100
Views
1
CrossRef citations to date
0
Altmetric
Blood Processing

Application of templating-free chromium therephtalate for the adsorption of nitrogen-containing compounds in oil refinining feedstocks. Kinetics and thermodinamycs

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 2407-2419 | Received 21 Jan 2022, Accepted 18 Apr 2022, Published online: 05 May 2022

References

  • Khan, N. A.; Hasan, Z.; Jhung, S. H. Adsorptive Removal of Hazardous Materials Using Metal-Organic Frameworks (Mofs): A Review. J. Hazard. Mater. January 5, 2013, 244-245, 444–456. DOI: 10.1016/j.jhazmat.2012.11.011.
  • Laredo, G. C.; Vega-Merino, P. M.; Ascención Montoya-de la Fuente, J.; Mora-Vallejo, R. J.; Meneses-Ruiz, E.; Jesús Castillo, J.; Zapata-Rendón, B. Comparison of the Metal–Organic Framework MIL-101 (Cr) versus Four Commercial Adsorbents for Nitrogen Compounds Removal in Diesel Feedstocks. Fuel. 2016, 180, 284–291. DOI: 10.1016/J.FUEL.2016.04.038.
  • Prado, G. H. C.; Rao, Y.; de Klerk, A. Nitrogen Removal from Oil: A Review. Energy Fuels. 2017, 31(1), 14–36. DOI: 10.1021/acs.energyfuels.6b02779.
  • Prado, G. H. C.; Rao, Y.; de Klerk, A. Nitrogen Removal from Oil: A Review. Energ. Fuels. Am. Chem. Soc. 2017, 19(1), 14–36. DOI:10.1021/acs.energyfuels.6b02779.
  • Li, F.; Katz, L.; Qiu, S. Adsorptive Selectivity and Mechanism of Three Different Adsorbents for Nitrogenous Compounds Removal from Microalgae Bio-Oil. Ind. Eng. Chem. Res. 2019, 58(10), 3959–3968. DOI: 10.1021/ACS.IECR.8B04934/SUPPL_FILE/IE8B04934_SI_002.PDF.
  • Rath, P. P.; Behera, S. S.; Priyadarshini, B.; Panda, S. R.; Mandal, D.; Sahoo, T.; Mishra, S.; Sahoo, T. R.; Parhi, P. K. Influence of Mg Doping on ZnO NPs for Enhanced Adsorption Activity of Congo Red Dye. Appl. Surf. Sci. 2019, 491, 256–266. DOI: 10.1016/J.APSUSC.2019.06.120.
  • Joo, S. H.; Kim, Y. U.; Kang, J. G.; Kumar, J. R.; Yoon, H. S.; Parhi, P. K.; Shin, S. M. Recovery of Rhenium and Molybdenum from Molybdenite Roasting Dust Leaching Solution by Ion Exchange Resins. Mater. Trans. 2012, 53(11), 2034–2037. DOI: 10.2320/MATERTRANS.M2012208.
  • Park, K. H.; Parhi, P. K., and Kang, N. H. Studies on Removal of Low Content Copper from the Sea Nodule Aqueous Solution Using the Cationic Resin TP 207. Sep. Sci. Technol. 2012, 4710, 1531–1541. DOI: 10.1080/01496395.2011.652285.
  • Emam, H. E.; Abdelhameed, R. M.; Ahmed, H. B. Adsorptive Performance of MOFs and MOF Containing Composites for Clean Energy and Safe Environment. J. Environ. Chem. Eng. 2020, 8(5), 104386. DOI: 10.1016/J.JECE.2020.104386.
  • Czaja, A. U.; Trukhan, N.; Müller, U. Industrial Applications of Metal–Organic Frameworks. Chem. Soc. Rev. 2009, 38(5), 1284. DOI: 10.1039/b804680h.
  • Yaghi, O. M.; Kalmutzki, M. J., and Diercks, C. S. Introduction to Reticular Chemistry; Wiley: Weinheim, Germany, 2019, DOi: 10.1002/9783527821099.
  • Stock, N.; Biswas, S. Synthesis of Metal-Organic Frameworks (Mofs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem. Rev. 2012, 112(2), 933–969. DOI: 10.1021/cr200304e.
