.
  • Wen, Y.; Zheng, Z.; Wang, S.; Han, T.; Yang, W.; Jonsson, P. G. Magnetic Bio-activated Carbons Production Using Different Process Parameters for Phosphorus Removal from Artificially Prepared Phosphorus-rich and Domestic Wastewater. Chemosphere. 2021, 271, 129561. DOI: 10.1016/j.chemosphere.2021.129561.
  • Ji, L.; Yin, C.; Chen, X.; Liu, X.; Zhao, Z. Hydrogen Peroxide Coordination-calcium Salt Precipitation for Deep Phosphorus Removal from Crude Sodium Tungstate Solution. Hydrometallurgy. 2020, 191, 105189. DOI: 10.1016/j.hydromet.2019.105189.
  • Kekre, K. M.; Anvari, A.; Kahn, K.; Yao, Y.; Ronen, A. Reactive Electrically Conducting Membranes for Phosphorus Recovery from Livestock Wastewater Effluents. J. Environ. Manage. 2021, 282, 111432. DOI: 10.1016/j.jenvman.2020.111432.
  • Azari, A.; Mesdaghinia, A.; Ghanizadeh, G.; Masoumbeigi, H.; Pirsaheb, M.; Ghafari, H. R.; Khosravi, T., and Sharafi, K. Which Is Better for Optimizing the Biosorption Process of Lead – Central Composite Design or the Taguchi Technique. Water Sci. Technol. 2016, 74(6), 1446–1456. DOI: 10.2166/wst.2016.318.
  • Badi, M. Y.; Esrafili, A.; Pasalari, H.; Kalantary, R. K.; Ahmadi, E.; Gholami, M.; Azari, A. Degradation of dimethyl Phthalate Using Persulfate Activated by UV and Ferrous Ions: Optimizing Operational Parameters Mechanism and Pathway. J. Environ. Health Sci. 2019, 17(3). DOI:10.1007/s40201-019-00384-9.
  • Naghan, D. J.; Azari, A.; Mirzaei, N.; Velayati, A.; Tapouk, F. A.; Adabi, S.; Pirsaheb, M.; Sharafi, K. Parameters Effecting on Photocatalytic Degradation of the Phenol from Aqueous Solutions in the Presence of ZnO Nanocatalyst under Irradiation of UV-C Light. Bulg. Chem. Commun. 2015, 47, 14–18.
  • Azari, A.; Yeganeh, M.; Gholami, M.; Salari, M. The Superior Adsorption Capacity of 2,4-Dinitrophenol under Ultrasound-assisted Magnetic Adsorption System: Modeling and Process Optimization by Central Composite Design. J. Hazard. Mater. 2021, 418, 126348. DOI: 10.1016/j.jhazmat.2021.126348.
  • Ahmadi, E.; Kakavandi, B.; Azari, A.; Izanloo, H.; Gharibi, H.; Mahvi, A. H.; Javid, A.; Hashemi, S. Y. The Performance of Mesoporous Magnetite Zeolite Nanocomposite in Removing dimethyl Phthalate from Aquatic Environments. Desalin. Water Treat. 2016, 1–15. DOI: 10.1080/19443994.2016.1178174.
  • Azari, A.; Mahmoudian, M. H.; Niari, M. H.; Eş, I.; Dehganifard, E.; Kiani, A.; Javid, A.; Azari, H.; Fakhri, Y.; Mousavi Khaneghah, A. Rapid and Efficient Ultrasonic Assisted Adsorption of Diethyl Phthalate onto FeIIFe2IIIO4@GO: ANN-GA and RSM-DF Modeling, Isotherm, Kinetic and Mechanism Study. Microchem. J. 2019, 150, 104144. DOI: 10.1016/j.microc.2019.104144.
  • Kalantary, R.; Rezaei, J.; Ahmad, J.; Kakavandi, B.; Nasseri, S. J. J. O. M. U. O. M. Sciences, Adsorption and Magnetic Separation of Lead from Synthetic Wastewater Using Carbon/Iron Oxide Nanoparticles Composite. J. Mazandaran Univ. Med. Sci. 2014, 24(113), 172–183. Persian.
  • Yin, H.; Kong, M. Simultaneous Removal of Ammonium and Phosphate from Eutrophic Waters Using Natural Calcium-rich Attapulgite-based Versatile Adsorbent. Desalination. 2014, 351, 128–137. DOI: 10.1016/j.desal.2014.07.029.
  • Saifuddin, M.; Bae, J.; Kim, K. S. Role of Fe, Na and Al in Fe-Zeolite-A for Adsorption and Desorption of Phosphate from Aqueous Solution. Water Res. 2019, 158 246–256. DOI: 10.1016/j.watres.2019.03.045.
