464
Views
8
CrossRef citations to date
0
Altmetric
Selenium Removal

Selenium contamination in water; analytical and removal methods: a comprehensive review

ORCID Icon, &
Pages 2500-2520 | Received 06 Jan 2022, Accepted 03 May 2022, Published online: 13 May 2022

References

  • Shafiee, S.; Topal, E. When Will Fossil Fuel Reserves Be Diminished? Energy Policy. 2009, 37(1), 181–189. DOI: 10.1016/j.enpol.2008.08.016.
  • Judkins, R. R.; Fulkerson, W.; Sanghvi, M. K. The Dilemma of Fossil Fuel Use and Global Climate Change. Energy Fuels. 1993, 7(1), 14–22. DOI: 10.1021/ef00037a004.
  • Ostovar, M.; Ghiassi, R.; Mehdizadeh, M. J.; Shariatmadari, N. Effects of Crude Oil on Geotechnical Specification of Sandy Soils. Soil and Sediment Contamination: An International Journal. 2021, 30(1), 58–73. DOI: 10.1080/15320383.2020.1792410.
  • Hower, J. C.; Trimble, A. S.; Eble, C. F.; Palmer, C. A.; Kolker, A. Characterization of Fly Ash from Low-sulfur and High-sulfur Coal Sources: Partitioning of Carbon and Trace Elements with Particle Size. Energy Sources. 1999, 21(6), 511–525. DOI: 10.1080/00908319950014641.
  • Saberi, N.; Aghababaei, M.; Ostovar, M.; Mehrnahad, H. Simultaneous Removal of Polycyclic Aromatic Hydrocarbon and Heavy Metals from an Artificial Clayey Soil by Enhanced Electrokinetic Method. J. Environ. Manage. 2018, 217, 897–905. DOI: 10.1016/j.jenvman.2018.03.125.
  • Saikia, B. K.; Saikia, J.; Rabha, S.; Silva, L. F.; Finkelman, R. Ambient Nanoparticles/nanominerals and Hazardous Elements from Coal Combustion Activity: Implications on Energy Challenges and Health Hazards. Geoscience Frontiers. 2018, 9(3), 863–875. DOI: 10.1016/j.gsf.2017.11.013.
  • Barla, A.; Shrivastava, A.; Majumdar, A.; Upadhyay, M. K.; Bose, S. Heavy Metal Dispersion in Water Saturated and Water Unsaturated Soil of Bengal Delta Region, India. Chemosphere. 2017, 168, 807–816. DOI: 10.1016/j.chemosphere.2016.10.132.
  • Majumdar, A.; Upadhyay, M. K.; Kumar, J. S.; Barla, S.; Barla, A.; Srivastava, S.; Jaiswal, M. K.; Bose, S. Ultra-structure Alteration via Enhanced Silicon Uptake in Arsenic Stressed Rice Cultivars under Intermittent Irrigation Practices in Bengal Delta Basin. Ecotoxicol. Environ. Saf. 2019, 180, 770–779. DOI: 10.1016/j.ecoenv.2019.05.028.
  • Sasmaz, M.; Öbek, E.; Sasmaz, A. Bioaccumulation of Cadmium and Thallium in Pb-Zn Tailing Waste Water by Lemna Minor and Lemna Gibba. Appl. Geochem. 2019, 100, 287–292. DOI: 10.1016/j.apgeochem.2018.12.011.
  • Upadhyay, M. K.; Shukla, A.; Yadav, P.; Srivastava, S. A Review of Arsenic in Crops, Vegetables, Animals and Food Products. Food Chem. 2019, 276, 608–618. DOI: 10.1016/j.foodchem.2018.10.069.
  • Taylor, S. R.; McLennan, S. M. The Continental Crust: Its Composition and Evolution. 1985.
  • Kurokawa, S.; Berry, M. J. S. Role of the Essential Metalloid in Health. Interrelations between Essential Metal Ions and Human Diseases. 2013, 499–534. DOI:10.1007/978-94-007-7500-8_16.
  • Maroney, M. J.; Hondal, R. J. Selenium versus Sulfur: Reversibility of Chemical Reactions and Resistance to Permanent Oxidation in Proteins and Nucleic Acids. Free Radical Biol. Med. 2018, 127, 228–237. DOI: 10.1016/j.freeradbiomed.2018.03.035.
  • Puschenreiter, M. Trace Elements as Contaminants and Nutrients: Consequences in Ecosystems and Human Health. Edited by M. N. V. Prasad. ChemSusChem. 2009, 2(7), 677–677. DOI: 10.1002/cssc.200900050.
  • Shamberger, R. J. Selenium in the Environment. Sci. Total Environ. 1981, 17(1), 59–74. DOI: 10.1016/0048-9697(81)90108-X.
  • Lemly, A. D. Aquatic Selenium Pollution Is a Global Environmental Safety Issue. Ecotoxicol. Environ. Saf. 2004, 59(1), 44–56. DOI: 10.1016/S0147-6513(03)00095-2.
  • Nancharaiah, Y. V.; Lens, P. N. Selenium Biomineralization for Biotechnological Applications. Trends Biotechnol. 2015b, 33(6), 323–330. DOI: 10.1016/j.tibtech.2015.03.004.
  • Wadgaonkar, S. L.; Nancharaiah, Y. V.; Esposito, G.; Lens, P. N. Environmental Impact and Bioremediation of Seleniferous Soils and Sediments. Crit. Rev. Biotechnol. 2018, 38(6), 941–956. DOI: 10.1080/07388551.2017.1420623.