  • Bedia, J.; Muelas-Ramos, V.; Peñas-Garzón, M.; Gómez-Avilés, A.; Rodriguez, J. J.; Belver, C. Metal–Organic Frameworks for Water Purification. Nanomater. Detect. And Removal of Wastewater Pollut. 2020, 241–283. DOI: 10.1016/B978-0-12-818489-9.00009-8.
  • Kadhom, M.; Deng, B. Metal-Organic Frameworks (Mofs) in Water Filtration Membranes for Desalination and Other Applications. Appl. Mater. Today. 2018, 11, 219–230. DOI: 10.1016/J.APMT.2018.02.008.
  • Russo, V.; Hmoudah, M.; Broccoli, F.; Iesce, M. R.; Jung, O.-S.; Di Serio, M. Applications of Metal Organic Frameworks in Wastewater Treatment: A Review on Adsorption and Photodegradation. Front. Chem. Eng. 2020, 0, 15. DOI: 10.3389/FCENG.2020.581487.
  • Nayak, S.;. Water Purification: Removal of Heavy Metals Using Metal-Organic Frameworks (Mofs). Met. Org. Frameworks Biomed. Environ. Field 2021, 239–268. DOI: 10.1007/978-3-030-63380-6_7.
  • Chen, M. L.; Zhou, S. Y.; Xu, Z.; Ding, L.; Cheng, Y. H. Metal-Organic Frameworks of MIL-100(Fe, Cr) and MIL-101(Cr) for Aromatic Amines Adsorption from Aqueous Solutions. Molecules. 2019, 24(20), 3718. DOI: 10.3390/MOLECULES24203718.
  • Ahmed, I.; Mondol, M. M. H.; Lee, H. J.; Jhung, S. H. Application of Metal-Organic Frameworks in Adsorptive Removal of Organic Contaminants from Water, Fuel and Air. Chem. Asian J. 2021, 16(3), 185–196. DOI: 10.1002/ASIA.202001365.
  • Kampouraki, Z. C.; Giannakoudakis, D. A.; Nair, V.; Hosseini-Bandegharaei, A.; Colmenares, J. C.; Deliyanni, E. A. Metal Organic Frameworks as Desulfurization Adsorbents of DBT and 4,6-DMDBT from Fuels. Mol. 2019, 24(24), 4525. 2019 24, 4525.
  • Safaei, M.; Foroughi, M. M.; Ebrahimpoor, N.; Jahani, S.; Omidi, A.; Khatami, M. A Review on Metal-Organic Frameworks: Synthesis and Applications. TrAC Trends Anal. Chem. 2019, 118, 401–425. DOI: 10.1016/J.TRAC.2019.06.007.
  • Emam, H. E.; El-Shahat, M.; Abdelhameed, R. M. Observable Removal of Pharmaceutical Residues by Highly Porous Photoactive Cellulose Acetate@MIL-MOF Film. J. Hazard. Mater. 2021, 414, 125509. DOI: 10.1016/J.JHAZMAT.2021.125509.
  • Abdelhameed, R. M.; Emam, H. E. Modulation of Metal Organic Framework Hybrid Cotton for Efficient Sweeping of Dyes and Pesticides from Wastewater. Sustainable Mater.Technol. 2022, 31, e00366. DOI: 10.1016/J.SUSMAT.2021.E00366.
  • Abdelhameed, R. M.; Shaltout, A. A.; Mahmoud, M. H. H.; Emam, H. E. Efficient Elimination of Chlorpyrifos via Tailored Macroporous Membrane Based on Al-MOF. Sustainable Mater. Techno. 2021, 29, e00326. DOI: 10.1016/J.SUSMAT.2021.E00326.
  • Abdelhameed, R. M.; Abdel-Gawad, H.; Emam, H. E. Macroporous Cu-MOF@cellulose Acetate Membrane Serviceable in Selective Removal of Dimethoate Pesticide from Wastewater. J. Environ. Chem. Eng. 2021, 9(2), 105121. DOI: 10.1016/J.JECE.2021.105121.
