250
Views
16
CrossRef citations to date
0
Altmetric
Adsorption

Synthesis of r-GO/PANI/ZnO based material and its application in the treatment of wastewater containing Cd2+ and Cr6+ ions

Pages 2420-2431 | Received 11 Feb 2022, Accepted 18 Apr 2022, Published online: 25 Apr 2022

References

  • Mahmoud, A. E. D.; Al-Qahtani, K. M.; Alflaij, S. O.; Al-Qahtani, S. F.; Alsamhan, F. A. Green Copper Oxide Nanoparticles for Lead, Nickel, and Cadmium Removal from Contaminated Water. Sci. Rep. 2021, 11(1), 12547. DOI: 10.1038/s41598-021-91093-7.
  • Abdel Hamid, A. A.; Al-Ghobashy, M. A.; Fawzy, M.; Mohamed, M. B.; Abdel-Mottaleb, M. M. S. A. Phytosynthesis of Au, Ag, and Au–Ag Bimetallic Nanoparticles Using Aqueous Extract of Sago Pondweed (Potamogeton Pectinatus L.). ACS Sustain. Chem. Eng. 2013, 1(12), 1520–1529. DOI:10.1021/sc4000972.
  • Salem, S. S.; Fouda, A. Green Synthesis of Metallic Nanoparticles and Their Prosective Biotechnological Applications: An Overview. Biol. Trace Elem. Res. 2020, 199(1), 344. DOI: 10.1007/s12011-020-02138-3.
  • Omanović-Mikličanin, E.; Badnjević, A.; Kazlagić, A.; Hazlovac, M. Nanocomposites: A Brief Review. Health Technol. 2020, 10(1), 51–59. DOI:10.1007/s12553-019-00380-x.
  • Jiang, J.; Pi, J.; Cai, J. The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications. Bioinorg. Chem. Appl. 2018, 2018, 1–18. DOI: 10.1155/2018/1062562.
  • Hoan, N. T. A.; Thu, H. V.; Duc, N. D.; Cuong, D. Q.; Vo, K. V. Fe3O4/Reduced Graphene Oxide Nanocomposite: Synthesis and Its Application for Toxic Metal Ion Removal. J. Chem. 2016. DOI: 10.1155/2016/2418172.
  • Beygisangchin, M.; Abdul Rashid, S.; Shafie, S.; Sadrolhosseini, A. R.; Lim, H. N. Preparations, Properties, and Applications of Polyaniline and Polyaniline Thin Films-a Review. Polymers. 2021, 13(12), 2003. DOI: 10.3390/polym13122003.
  • Joshi, N. C.; Kaur, K.; Kumar, N.; Bhandari, N. S.; Thakur, A. Synthesis and Adsorption Applications of PPY/Fe3O4 Nanocomposite Based Material. Nano-Struct. Nano-Object. 2021, 25, 100669. DOI: 10.1016/j.nanoso.2021.100669.
  • Joshi, N. C.; Malik, N.; Singh, A. Synthesis and Characterizations of polythiophene–Al2O3 Based Nanosorbent and Its Applications in the Removal of Pb2+, Cd2+ and Zn2+ Ions. J. Inorg. Organomet. Polym. Mater. 2020, 30(4), 1438. DOI: 10.1007/s10904-019-01252-7.
  • Joshi, N. C.; Congthak, R.; Gururani, P. Synthesis, Adsorptive Performances and Photo-catalytic Activity of Graphene oxide/TiO2 (Go/tio2) Nanocomposite Based Adsorbent. Nanotech. Environ. Eng. 2020, 5, 3. DOI: 10.1007/s41204-020-00085-x.
  • Rahimzadeh, M. R.; Rahimzadeh, M. R.; Kazemi, S.; Moghadamnia, A. Cadmium Toxicity and Treatment: An Update. Caspian J. Intern. Med. 2017, 8(3), 135. DOI:10.22088/cjim.8.3.135.
  • Saha, R.; Nandi, R.; Saha, B. Sources and Toxicity of Hexavalent Chromium. J. Coordin. Chem. 2011, 64(10), 1782. DOI:10.1080/00958972.2011.583646.
  • Oliveira, H. Chromium as an Environmental Pollutant: Insights on Induced Plant Toxicity. J. Bot. 2012, 2012, 1–8. DOI: 10.1155/2012/375843.
  • Cao, Z.; Wen, X.; Wang, J.; Yang, F.; Zhong, H.; Wang, S.; Wuc, Z. In Situ nano-Fe3O4/triisopropanolamine Functionalized Graphene Oxide Composites to Enhance Pb2+ Ions Removal. Colloids Surf., A. 2019, 561, 209–217. DOI: 10.1016/j.colsurfa.2018.10.084.