  • Girling, C. A. Selenium in Agriculture and the Environment. Agriculture, Ecosystems & Environment. 1984, 11(1), 37–65. DOI: 10.1016/0167-8809(84)90047-1.
  • Yudovich, Y. E.; Ketris, M. P. Selenium in Coal: A Review. Int. J. Coal Geol. 2006, 67(1–2), 112–126. DOI: 10.1016/j.coal.2005.09.003.
  • Lemly, A. D. Environmental Implications of Excessive Selenium: A Review. Biomed. Environ. Sci. 1997, 415(435), 21.
  • Khamkhash, A.; Srivastava, V.; Ghosh, T.; Akdogan, G.; Ganguli, R.; Aggarwal, S. Mining-related Selenium Contamination in Alaska, and the State of Current Knowledge. Minerals. 2017, 7(3), 46. DOI: 10.3390/min7030046.
  • Yao, Q.; Zhang, J.; Qin, X.; Xiong, H; Dong, L. The Behavior of Selenium and Arsenic in the Zhujiang (Pearl River) Estuary, South China Sea. Estuarine, Coastal and Shelf Science. 2006, 67(1–2), 170–180. DOI: 10.1016/j.ecss.2005.11.012.
  • Shah, P.; Strezov, V.; Stevanov, C.; Nelson, P. F. Speciation of Arsenic and Selenium in Coal Combustion Products. Energy Fuels. 2007, 21(2), 506–512. DOI: 10.1021/ef0604083.
  • Kapoor, S. T.; Viraraghavan, T. Removal of Selenium from Water and Wastewater. Int. J. Environ. Stud. 1995, 49(2), 137–147. DOI: 10.1080/00207239508711016.
  • Niss, N. D.; Powers, C. R. Determination of Selenium Species in Spent Oil Shale Leachates by Ion Chromatography. In Western Research Inst.; OSTI.GOV: Laramie, WY, USA, 1988. https://www.osti.gov/biblio/5717400 (accessed Dec 20, 2021).
  • Ryser, A. L.; Strawn, D. G.; Marcus, M. A.; Johnson-Maynard, J. L.; Gunter, M. E.; Möller, G. Micro-spectroscopic Investigation of Selenium-bearing Minerals from the Western US Phosphate Resource Area. Geochem. Trans. 2005, 6(1), 1–11. DOI: 10.1186/1467-4866-6-1.
  • Mehdi, Y.; Hornick, J. L.; Istasse, L.; Dufrasne, I. Selenium in the Environment, Metabolism and Involvement in Body Functions. Molecules. 2013, 18(3), 3292–3311. DOI: 10.3390/molecules18033292.
  • Risher, J. Toxicological Profile for Selenium. Agency for Toxic Substances and Disease Registry. 2003, Available at https://www.atsdr.cdc.gov/toxprofiles/tp92.pdf (accessed Dec26, 2021).
  • Huang, Y.; Gong, H.; Hu, H.; Fu, B.; Yuan, B.; Li, S.; Luo, G.; Yao, H. Migration and Emission Behavior of Arsenic and Selenium in a Circulating Fluidized Bed Power Plant Burning Arsenic/selenium-enriched Coal. Chemosphere. 2021, 263, 127920. DOI: 10.1016/j.chemosphere.2020.127920.
  • USEPA. National Primary Drinking Water Standards. U.S. Environmental Protection Agency: Washington, DC. USA, 2002.
  • Kim, A. G. Physical and Chemical Characteristics of CCB. p. 25–42. In Proc. Coal Combustion By-Products and Western Coal Mines: A Technical Interactive Forum. 2002, Golden, CO.
  • Ainsworth, C. C; Rai, D. Chemical Characterization of Fossil Fuel Combustion Wastes. Pacific Northwest Lab., Richland, WA (USA); Electric Power Research Inst., Palo Alto, CA (USA), 1987; pp EPRI-EA–5321. https://www.osti.gov/biblio/6225315
  • American Coal Ash Association. Coal Combustion Product (CCP) Production and Use Survey. American Coal Ash Association, 2007. Available at https://downloads.regulations.gov/EPA-HQ-RCRA-2008-0329-0233/content.pdf (accessed Dec 11, 2021).
  • Pooja, D.; Kumar, P.; Singh, P.; Patil, S. Sensors in Water Pollutants Monitoring: Role of Material; Springer: Singapore, 2020; pp 320.
  • Torres, J.; Pintos, V.; Gonzatto, L.; Domínguez, S.; Kremer, C.; Kremer, E. Selenium Chemical Speciation in Natural Waters: Protonation and Complexation Behavior of Selenite and Selenate in the Presence of Environmentally Relevant Cations. Chem. Geol. 2011, 288(1–2), 32–38. DOI: 10.1016/j.chemgeo.2011.06.015.
  • Arikan, B.; Tunçay, M.; Apak, R. Sensitivity Enhancement of the Methylene Blue catalytic—Spectrophotometric Method of Selenium (IV) Determination by CTAB. Anal. Analytica Chimica Acta. 1996, 335(1–2), 155–167. DOI: 10.1016/S0003-2670(96)00343-1.
  • Bernal, J.; Del Nozal, M.; Deban, L.; Gomez, F.; De Uria, O.; Estela, J.; Cerda, V. Modification of the Methylene Blue Method for Spectrophotometric Selenium Determination. Talanta. 1990, 37(9), 931–936. DOI: 10.1016/0039-9140(90)80255-E.