  • Abdelhameed, R. M.; Taha, M.; Abdel-Gawad, H.; Emam, H. E. Purification of Soybean Oil from Diazinon Insecticide by Iron-Based Metal Organic Framework: Effect of Geometrical Shape and Simulation Study. J. Mol. Struct. 2022, 1250, 131914. DOI: 10.1016/J.MOLSTRUC.2021.131914.
  • Ahmed, I.; Jhung, S. H. Remarkable Adsorptive Removal of Nitrogen-Containing Compounds from a Model Fuel by a Graphene Oxide/MIL-101 Composite through a Combined Effect of Improved Porosity and Hydrogen Bonding. J. Hazard. Mater. 2016, 314, 318–325. DOI: 10.1016/J.JHAZMAT.2016.04.041.
  • Maes, M.; Trekels, M.; Boulhout, M.; Schouteden, S.; Vermoortele, F.; Alaerts, L.; Heurtaux, D.; Seo, Y.-K.; Hwang, Y. K.; Chang, J.-S., et al. Selective Removal of N-Heterocyclic Aromatic Contaminants from Fuels by Lewis Acidic Metal-Organic Frameworks. Angew. Chem. Int. Ed. 2011, 50(18), 4210–4214. DOI: 10.1002/anie.201100050.
  • Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Sci. 2005, 309(5743), 2040–2042. (New York, N.Y.). DOI: 10.1126/science.1116275.
  • Nethaji, S.; Sivasamy, A.; Mandal, A. B. Adsorption Isotherms, Kinetics and Mechanism for the Adsorption of Cationic and Anionic Dyes onto Carbonaceous Particles Prepared from Juglans Regia Shell Biomass. Int. J. Environ. Sci. Technol. 2013, 10(2), 231–242. DOI: 10.1007/s13762-012-0112-0.
  • Yang, J.; Zhao, Q.; Li, J.; Dong, J. Synthesis of Metal–Organic Framework MIL-101 in TMAOH-Cr(NO3)3-H2BDC-H2O and Its Hydrogen-Storage Behavior. Microporous Mesoporous Mater. 2010, 130(1–3), 174–179. DOI: 10.1016/J.MICROMESO.2009.11.001.
  • Zhou, -J.-J.; Liu, K.-Y.; Kong, C.-L.; Chen, L. Acetate-Assisted Synthesis of Chromium(III) Terephthalate and Its Gas Adsorption Properties. Bull. Korean Chem. Soc. 2013, 34(6), 1625–1631. DOI: 10.5012/bkcs.2013.34.6.1625.
  • Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Sci. 2005, 309(5743), 2040–2042. (New York, N.Y.). DOI: 10.1126/science.1116275.
  • Meyer, K.; Klobes, P. Comparison between Different Presentations of Pore Size Distribution in Porous Materials. Fresenius J. Anal. Chem. 1999, 363(2), 174–178. DOI: 10.1007/s002160051166.
  • Zhao, T.; Jeremias, F.; Boldog, I.; Nguyen, B.; Henninger, S. K.; Janiak, C. H.-Y. Fluoride-Free and Large-Scale Synthesis of MIL-101(Cr). Dalton Trans. 2015, 44(38), 16791–16801. DOI: 10.1039/C5DT02625C.
  • Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-Organic Framework. Nature. 1999, 402(6759), 276–279. DOI: 10.1038/46248.
  • Zhao, T.; Yang, L.; Feng, P.; Gruber, I.; Janiak, C.; Liu, Y. Facile Synthesis of Nano-Sized MIL-101(Cr) with the Addition of Acetic Acid. Inorg. Chim. Acta. 2018, 471, 440–445. DOI: 10.1016/j.ica.2017.11.030.
  • Zhang, L. J.; Li, F. Q.; Ren, J. X.; Ma, L. B.; Li, M. Q. Preparation of Metal Organic Frameworks MIL-101 (Cr) with Acetic Acid as Mineralizer. IOP Conference Series: Earth and Environmental Science. 2018, 199(4), 042038. DOI: 10.1088/1755-1315/199/4/042038.