  • Ranjith, K. S.; Manivel, P.; Rajendrakumar, R. T.; Uyar, T. Multifunctional ZnO Nanorod-reduced Graphene Oxide Hybrids Nanocomposites for Effective Water Remediation: Effective Sunlight Driven Degradation of Organic Dyes and Rapid Heavy Metal Adsorption. Chem. Eng. J. 2017, 325, 588–600. DOI: 10.1016/j.cej.2017.05.105.
  • Katubi, K. M. M.; Alsaiari, N. S.; Alzahrani, F. M.; Siddeeg, S. M.; Tahoon, M. A. Synthesis of Manganese Ferrite/graphene Oxide Magnetic Nanocomposite for Pollutants Removal from Water. Processes. 2021, 9(4), 589. DOI: 10.3390/pr9040589.
  • Zhao, Y.; Li, L.; Zuo, Y.; He, G.; Chen, Q.; Meng, Q.; Chen, H. Reduced Graphene Oxide Supported ZnO/CdS Heterojunction Enhances Photocatalytic Removal Efficiency of Hexavalent Chromium from Aqueous Solution. Chemosphere. 2021, 30, 131738. DOI: 10.1016/j.chemosphere.2021.131738.
  • Bilici, B. M.; Hadimlioglu, S. Removal of Arsenate Using Graphene Oxide-iron Modified Clinoptilolite-based Composites: Adsorption Kinetic and Column Study. J. Anal. Sci. Technol. 2021, 12, 22. DOI: 10.1186/s40543-021-00274-6.
  • Verma, M.; Lee, I.; Oh, J.; Kumar, V.; Kim, H. Synthesis of EDTA-functionalized Graphene Oxide-chitosan Nanocomposite for Simultaneous Removal of Inorganic and Organic Pollutants from Complex Wastewater. Chemosphere. 2022, 287, 132385. DOI: 10.1016/j.chemosphere.2021.132385.
  • Joshi, N. C.; Chodhary, A.; Prakash, A.; Singh, A. Green Synthesis and Characterization of α-Fe2O3 Nanoparticles Using Leaf Extract of Syzygium Cumini and Their Suitability for Adsorption of Cu(II) and Pb(II) Ions. Asian J. Chem. 2019, 31(8), 1809–1814. DOI: 10.14233/ajchem.2019.22024.
  • Jayarambabu, N.; Kumari, B. S.; Rao, K. B.; Prabhu, Y. T. Germination and Growth Characteristics of Mungbean Seeds (Vigna Radiata L.) Affected by Synthesized Zinc Oxide Nanoparticles. Int. J. Curr. Eng. Tech. 2014, 4, 3411–3416.
  • Nagaraju, G.; Udayabhanu, S.; Yathish, K. V.; Yathish, K. V.; Yathish, K. V.; Anupama, C.; Rangappa, D.; Rangappa, D. Electrochemical Heavy Metal Detection,photocatalytic,photoluminescence,biodiesel Production and Antibacterial Activities of Ag–ZnO Nanomaterial. Mater. Res. Bull. 2017, 94, 54–63. DOI: 10.1016/j.materresbull.2017.05.043.
  • Emiru, T. F.; Ayele, D. W. Controlled Synthesis, Characterization and Reduction of Graphene Oxide: A Convenient Method for Large Scale Production. Egypt. J. Basic Appl. Sci. 2017, 4(1), 74–79. DOI: 10.1016/j.ejbas.2016.11.002.
  • Singu, B. S.; Srinivasan, P.; Pabbaa, S. Benzoyl Peroxide Oxidation Route to Nano Form Polyaniline Salt Containing Dual Dopants for Pseudocapacitor. J. Electrochem. Soc. 2012, 159(1), A6–A13. DOI: 10.1149/2.036201jes.
  • Talam, S.; Karumuri, S. R.; Gunnam, N. Synthesis, Characterization, and Spectroscopic Properties of ZnO Nanoparticles. Int. Scholarly Res. Not. 2012. DOI: 10.5402/2012/372505.
  • Chauhan, A.; Verma, R.; Kumari, S.; Sharma, A.; Shandilya, P.; Li, X.; Batoo, K. M.; Imran, A.; Kulshrestha, S.; Kumar, R. Photocatalytic Dye Degradation and Antimicrobial Activities of Pure and Ag-doped ZnO Using Cannabis Sativa Leaf Extract. Sci. Rep. 2020, 10(1), 7881. DOI: 10.1038/s41598-020-64419-0.