  • Pettine, M.; McDonald, T. J.; Sohn, M.; Anquandah, G. A.; Zboril, R.; Sharma, V. K. A Critical Review of Selenium Analysis in Natural Water Samples. Trends Environ. Anal. Chem. 2015, 5, 1–7. DOI: 10.1016/j.teac.2015.01.001.
  • Zhengjun, G.; Xinshen, Z.; Guohe, C.; Xinfeng, X. Flow Injection Kinetic Spectrophotometric Determination of Trace Amounts of Se(IV) in Seawater. Talanta. 2005, 66(4), 1012–1017. DOI: 10.1016/j.talanta.2005.01.029.
  • Chand, V.; Prasad, S. Trace Determination and Chemical Speciation of Selenium in Environmental Water Samples Using Catalytic Kinetic Spectrophotometric Method. J. Hazard. Mater. 2009, 165(1–3), 780–788. DOI: 10.1016/j.jhazmat.2008.10.076.
  • Ramachandran, K. N.; Kumar, G. S. Modified Spectrophotometric Method for the Determination of Selenium in Environmental and Mineral Mixtures Using 2,3-diaminonaphthalene. Talanta. 1996, 43(10), 1711–1714. DOI: 10.1016/0039-9140(96)01947-9.
  • Mörschbächer, A. P.; Dullius, A.; Dullius, C. H.; Bandt, C. R.; Kuhn, D.; Brietzke, D. T.; Hoehne, L. Validation of an Analytical Method for the Quantitative Determination of Selenium in Bacterial Biomass by Ultraviolet–visible Spectrophotometry. Food Chem. 2018, 255, 182–186. DOI: 10.1016/j.foodchem.2018.02.057.
  • D’Ulivo, A.; Gianfranceschi, L.; Lampugnani, L.; Zamboni, R. Masking Agents in the Determination of Selenium by Hydride Generation Technique. Spectrochim. Acta Part B. 2002, 57(12), 2081–2094. DOI: 10.1016/S0584-8547(02)00166-0.
  • Pettine, M.; Gennari, F.; Campanella, L. The Reaction of Selenium (IV) with Ascorbic Acid: Its Relevance in Aqueous and Soil Systems. Chemosphere. 2013, 90(2), 245–250. DOI: 10.1016/j.chemosphere.2012.06.061.
  • Pettine, M.; Gennari, F.; Campanella, L.; Casentini, B.; Marani, D. The Reduction of selenium(IV) by Hydrogen Sulfide in Aqueous Solutions. Geochim. Cosmochim. Acta. 2012, 83, 37–47. DOI: 10.1016/j.gca.2011.12.024.
  • Da Silva, E. G.; Mataveli, L. R. V.; Arruda, M. A. Z. Speciation Analysis of Selenium in Plankton, Brazil Nut and Human Urine Samples by HPLC–ICP-MS. Talanta. 2013, 110, 53–57. DOI: 10.1016/j.talanta.2013.02.014.
  • Najafi, N. M.; Tavakoli, H.; Abdollahzadeh, Y.; Alizadeh, R. Comparison of Ultrasound-assisted Emulsification and Dispersive Liquid–liquid Microextraction Methods for the Speciation of Inorganic Selenium in Environmental Water Samples Using Low Density Extraction Solvents. Anal. Chim. Acta. 2012, 714, 82–88. DOI: 10.1016/j.aca.2011.11.063.
  • Kölbl, G.; Kalcher, K.; Irgolic, K. J.; Magee, R. J. Identification and Quantification of Inorganic and Organic Selenium Compounds with Highperformance Liquid Chromatography. Appl. Organomet. Chem. 1993, 7(7), 443–466. DOI: 10.1002/aoc.590070704.
  • Santos, S.; Ungureanu, G.; Boaventura, R.; Botelho, C. Selenium Contaminated Waters: An Overview of Analytical Methods, Treatment Options and Recent Advances in Sorption Methods. Sci. Total Environ. 2015, 521-522, 246–260. DOI: 10.1016/j.scitotenv.2015.03.107.
  • Sawyer, C. N.; McCarty, P. L.; Parkin, G. F. Chemistry for Environmental Engineering and Science. McGraw-Hill. 2003.
  • Banuelos, G. S.; Lin, Z. Q.; Wu, L.; Terry, N. Phytoremediation of Selenium-Contaminated Soils and Waters: Fundamentals and Future Prospects. Reviews on Environmental Health. 2002, 17(4), 291–306. DOI: 10.1515/REVEH.2002.17.4.291.
  • Dhillon, K. S.; Bañuelos, G. S. Overview and prospects of selenium phytoremediation approaches. Selenium in plants. Plant Ecophysiology; Springer, Cham, 2017; Vol. 11, pp 277–321. DOI: 10.1007/978-3-319-56249-0_16.
  • Haygarth, P. M. Global Importance and Global Cycling of Selenium. Selenium in the Environment. 1994, 1, 1–27.
  • Feng, R. W.; Wei, C. Y. Antioxidative Mechanisms on Selenium Accumulation in Pteris Vittata L., A Potential Selenium Phytoremediation Plant. Plant, Soil and Environment. 2012, 58(3), 105–110. DOI: 10.17221/162/2011-PSE.
  • He, Y.; Xiang, Y.; Zhou, Y.; Yang, Y.; Zhang, J.; Huang, H.; Shang, C.; Luo, L.; Gao, J.; Tang, L. Selenium Contamination, Consequences and Remediation Techniques in Water and Soils: A Review. Environ. Res. 2018, 164, 288–301. DOI: 10.1016/j.envres.2018.02.037.