  • Delgadillo-Velasco, L.; Hernández-Montoya, V.; Ramírez-Montoya, L. A.; Montes-Morán, M. A.; Del Rosario Moreno-virgen, M.; Rangel-Vázquez, N. A. Removal of Phosphate and Aluminum from Water in Single and Binary Systems Using Iron-modified Carbons. J. Mol. Liq. 2021, 323, 114586. DOI: 10.1016/j.molliq.2020.114586.
  • Gopu, C.; Gao, L.; Volpe, M.; Fiori, L.; Goldfarb, J. L. Valorizing Municipal Solid Waste: Waste to Energy and Activated Carbons for Water Treatment via Pyrolysis. J. Anal. Appl. Pyrol. 2018, 133, 48–58. DOI: 10.1016/j.jaap.2018.05.002.
  • Garau, G.; Porceddu, A.; Sanna, M.; Silvetti, M.; Castaldi, P. Municipal Solid Wastes as a Resource for Environmental Recovery: Impact of Water Treatment Residuals and Compost on the Microbial and Biochemical Features of as and Trace Metal-polluted Soils. Ecotoxicol. Environ. Saf. 2019, 174, 445–454. DOI: 10.1016/j.ecoenv.2019.03.007.
  • Wang, Y.; Yu, Y.; Li, H.; Shen, C. Comparison Study of Phosphorus Adsorption on Different Waste Solids: Fly Ash, Red Mud and Ferric-alum Water Treatment Residues. J. Environ. Sci. 2016, 50, 79–86. DOI: 10.1016/j.jes.2016.04.025.
  • Zhang, C.; Wang, X.; Zhu, H.; Wu, Q.; Hu, Z.; Feng, Z.; Jia, Z. Preparation and Properties of Foam Ceramic from Nickel Slag and Waste Glass Powder. Ceram. Int. 2020, 46(15), 23623–23628. DOI: 10.1016/j.ceramint.2020.06.134.
  • Szerement, J.; Szatanik-Kloc, A.; Jarosz, R.; Bajda, T.; Mierzwa-Hersztek, M. Contemporary Applications of Natural and Synthetic Zeolites from Fly Ash in Agriculture and Environmental Protection. J. Clean. Prod. 2021, 311, 127461. DOI: 10.1016/j.jclepro.2021.127461.
  • Wang, Q.; Yu, C.; Yang, J.; Chong, L.; Xu, X.; Xu, X.; Wu, Q. Influence of Nickel Slag Powders on Properties of Magnesium Potassium Phosphate Cement Paste. Constr. Build. Mater. 2019, 205, 668–678. DOI: 10.1016/j.conbuildmat.2019.02.014.
  • He, Y.; Tang, S.; Yin, S.; Li, S. Research Progress on Green Synthesis of Various High-purity Zeolites from Natural Material-kaolin. J. Clean. Prod. 2021, 306, 127248. DOI: 10.1016/j.jclepro.2021.127248.
  • Lim, W.-R.; Lee, C.-H.; Hamm, S.-Y. Synthesis and Characteristics of Na-A Zeolite from Natural Kaolin in Korea. Mater. Chem. Phys. 2021, 261, 124230. DOI: 10.1016/j.matchemphys.2021.124230.
  • Probst, J.; Outram, J. G.; Couperthwaite, S. J.; Millar, G. J.; Kaparaju, P. Sustainable Ammonium Recovery from Wastewater: Improved Synthesis and Performance of Zeolite N Made from Kaolin. Micropor. Mesopor. Mat. 2021, 316, 110918. DOI: 10.1016/j.micromeso.2021.110918.
  • Visa, M. Synthesis and Characterization of New Zeolite Materials Obtained from Fly Ash for Heavy Metals Removal in Advanced Wastewater Treatment. Powder Technol. 2016, 294, 338–347. DOI: 10.1016/j.powtec.2016.02.019.
  • Bandura, L.; Panek, R.; Madej, J.; Franus, W. Synthesis of Zeolite-carbon Composites Using High-carbon Fly Ash and Their Adsorption Abilities Towards Petroleum Substances. Fuel. 2021, 283, 119173. DOI: 10.1016/j.fuel.2020.119173.
  • Angaru, G. K. R.; Choi, Y. L.; Lingamdinne, L. P.; Choi, J. S.; Kim, D. S.; Koduru, J. R.; Yang, J. K.; Chang, Y. Y. Facile Synthesis of Economical Feasible Fly Ash-based Zeolite-supported Nano Zerovalent Iron and Nickel Bimetallic Composite for the Potential Removal of Heavy Metals from Industrial Effluents. Chemosphere. 2021, 267, 128889. DOI: 10.1016/j.chemosphere.2020.128889.