  • Basnet, P.; Samanta, D.; Chanu, T. I.; Mukherjee, J.; Chatterjee, S. Assessment of Synthesis Approaches for Tuning the Photocatalytic Property of ZnO Nanoparticles. SN Appl. Sci. 2019, 1(6). DOI: 10.1007/s42452-019-0642-x.
  • Zhang, Y.; Liu, J.; Zhang, Y.; Liua, J.; Duan, Y. Facile Synthesis of Hierarchical Nanocomposites Ofaligned Polyaniline Nanorods on Reduced Grapheneoxide Nanosheets for Microwave Absorbingmaterials. RSC Adv. 2017, 7(85), 54031. DOI:10.1039/C7RA08794B.
  • Yogeshwaran, V.; Priya, A. K. Removal of Hexavalent Chromium Concentration from the Aqueous Solution Using Chemically Treated Sugarcane Bagasse Powder. J. Indian Chem. Soc. 2020, 97, 1467–1477.
  • Joshi, N. C.; Kumar, N. Synthesis, Characterisation and Adsorption Applications of PMMA/ZnO-based Nanocomposite Material. Nanotechnol. Environ. Eng. 2022. DOI: 10.1007/s41204-021-00205-1.
  • Kumar, N.; Joshi, N. C. Potential of PTH-Fe3O4 Based Nanomaterial for the Removal of Pb (II), Cd (II), and Cr (VI) Ions. J. Inorg. Organomet. Polym. 2021. DOI: 10.1007/s10904-021-02173-0.
  • Guo, T.; Bulin, C.; Ma, Z.; Li, B.; Zhang, Y.; Zhang, B.; Xing, R.; Ge, X. Mechanism of Cd(II) and Cu(II) Adsorption onto Few-layered Magnetic Graphene Oxide as an Efficient Adsorbent. ACS Omega. 2021, 6(25), 16535–16545. DOI:10.1021/acsomega.1c01770.
  • Al-Senani, G. M.; Al-Fawzan, F. F. Adsorption Study of Heavy Metal Ions from Aqueous Solution by Nanoparticle of Wild Herbs. Egypt. J. Aquat. Res. 2018, 44(3), 187–194. DOI: 10.1016/j.ejar.2018.07.006.
  • Zhang, Z.; Luo, H.; Jiang, X.; Jiang, Z.; Yang, C. Synthesis of Reduced Graphene Oxide-montmorillonite Nanocomposite and Its Application in Hexavalent Chromium Removal from Aqueous Solutions. RSC Adv. 2015, 5, 47408–47417.
  • Mohan, D.; Kumar, H.; Sarswat, A.; Alexandre-Franco, M.; Pittman, C. U., Jr. Cadmium and Lead Remediation Using Magnetic Oak Wood and Oak Bark Fast Pyrolysis Bio-chars. Chem. Eng. J. 2014, 236, 513–528. DOI: 10.1016/j.cej.2013.09.057.
  • Joshi, N. C.; Negi, S. Synthesis and Adsorption Potential of an Organic–inorganic-based Hybrid Nanomaterial (Pani-al2o3). Inorg. Nano-Metal Chem. 2021. DOI: 10.1080/24701556.2021.1980026.
  • Larraza, I.; López-Gónzalez, M.; Corrales, T.; Marcelo, G. Hybrid Materials: Magnetite-polyethylenimine-montmorillonite, as Magnetic Adsorbents for Cr(VI) Water Treatment. J. Colloid Interface Sci. 2012, 385(1), 24–33. DOI: 10.1016/j.jcis.2012.06.050.
  • Umeh, T. C.; Nduka, J. K.; Akpomie, K. G. Kinetics and Isotherm Modeling of Pb(II) and Cd(II) Sequestration from Polluted Water onto Tropical Ultisol Obtained from Enugu Nigeria. Appl. Water Sci. 2021, 11(4), 65. DOI: 10.1007/s13201-021-01402-8.
  • Dada, A. O.; Adekola, F. A.; Odebunmi, E. O. Kinetics, Mechanism, Isotherm and Thermodynamic Studies of Liquid Phase Adsorption of Pb 2+++ onto Wood Activated Carbon Supported Zerovalent Iron (WAC-ZVI) Nanocomposite. Cogent Chem. 2017, 3(1), 1351653. DOI: 10.1080/23312009.2017.1351653.
  • Rahmani, A.; Mousavi, H. Z.; Fazli, M. Effect of Nanostructure Alumina on Adsorption of Heavy Metals. Desalination. 2010, 253(1–3), 94–100. DOI: 10.1016/j.desal.2009.11.027.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.