  • Sundarakumar, M. R.; Sankar, S.; Pandey, D.; Pandey, B. K.; George, A. S.; Karki, B.; Dadeech, P. An Approach to Improve the Water Quality on Industrial Effluent by Phytoremediation with Water Hyacinth (Eichhornia Crassipes). 2021.
  • Carvalho, K. M.; McGettigan, M. J.; Martin, D. F. GC/MS Analysis of Volatile Organic Selenium Species Produced during Phytoremediation. J. Environ. Sci. Health A. 2001, 36(7), 1403–1409. DOI: 10.1081/ESE-100104887.
  • Baker, R. W. Overview of Membrane Science and Technology. In Membrane Technology and Applications, 2nd; John Wiley & Sons Ltd, The Atrium :Southern Gate, Chichester, West Sussex PO19 8SQ, England, 2004. http://aulanni.lecture.ub.ac.id/files/2012/01/MembraneTechnologyApplication1.pdf (accessed Dec 11, 2021).
  • Fane, A. G.; Wang, R.; Jia, Y. Membrane Technology: Past, Present and Future. In Membrane and Desalination Technologies; Wang, L. K., Chen, J. P., Hung, Y. T., Shammas, N. K., Eds. Humana Press: Totowa, NJ, 2011; Vol. 13, pp 1–45. DOI:10.1007/978-1-59745-278-6_1.
  • Mihelcic, J. R.; Zimmerman, J. B. Environmental Engineering: Fundamentals, Sustainability, Design, 3rd ed.; John wiley & sons: USA, 2021; p 736.
  • Peyravi, M.; Arjmandi, A. Membrane Separation Technologies for Selenium. Selenium Contamination in Water. 2021, 297–318. DOI: 10.1002/9781119693567.ch15.
  • Kharaka, Y. K.; Ambats, G.; Presser, T. S.; Davis, R. A. Removal of Selenium from Contaminated Agricultural Drainage Water by Nanofiltration Membranes. Appl. Geochem. 1996, 11(6), 797–802. DOI: 10.1016/S0883-2927(96)00044-3.
  • Richards, L. A.; Richards, B. S.; Schäfer, A. I. Renewable Energy Powered Membrane Technology: Salt and Inorganic Contaminant Removal by Nanofiltration/reverse Osmosis. J. Membr. Sci. 2011, 369(1–2), 188–195. DOI: 10.1016/j.memsci.2010.11.069.
  • Chapelle, F. H. Bioremediation of Petroleum Hydrocarbon-Contaminated Ground Water: The Perspectives of History and Hydrology. Ground Water. 1999, 37(1), 122–132. DOI: 10.1111/j.1745-6584.1999.tb00965.x.
  • Xia, X.; Wu, S.; Li, N.; Wang, D.; Zheng, S.; Wang, G. Novel Bacterial Selenite Reductase CsrF Responsible for Se(IV) and Cr(VI) Reduction that Produces Nanoparticles in Alishewanella Sp. WH16-1. J. Hazard. Mater. 2018, 342, 499–509. DOI: 10.1016/j.jhazmat.2017.08.051.
  • Macy, J. Biochemistry of Selenium Metabolism by Thauera Selenatis Gen. Nov. Sp. Nov. And Use of the Organism for Bioremediation of Selenium Oxyanions in San Joaquin Valley Drainage Water. In Selenium in the Environment; Frankenberger, W. T. J., Benso, S., Eds.; Marcel Dekker: New York, NY, 1994; pp 421–444.
  • Narasingarao, P.; Haggblom, M. M. Identification of Anaerobic Selenate-respiring Bacteria from Aquatic Sediments. Appl. Environ. Microbiol. 2007, 73(11), 3519–3527. DOI: 10.1128/AEM.02737-06.
  • Oremland, R. S.; Blum, J. S.; Culbertson, C. W.; Visscher, P. T.; Miller, L. G.; Dowdle, P.; Strohmaier, F. E. I. Isolation, Growth, and Metabolism of an Obligately Anaerobic, Selenate-Respiring Bacterium, Strain SES-3. Applied and Environmental Microbiology. Aug 1994, 60(8), 3011–3019. DOI: 10.1128/aem.60.8.3011-3019.1994.
  • Switzer Blum, J.; Burns Bindi, A.; Buzzelli, J.; Stolz, J. F.; Oremland, R. S. Bacillus Arsenicoselenatis, Sp. Nov., And Bacillus Selenitireducens, Sp. Nov.: Two Haloalkaliphiles from Mono Lake, California that Respire Oxyanions of Selenium and Arsenic. Arch. Microbiol. 1998, 171(1), 19–30. doi:10.1007/s002030050673
  • Switzer Blum, J.; Stolz, J. F.; Oren, A.; Oremland, R. S. Selenihalanaerobacter Shriftii Gen. Nov., Sp. Nov., A Halophilic Anaerobe from Dead Sea Sediments that Respires Selenate. Arch. Microbiol. 2001, 175(3), 208–219. doi:10.1007/s002030100257
  • Kuroda, M.; Notaguchi, E.; Sato, A.; Yoshioka, M.; Hasegawa, A.; Kagami, T.; Ike, M. Characterization of Pseudomonas Stutzeri NT-I Capable of Removing Soluble Selenium from the Aqueous Phase under Aerobic Conditions. J. Biosci. Bioeng. 2011, 112(3), 259–264. h ttps ://d oi:10.1016 /j.jbiosc. 2011.05. 012
  • Li, B.; Liu, N.; Li, Y.; Jing, W.; Fan, J.; Li, D.; Wang, L. Reduction of Selenite to Red Elemental Selenium by Rhodopseudomonas Palustris Strain N. PloS one. 2014, 9(4), e95955. h ttps ://d oi:10.1371 /journal. pone. 0095955.