  • Jhung, S. H.; Lee, J.-H.; Yoon, J. W.; Serre, C.; Férey, G.; Chang, J.-S. Microwave Synthesis of Chromium Terephthalate MIL-101 and Its Benzene Sorption Ability. Adv.Mate. 2007, 19(1), 121–124. DOI: 10.1002/adma.200601604.
  • Leng, K.; Sun, Y.; Li, X.; Sun, S.; Xu, W. Rapid Synthesis of Metal–Organic Frameworks MIL-101(Cr) without the Addition of Solvent and Hydrofluoric Acid. Cryst. Growth Des. 2016, 16(3), 1168–1171. DOI: 10.1021/acs.cgd.5b01696.
  • Hwang, Y. K.; Hong, D.-Y.; Chang, J.-S.; Jhung, S. H.; Seo, Y.-K.; Kim, J.; Vimont, A.; Daturi, M.; Serre, C.; Férey, G. Amine Grafting on Coordinatively Unsaturated Metal Centers of MOFs: Consequences for Catalysis and Metal Encapsulation. Angew. Chem. Int. Ed. 2008, 47(22), 4144–4148. DOI: 10.1002/anie.200705998.
  • Ahmed, I.; Tong, M.; Jun, J. W.; Zhong, C.; Jhung, S. H. Adsorption of Nitrogen-Containing Compounds from Model Fuel over Sulfonated Metal–Organic Framework: Contribution of Hydrogen-Bonding and Acid–Base Interactions in Adsorption. J. Phys. Chem. C. 2016, 120(1), 407–415. DOI: 10.1021/acs.jpcc.5b10578.
  • Ahmed, I.; Hasan, Z.; Khan, N. A.; Jhung, S. H. Adsorptive Denitrogenation of Model Fuels with Porous Metal-Organic Frameworks (Mofs): Effect of Acidity and Basicity of MOFs. Appl. Catal. B Environ. 2013, 129, 123–129. DOI: 10.1016/J.APCATB.2012.09.020.
  • Ahmed, I.; Khan, N. A.; Jhung, S. H. Graphite Oxide/Metal–Organic Framework (MIL-101): Remarkable Performance in the Adsorptive Denitrogenation of Model Fuels. Inorg. Chem. 2013, 52(24), 14155–14161. DOI: 10.1021/ic402012d.
  • Khan, N. A.; Yoo, D. K.; Jhung, S. H. Polyaniline-Encapsulated Metal–Organic Framework MIL-101: Adsorbent with Record-High Adsorption Capacity for the Removal of Both Basic Quinoline and Neutral Indole from Liquid Fuel. ACS Appl. Mater. Interfaces. 2018, 10(41), 35639–35646. DOI: 10.1021/acsami.8b13256.
  • Do, D. D.; Adsorption Analysis: Equilibria and Kinetics; Ser. Chem. Eng.; PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., 1998; Vol.  2. 10.1142 /p 111.
  • Helfferich, F. G.;. Principles of Adsorption & Adsorption Processes, by D. M. Ruthven, John Wiley & Sons. AIChE J. 1984; 31(3): 523–524. DOI: 10.1002/aic.690310335.
  • Patiha; Heraldy, E.; Hidayat, Y.; Firdaus, M. The Langmuir Isotherm Adsorption Equation: The Monolayer Approach. IOP Conf. Ser. Mater. Sci. Eng. 2016, 107(1), 012067. DOI: 10.1088/1757-899X/107/1/012067.
  • Chiou, C. T. Partition and Adsorption of Organic Contaminants in Environmental Systems; Wiley-Interscience: Hoboken, New Jersey, 2002.
  • Abdelhameed, R. M.; El-Deib, H. R.; El-Dars, F. M. S. E.; Ahmed, H. B.; Emam, H. E. Applicable Strategy for Removing Liquid Fuel Nitrogenated Contaminants Using MIL-53-NH2@Natural Fabric Composites. Ind. Eng. Chem. Res. 2018, 57(44), 15054–15065. DOI: 10.1021/ACS.IECR.8B03936/SUPPL_FILE/IE8B03936_SI_001.PDF.
  • Emam, H. E.; Abdelhamid, A. E.; Abdelhameed, R. M. Refining of Liquid Fuel from N-Containing Compounds via Using Designed Polysulfone@Metal Organic Framework Composite Film. J. Cleaner Prod. 2019, 218, 347–356. DOI: 10.1016/J.JCLEPRO.2019.01.327.