  • Sayehi, M.; Garbarino, G.; Delahay, G.; Busca, G.; Tounsi, H. Synthesis of High Value-added Na–P1 and Na-FAU Zeolites Using Waste Glass from Fluorescent Tubes and Aluminum Scraps. Micropor. Mesopor. Mat. 2020, 248, 122903. DOI: 10.1016/j.matchemphys.2020.122903.
  • Cardoso, A. M.; Horn, M. B.; Ferret, L. S.; Azevedo, C. M. N.; Pires, M. Integrated Synthesis of Zeolites 4A and Na–P1 Using Coal Fly Ash for Application in the Formulation of Detergents and Swine Wastewater Treatment. J. Hazard. Mater. 2015, 287, 69–77. DOI: 10.1016/j.jhazmat.2015.01.042.
  • Yang, T.; Yao, X.; Zhang, Z. Geopolymer Prepared with High-magnesium Nickel Slag: Characterization of Properties and Microstructure. Constr. Build. Mater. 2014, 59, 188–194. DOI: 10.1016/j.conbuildmat.2014.01.038.
  • Li, X.-M.; Wen, Z.-Y.; Li, Y.; Yang, H.-B.; Xing, X.-D. Improvement of Carbothermic Reduction of Nickel Slag by Addition of CaCO3. T. Nonferr. Metal. Soc. 2019, 29(12), 2658–2666. DOI: 10.1016/s1003-6326(19)65172-1.
  • Liu, X.; Fu, J.; Tang, Y.; Smith, R. L.; Qi, X. Mg-coordinated Self-assembly of MgO-doped Ordered Mesoporous Carbons for Selective Recovery of Phosphorus from Aqueous Solutions. Chem. Eng. J. 2021, 406, 126748. DOI: 10.1016/j.cej.2020.126748.
  • Chen, Y.; Armutlulu, A.; Sun, W.; Jiang, W.; Jiang, X.; Lai, B.; Xie, R. Ultrafast Removal of Cu(II) by a Novel Hierarchically Structured Faujasite-type Zeolite Fabricated from Lithium Silica Fume. Sci. Total Environ. 2020, 714, 136724. DOI: 10.1016/j.scitotenv.2020.136724.
  • Italiya, G.; Ahmed, M. H.; Subramanian, S. Titanium Oxide Bonded Zeolite and Bentonite Composites for Adsorptive Removal of Phosphate. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100649. DOI: 10.1016/j.enmm.2022.100649.
  • He, X.; Yao, B.; Xia, Y.; Huang, H.; Gan, Y.; Zhang, W. Coal Fly Ash Derived Zeolite for Highly Efficient Removal of Ni2+ Inwaste Water. Powder Technol. 2020, 367, 40–46. DOI: 10.1016/j.powtec.2019.11.037.
  • Muir, B.; Matusik, J.; Bajda, T. New Insights into Alkylammonium-functionalized Clinoptilolite and Na-P1 Zeolite: Structural and Textural Features. Appl. Surf. Sci. 2016, 361, 242–250. DOI: 10.1016/j.apsusc.2015.11.116.
  • Moutin, T.; Gal, J. Y.; Halouani, H. E.; Picot, B., and Bontoux, J. J. W. R. Decrease of Phosphate Concentration in a High Rate Pond by Precipitation of Calcium Phosphate: Theoretical and Experimental Results. Water Res. 1992, 26(11), 1445–1450. DOI: 10.1016/0043-1354(92)90063-A.
  • Kim, S.; Park, Y. H.; Lee, J. B.; Kim, H. S.; Choi, Y. E. Phosphorus Adsorption Behavior of Industrial Waste Biomass-based Adsorbent, Esterified Polyethylenimine-coated polysulfone-Escherichia Coli Biomass Composite Fibers in Aqueous Solution. J. Hazard. Mater. 2020, 400, 123217. DOI: 10.1016/j.jhazmat.2020.123217.
  • Liu, T.; Wu, K.; Zeng, L. Removal of Phosphorus by a Composite Metal Oxide Adsorbent Derived from Manganese Ore Tailings. J. Hazard. Mater. 2012, 217-218, 29–35. DOI: 10.1016/j.jhazmat.2012.01.019.
  • Jing, X.; Wang, Y.; Chen, L.; Wang, Y.; Yang, X.; Jiang, Y.; Yan, Y. Free-standing Large-mesoporous Silica Films Decorated with Lanthanum as New Adsorbents for Efficient Removal of Phosphate. J. Mol. Liq. 2019, 296, 111815. DOI: 10.1016/j.molliq.2019.111815.
  • Li, C.; Li, Y.; Li, Q.; Duan, J.; Hou, J.; Hou, Q.; Ai, S.; Li, H.; Yang, Y. Regenerable Magnetic Aminated lignin/Fe3O4/La(OH)3 Adsorbents for the Effective Removal of Phosphate and Glyphosate. Sci. Total Environ. 2021, 788, 147812. DOI: 10.1016/j.scitotenv.2021.147812.