  • Tomei, F. A.; Barton, L. L.; Lemanski, C. L.; Zocco, T. G. Reduction of Selenate and Selenite to Elemental Selenium by Wolinella Succinogenes. Can. J. Microbiol. 1992, 38(12), 1328–1333. h ttps:// d o i:10.1139 /m92-219
  • Bajaj, M.; Schmidt, S.; Winter, J. Formation of Se (0) Nanoparticles by Duganella Sp. And Agrobacterium Sp. Isolated from Se-laden Soil of North-East Punjab, India. Microb. Cell Fact. 2012, Jul 9, 11, 64. doi:10.1186/1475-2859-11-64.
  • Klonowska, A.; Heulin, T.; Vermeglio, A. Selenite and Tellurite Reduction by Shewanella Oneidensis. Appl. Environ. Microbiol. 2005, 71(9), 5607–5609. h ttps://d oi:10.1128 /AEM.71.9. 5607- 5609. 2005
  • Kulkarni, K.; Nagpure, K.; Bansiwal, A.; Labhsetwar, N. Nanomaterials for the Remediation of Selenium in Water. Selenium Contamination in Water. 2021, 252–266. DOI: 10.1002/9781119693567.ch13.
  • Zhou, C.; Wang, Z. J.; Huang, J. C.; Zheng, L.; Gan, X.; Zhang, M.; Zhou, W. Se Transformation and Removal by a Cattail Litter Treatment System Inoculated with Sulfur-based Denitrification Sludge: Role of the Microbial Community Composition under Various Temperature and Aeration Conditions. J. Hazard. Mater. 2021, 420, 126617. DOI: 10.1016/j.jhazmat.2021.126617.
  • Buchs, B.; Evangelou, M. W. H.; Winkel, L. H. E.; Lenz, M. Colloidal Properties of Nanoparticular Biogenic Selenium Govern Environmental Fate and Bioremediation Effectiveness. Environ. Sci. Technol. 2013, 47(5), 2401–2407. DOI: 10.1021/es304940s.
  • Fu, Y.; Wang, J.; Liu, Q.; Zeng, H. Water-dispersible Magnetic Nanoparticle–graphene Oxide Composites for Selenium Removal. Carbon. 2014, 77, 710–721. DOI: 10.1016/j.carbon.2014.05.076.
  • Okonji, S. O.; Achari, G.; Pernitsky, D. Environmental Impacts of Selenium Contamination: A Review on Current-issues and Remediation Strategies in an Aqueous System. Water. 2021, 13(11), 1473. DOI: 10.3390/w13111473.
  • Eswayah, A. S.; Smith, T. J.; Gardiner, P. H. Microbial Transformations of Selenium Species of Relevance to Bioremediation. Appl. Environ. Microbiol. 2016, 82(16), 4848–4859. DOI: 10.1128/AEM.00877-16.
  • Lortie, L.; Gould, W. D.; Rajan, S.; McCready, R. G. L.; Cheng, K. J. Reduction of Selenate and Selenite to Elemental Selenium by a Pseudomonas Stutzeri Isolate. Appl. Environ. Microbiol. 1992, 58(12), 4042–4044. DOI: 10.1128/aem.58.12.4042-4044.1992.
  • Macy, J. M.; Lawson, S.; DeMoll-Decker, H. Bioremediation of Selenium Oxyanions in San Joaquin Drainage Water Using Thauera Selenatis in a Biological Reactor System. Appl. Microbiol. Biotechnol. 1993, 40(4), 588–594. DOI: 10.1007/BF00175752.
  • Im, J. K.; Cho, I. H.; Kim, S. K.; Zoh, K. D. Optimization of Carbamazepine Removal in O3/UV/H2O2 System Using a Response Surface Methodology with Central Composite Design. Desalination. 2012, 285, 306–314. DOI: 10.1016/j.desal.2011.10.018.
  • Lenz, M.; Van Hullebusch, E. D.; Hommes, G.; Corvini, P. F.; Lens, P. N. Selenate Removal in Methanogenic and Sulfate-reducing Upflow Anaerobic Sludge Bed Reactors. Water Res. 2008, 42(8–9), 2184–2194. DOI: 10.1016/j.watres.2007.11.031.
  • Yang, S. I.; Lawrence, J. R.; Swerhone, G. D.; Pickering, I. J. Biotransformation of Selenium and Arsenic in Multi-species Biofilm. Environ. Chem. 2011, 8(6), 543–551. DOI: 10.1071/EN11062.
  • Nancharaiah, Y. V.; Lens, P. N. L. Ecology and Biotechnology of Selenium-respiring Bacteria. Microbiology and Molecular Biology Reviews. 2015a, 79(1), 61–80. DOI: 10.1128/MMBR.00037-14.
  • Yanke, L. J.; Bryant, R. D.; Laishley, E. J. Hydrogenase I of Clostridium Pasteurianum Functions as a Novel Selenite Reductase. Anaerobe. 1995, 1(1), 61–67. DOI: 10.1016/S1075-9964(95)80457-9.
  • Wasewar, K. L. Intensifying Approaches for Removal of Selenium. Selenium Contamination in Water. 2021, 319–355. DOI: 10.1002/9781119693567.ch16.
  • Citulski, J.; Goel, R.; Snowling, S. Optimization of ABMet Biological Selenium Removal through Advanced Process Modelling. Proceedings of the Water Environment Federation, Canada. 2016, (11), 949–961.