  • Nuzhdin, A. L.; Kovalenko, K. A.; Dybtsev, D. N.; Bukhtiyarova, G. A. Removal of Nitrogen Compounds from Liquid Hydrocarbon Streams by Selective Sorption on Metal-Organic Framework MIL-101. Mendeleev Commun. 2010, 20(1), 57–58. DOI: 10.1016/J.MENCOM.2010.01.022.
  • Lima, E. C.; Hosseini-Bandegharaei, A.; Moreno-Piraján, J. C.; Anastopoulos, I. A Critical Review of the Estimation of the Thermodynamic Parameters on Adsorption Equilibria. Wrong Use of Equilibrium Constant in the Van’t Hoof Equation for Calculation of Thermodynamic Parameters of Adsorption. J. Mol. Liq. 2019, 273, 425–434. DOI: 10.1016/j.molliq.2018.10.048.
  • Khan, N. A.; Jun, J. W.; Jeong, J. H.; Jhung, S. H. Remarkable Adsorptive Performance of a Metal–Organic Framework, Vanadium-Benzenedicarboxylate (MIL-47), for Benzothiophene. Chem. Commun. 2011, 47(4), 1306–1308. DOI: 10.1039/C0CC04759G.
  • Meneses-Ruiz, E.; Escobar, J.; Mora, R. J.; Montoya, J. A.; Barrera, M. C.; Solís-Casados, D.; Escobar-Alarcón, L.; Ángel, P. D.; Laredo, G. Nitrogen Compounds Removal from Oil-Derived Middle Distillates by MIL-101(Cr) and Its Impact on ULSD Production by Hydrotreating. Oil Gas Sci. And Technol. – Rev. d’IFP Energies Nouvelles. 2021, 761, 56. DOI:10.2516/OGST/2021038.
  • Yang, C. X.; Yan, X. P. Metal-Organic Framework MIL-101(Cr) for High-Performance Liquid Chromatographic Separation of Substituted Aromatics. Anal. Chem. 2011, 83(18), 7144–7150. DOI: 10.1021/AC201517C/ASSET/IMAGES/AC201517C.SOCIAL.JPEG_V03.
  • Kameoka, Y.; Pigford, R. L. Absorption of Nitrogen Dioxide into Water, Sulfuric Acid, Sodium Hydroxide, and Alkaline Sodium Sulfite Aqueous Solutions. Ind. Eng. Chem. Fundam. 2002, 16(1), 163–169. DOI: 10.1021/I160061A031.
  • Barakat, M. A.;. New Trends in Removing Heavy Metals from Industrial Wastewater. Arabian J. Chem. 2011, 4(4), 361–377. DOI: 10.1016/J.ARABJC.2010.07.019.
  • Zhang, L.; Zeng, Y.; Cheng, Z. Removal of Heavy Metal Ions Using Chitosan and Modified Chitosan: A Review. J. Mol. Liq. 2016, 214, 175–191. DOI: 10.1016/J.MOLLIQ.2015.12.013.
  • Bashir, A.; Malik, L. A.; Ahad, S.; Manzoor, T.; Bhat, M. A.; Dar, G. N.; Pandith, A. H. Removal of Heavy Metal Ions from Aqueous System by Ion-Exchange and Biosorption Methods. Environ. Chem. Lett. 2019, 17(2), 729–754. DOI: 10.1007/s10311-018-00828-y.
  • Dabrowski, A.; Hubicki, Z.; Podkościelny, P.; Robens, E. Selective Removal of the Heavy Metal Ions from Waters and Industrial Wastewaters by Ion-Exchange Method. Chemosphere. 2004, 56(2), 91–106. DOI: 10.1016/J.CHEMOSPHERE.2004.03.006.
  • Anger, G.; Halstenberg, J.; Hochgeschwender, K.; Scherhag, C.; Korallus, U.; Knopf, H.; Schmidt, P.; Ohlinger, M. Chromium Compounds. Ullmann’s Encycl Indus Chem. 2000. DOI: 10.1002/14356007.A07_067.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.