  • Diel, J. C.; Franco, D. S. P.; D. S. Nunes, I.; Pereira, H. A.; Moreira, K. S.; Burgo, T. A. D. L.; Foletto, E. L.; Dotto, G. L. Carbon Nanotubes Impregnated with Metallic Nanoparticles and Their Application as an Adsorbent for the Glyphosate Removal in an Aqueous Matrix. J. Environ. Chem. Eng. 2021, 9(2), 105178. DOI: 10.1016/j.jece.2021.105178.
  • Sun, S.; Zeng, X.; Gao, Y.; Zhang, W.; Zhou, L.; Zeng, X.; Liu, W.; Jiang, Q.; Jiang, C.; Wang, S. Iron Oxide Loaded Biochar/attapulgite Composites Derived Camellia Oleifera Shells as a Novel Bio-adsorbent for Highly Efficient Removal of Cr(VI). J. Clean. Prod. 2021, 317, 128412. DOI: 10.1016/j.jclepro.2021.128412.
  • Msm, A.; Gk, A.; Pvdsl, B.; Mz, A.; Suk, C.; Rs, D.; Lm, B.; Nib, A.; Mn, E.; Haaf, G. J. J. O. M. L. RSM-CCD Optimization Approach for the Adsorptive Removal of Eriochrome Black T from Aqueous System Using Steel Slag-based Adsorbent: Characterization, Isotherm Kinetic Modeling and Thermodynamic Analysis. J. Mol. Liq. 2021, 339, 16714. DOI: 10.1016/j.molliq.2021.116714.
  • Sahu, S.; Yadav, M. K.; Gupta, A. K.; Uddameri, V.; Toppo, A. N.; Maheedhar, B.; Ghosal, P. S. Modeling Defluoridation of Real-life Groundwater by a Green Adsorbent Aluminum/olivine Composite: Isotherm, Kinetics, Thermodynamics and Novel Framework Based on Artificial Neural Network and Support Vector Machine. J. Environ. Manage. 2022, 302(Pt A), 113965. DOI: 10.1016/j.jenvman.2021.113965.
  • Ahmed, W.; Mehmood, S.; Nunez-Delgado, A.; Ali, S.; Qaswar, M.; Shakoor, A.; Maitlo, A. A.; Chen, D. Y. Adsorption of Arsenic (III) from Aqueous Solution by a Novel Phosphorus-modified Biochar Obtained from Taraxacum Mongolicum Hand-Mazz: Adsorption Behavior and Mechanistic Analysis. J. Environ. Manage. 2021, 292, 112764. DOI: 10.1016/j.jenvman.2021.112764.
  • Ordonez, D.; Valencia, A.; Elhakiem, H.; Chang, N. B.; Wanielista, M. P. Adsorption Thermodynamics and Kinetics of Advanced Green Environmental Media (AGEM) for Nutrient Removal and Recovery in Agricultural Discharge and Stormwater Runoff. Environ. Pollut. 2020, 266(Pt 1), 115172. DOI: 10.1016/j.envpol.2020.115172.
  • Guan, Q.; Deng, L.; Zhang, D.; Ning, P.; Kong, Z.; He, L. Preparation of Tetraethylenepentamine‐Functionalized 4A Zeolite for Effective Removal of Phosphate in Water. Appl. Organoment. Chem. 2020, 34(10), 5861. DOI: 10.1002/aoc.5861.
  • Jiang, C.; Jia, L.; He, Y.; Zhang, B.; Kirumba, G.; Xie, J. Adsorptive Removal of Phosphorus from Aqueous Solution Using Sponge Iron and Zeolite. J. Colloid Interface Sci. 2013, 402, 246–252. DOI: 10.1016/j.jcis.2013.03.057.
  • Gan, L.; Zuo, J.; Xie, B.; Li, P., and Huang, X. Zeolite (Na) Modified by nano-Fe Particles Adsorbing Phosphate in Rainwater Runoff. J. Environ. Sci. 2012, 24(11), 1929–1933. DOI: 10.1016/S1001-0742(11)61035-8.
  • He, Y.; Lin, H.; Dong, Y.; Liu, Q., and Wang, L. Simultaneous Removal of Ammonium and Phosphate by Alkaline-activated and Lanthanum-impregnated Zeolite. Chemosphere. 2016, 164(dec), 387–395. DOI: 10.1016/j.chemosphere.2016.08.110.
  • Ma, X.; Li, Y.; Xu, D.; Tian, H.; Yang, H. Simultaneous Adsorption of Ammonia and Phosphate Using Ferric Sulfate Modified Carbon/zeolite Composite from Coal Gasification Slag. J. Environ. Manage. 2022, 305, 114404. DOI: 10.1016/j.jenvman.2021.114404.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.