  • Sonstegard, J.; Harwood, J.; Pickett, T. Full Scale Implementation of GE ABMet Biological Technology for the Removal of Selenium from FGD Wastewaters. In Proceedings of the 68th International Water Conference. 2007, Orlando, FL, USA, Engineer’s Society of Western Pennsylvania: Pittsburgh, PA, USA.
  • Hill, C. M. Review of Available Technologies for the Removal of Selenium from Water; Final Report Prepared for North American Metals Council (NAMC); North American Metals Council (NAMC). 2010, Vancouver, BC, Canada.
  • Golder, A. State-of-Knowledge on Selenium Treatment Technology; North American Metals Council—Selenium Working Group: Vancouver, BC, Canada, 2020.
  • Amweg, E.; Stuart, D.; Weston, D. Comparative Bioavailability of Selenium to Aquatic Organisms after Biological Treatment of Agricultural Drainage Water. Aquat. Toxicol. 2003, 63(1), 13–25. DOI: 10.1016/S0166-445X(02)00110-8.
  • Hu, T.; Liang, Y.; Zhao, G.; Wu, W.; Li, H.; Guo, Y. Selenium Biofortification and Antioxidant Activity in Cordyceps Militaris Supplied with Selenate, Selenite, or Selenomethionine. Biol. Trace Elem. Res. 2019, 187(2), 553–561. DOI: 10.1007/s12011-018-1386-y.
  • LeBlanc, K. L.; Wallschlager, D. Production and Release of Selenomethionine and Related Organic Selenium Species by Microorganisms in Natural and Industrial Waters. Environ. Sci. Technol. 2016, 50(12), 6164–6171. DOI: 10.1021/acs.est.5b05315.
  • Williams, L. R.; Haskett, P. R. Determination of selenium(IV) in the Presence of selenium(VI) Using Sulfur Dioxide. Anal. Chem. 1969, 41(8), 1138–1140. DOI: 10.1021/ac60277a040.
  • Geoffroy, N.; Demopoulos, G. P. Reductive Precipitation of Elemental Selenium from Selenious Acidic Solutions Using Sodium Dithionite. Ind. Eng. Chem. Res. 2009, 48(23), 10240–10246. DOI: 10.1021/ie9008502.
  • Singh, S.; Bashambu, L.; Devi, P.; Kansal, S. K. Chemical Methods for Removal and Treatment of Selenium from Water. Selenium Contamination in Water. 2021, 206–227. DOI: 10.1002/9781119693567.ch11.
  • Geoffroy, N.; Demopoulos, G. P. The Elimination of selenium(IV) from Aqueous Solution by Precipitation with Sodium Sulfide. J. Hazard. Mater. 2011, 185(1), 148–154. DOI: 10.1016/j.jhazmat.2010.09.009.
  • Staicu, L. C.; van Hullebusch, E. D.; Oturan, M. A.; Ackerson, C. J.; Lens, P. N. Removal of Colloidal Biogenic Selenium from Wastewater. Chemosphere. 2015b, 125, 130–138. DOI: 10.1016/j.chemosphere.2014.12.018.
  • Hu, C.; Chen, Q.; Chen, G.; Liu, H.; Qu, J. Removal of Se(IV) and Se(VI) from Drinking Water by Coagulation. Sep. Purif. Technol. 2015, 142, 65–70. DOI: 10.1016/j.seppur.2014.12.028.
  • Escudero-Oñate, C.; Martínez-Francés, E. A Review of Chitosan-based Materials for the Removal of Organic Pollution from Water and Bioaugmentation. In Chitin-Chitosan: Myriad Functionalities in Science and Technology; Dongre, R., Ed. BoD – Books on Demand, 2018; Vol. 1,382.
  • Adio, S. O.; Omar, M. H.; Asif, M.; Saleh, T. A. Arsenic and Selenium Removal from Water Using Biosynthesized Nanoscale Zero-valent Iron: A Factorial Design Analysis. Process Saf. Environ. Prot. 2017, 107, 518–527. DOI: 10.1016/j.psep.2017.03.004.
  • Yadav, M.; Singh, G.; Jadeja, R. N. Physical and Chemical Methods for Heavy Metal Removal. Pollutants and Water Management: Resources, Strategies and Scarcity. 2021, 377–397. DOI: 10.1002/9781119693635.ch15.
  • Das, S.; Essilfie-Dughan, J.; Hendry, M. J. Characterization and Environmental Implications of Selenate Co-precipitation with Barite. Environ. Res. 2020, 186, 109607. DOI: 10.1016/j.envres.2020.109607.
  • Merrill, D. T.; Manzione, M. A.; Peterson, J. J.; Parker, D. S.; Chow, W.; Hobbs, A. O. Field Evaluation of Arsenic and Selnium Removal by Iron Coprecipitation. Journal Water Pollution Control Federation. 1986, 58(1), 18–26.
  • Rahman, M. T.; Kameda, T.; Miura, T.; Kumagai, S.; Yoshioka, T. Application of Mg–Al Layered Double Hydroxide for Treating Acidic Mine Wastewater: A Novel Approach to Sludge Reduction. Chem. Ecol. 2019, 35(2), 128–142. DOI: 10.1080/02757540.2018.1534964.
  • Baek, K.; Kasem, N.; Ciblak, A.; Vesper, D.; Padilla, I.; Alshawabkeh, A. N. Electrochemical Removal of Selenate from Aqueous Solutions. Chem. Eng. J. 2013, 215-216(216), 678–684. DOI: 10.1016/j.cej.2012.09.135.
  • Shahedi, A.; Darban, A. K.; Taghipour, F.; Jamshidi-Zanjani, A. A Review on Industrial Wastewater Treatment via Electrocoagulation Processes. Curr. Opin. Electrochem. 2020, 22, 154–169. DOI: 10.1016/j.coelec.2020.05.009.
  • Staicu, L. C.; Van Hullebusch, E. D.; Lens, P. N.; Pilon-Smits, E. A.; Oturan, M. A. Electrocoagulation of Colloidal Biogenic Selenium. Environ. Sci. Pollut. Res. 2015a, 22(4), 3127–3137. DOI: 10.1007/s11356-014-3592-2.
  • Zolfaghari, M.; Magdouli, S.; Komtchou, S. P.; Tanabene, R. (2019). Investigation on the Efficiency of Electro-Coagulation Process for Treatment of Different Selenium Species. 13th PARIS Int’l Conference on Agricultural, Chemical, Biological & Environmental Sciences (PACBES-19) Paris (France).
  • Kazeem, T. S.; Labaran, B. A.; Ahmed, H. U. R.; Mohammed, T.; Essa, M. H.; Al-Suwaiyan, M. S.; Vohra, M. S. Treatment of Aqueous Selenocyanate Anions Using Electrocoagulation. Int. J. Electrochem. Sci. 2019, 14, 10538–10564. DOI: 10.20964/2019.11.51.
  • Vinodh, R.; Padmavathi,; Sangeetha, D.; Padmavathi, R. Separation of Heavy Metals from Water Samples Using Anion Exchange Polymers by Adsorption Process. Desalination. 2011, 267(2–3), 267–276. DOI: 10.1016/j.desal.2010.09.039.
  • Zhu, L.; Zhang, L.; Li, J.; Zhang, D.; Chen, L.; Sheng, D.; Wang, S. Selenium Sequestration in A Cationic Layered Rare Earth Hydroxide: A Combined Batch Experiments and EXAFS Investigation. Environ. Sci. Technol. 2017, 51(15), 8606–8615. DOI: 10.1021/acs.est.7b02006.
  • Latorre, C. H.; García, J. B.; Martín, S. G.; Crecente, R. P. Solid Phase Extraction for the Speciation and Preconcentration of Inorganic Selenium in Water Samples: A Review. Anal. Chim. Acta. 2013, 804, 37–49. DOI: 10.1016/j.aca.2013.09.054.
  • Ippolito, J. A.; Scheckel, K. G.; Barbarick, K. A. Selenium Adsorption to Aluminum-based Water Treatment Residuals. J. Colloid Interface Sci. 2009, 338(1), 48–55. DOI: 10.1016/j.jcis.2009.06.023.
  • Ghosh, M. M.; Cox, C. D.; Yuan-Pan, J. R. Adsorption of Selenium on Hydrous Alumina. Environ. Prog. 1994, 13(2), 79–88. DOI: 10.1002/ep.670130210.
  • El Saliby, I. J.; Shon, H.; Kandasamy, J.; Vigneswaran, S. Nanotechnology for Wastewater Treatment: In Brief. Encyclopedia of Life Support System (EOLSS). 2008, 7, 15.
  • Schaming, D.; Remita, H. Nanotechnology: From the Ancient Time to Nowadays. Foundations of Chemistry. 2015, 17(3), 187–205. DOI: 10.1007/s10698-015-9235-y.
  • Jeevanandam, J.; Barhoum, A.; Chan, Y. S.; Dufresne, A.; Danquah, M. K. Review on Nanoparticles and Nanostructured Materials: History, Sources, Toxicity and Regulations. Beilstein J. Nanotechnol. 2018, 9(1), 1050–1074. DOI: 10.3762/bjnano.9.98.
  • Jain, R.; Jordan, N.; Schild, D.; Van Hullebusch, E. D.; Weiss, S.; Franzen, C.; Lens, P. N. Adsorption of Zinc by Biogenic Elemental Selenium Nanoparticles. Chem. Eng. J. 2015, 260, 855–863. DOI: 10.1016/j.cej.2014.09.057.
  • Gautam, P. K.; Singh, A.; Misra, K.; Sahoo, A. K.; Samanta, S. K. Synthesis and Applications of Biogenic Nanomaterials in Drinking and Wastewater Treatment. J. Environ. Manage. 2019, 231, 734–748. DOI: 10.1016/j.jenvman.2018.10.104.
  • Kumar, N.; Balamurugan, A.; Balakrishnan, P.; Vishwakarma, K.; Shanmugam, K. Biogenic Nanomaterials: Synthesis and Its Applications for Sustainable Development. In Biogenic Nano-Particles and Their Use in Agro-ecosystems; Ghorbanpour, M., Bhargava, P., Varma, A., Choudhary, D., Eds. Springer: Singapore, 2020; 99–132. DOI:10.1007/978-981-15-2985-6_7.
  • Gonzalez, C. M.; Hernandez, J.; Peralta-Videa, J. R.; Botez, C. E.; Parsons, J. G.; Gardea-Torresdey, J. L. Sorption Kinetic Study of Selenite and Selenate onto a High and Low Pressure Aged Iron Oxide Nanomaterial. J. Hazard. Mater. 2012, 211-212, 138–145. DOI: 10.1016/j.jhazmat.2011.08.023.
  • Sharma, G.; Sharma, A. R.; Bhavesh, R.; Park, J.; Ganbold, B.; Nam, J.-S.; Lee, -S.-S. Biomolecule-mediated Synthesis of Selenium Nanoparticles Using Dried Vitis Vinifera (Raisin) Extract. Molecules. 2014, 19(3), 2761–2770. DOI: 10.3390/molecules19032761.
  • Zelmanov, G.; Semiat, R. Selenium Removal from Water and Its Recovery Using Iron (Fe3+) Oxide/hydroxide-based Nanoparticles Sol (Nanofe) as an Adsorbent. Sep. Purif. Technol. 2013, 103, 167–172. DOI: 10.1016/j.seppur.2012.10.037.
  • Gonzalez, C. M.; Hernandez, J.; Parsons, J. G.; Gardea-Torresdey, J. L. A Study of the Removal of Selenite and Selenate from Aqueous Solutions Using A Magnetic Iron/manganese Oxide Nanomaterial and ICP-MS. Microchem. J. 2010, 96(2), 324–329. DOI: 10.1016/j.microc.2010.05.005.
  • Payra, S.; Saha, A.; Banerjee, S. Recent Advances on Fe-based Magnetic Nanoparticles in Organic Transformations. J. Nanosci. Nanotechnol. 2017, 17(7), 4432–4448. DOI: 10.1166/jnn.2017.14195.
  • Holmes, A. B.; Gu, F. X. Emerging Nanomaterials for the Application of Selenium Removal for Wastewater Treatment. Environ. Sci.: Nano. 2016, 3(5), 982–996. DOI: 10.1039/C6EN00144K.
  • Ling, L.; Pan, B.; Zhang, W. X. Removal of Selenium from Water with Nanoscale Zero-valent Iron: Mechanisms of Intraparticle Reduction of Se (IV). Water Res. 2015, 71, 274–281. DOI: 10.1016/j.watres.2015.01.002.
  • Okonji, S. O.; Dominic, J. A.; Pernitsky, D.; Achari, G. Removal and Recovery of Selenium Species from Wastewater: Adsorption Kinetics and Co-precipitation Mechanisms. J. Water Process Eng. 2020, 38, 101666. DOI: 10.1016/j.jwpe.2020.101666.
  • Gui, M.; Papp, J. K.; Colburn, A. S.; Meeks, N. D.; Weaver, B.; Wilf, I.; Bhattacharyya, D. Engineered Iron/iron Oxide Functionalized Membranes for Selenium and Other Toxic Metal Removal from Power Plant Scrubber Water. J. Membr. Sci. 2015, 488, 79–91. DOI: 10.1016/j.memsci.2015.03.089.
  • Ying, A.; Evans, S. F.; Tsouris, C.; Paranthaman, M. P. Magnetic Sorbent for the Removal of Selenium(IV) from Simulated Industrial Wastewaters: Determination of Column Kinetic Parameters. Water. 2020, 12(5), 1234. DOI: 10.3390/w12051234.
  • Evans, S. F.; Ivancevic, M. R.; Yan, J.; Naskar, A. K.; Levine, A. M.; Lee, R. J.; Tsouris, C.; Paranthaman, M. P. Magnetic Adsorbents for Selective Removal of Selenite from Contaminated Water. Sep. Sci. Technol. 2019, 54(13), 2138–2146. DOI: 10.1080/01496395.2019.1617742.
  • Lu, H.; Wang, J.; Stoller, M.; Wang, T.; Bao, Y.; Hao, H. An Overview of Nanomaterials for Water and Wastewater Treatment. Adv. Mater. Sci. Eng. 2016, 2016, 1–10. DOI: 10.1155/2016/4964828.
  • Khan, S. A.; Khan, S. B.; Kamal, T.; Asiri, A. M.; Akhtar, K. Recent Development of Chitosan Nanocomposites for Environmental Applications. Recent Pat. Nanotechnol. 2016, 10(3), 181–188. DOI: 10.2174/1872210510666160429145339.
  • Abukhadra, M. R.; AlHammadi, A.; El-Sherbeeny, A. M.; Salam, M. A.; El-Meligy, M. A.; Awwad, E. M.; Luqman, M. Enhancing the Removal of Organic and Inorganic Selenium Ions Using an Exfoliated Kaolinite/cellulose Fibres Nanocomposite. Carbohydr. Polym. 2021, 252, 117163. DOI: 10.1016/j.carbpol.2020.117163.
  • Albukhari, S. M.; Salam, M. A.; Abukhadra, M. R. Effective Retention of Inorganic Selenium Ions (Se (VI) and Se (IV)) Using Novel Sodalite Structures from Muscovite; Characterization and Mechanism. J. Taiwan Inst. Chem. Eng. 2021, 120, 116–126. DOI: 10.1016/j.jtice.2021.02.026.
  • Kalantari, H.; Manoochehri, M. A Nanocomposite Consisting of MIL-101 (Cr) and Functionalized Magnetite Nanoparticles for Extraction and Determination of Selenium (IV) and Selenium (VI). Microchim. Acta. 2018, 185(3), 1–8. DOI: 10.1007/s00604-018-2731-8.
  • Chan, Y. T.; Liu, Y. T.; Tzou, Y. M.; Kuan, W. H.; Chang, R. R.; Wang, M. K. Kinetics and Equilibrium Adsorption Study of Selenium Oxyanions onto Al/Si and Fe/Si Coprecipitates. Chemosphere. 2018, 198, 59–67. DOI: 10.1016/j.chemosphere.2018.01.110.
  • Lu, Z.; Yu, J.; Zeng, H.; Liu, Q. Polyamine-modified Magnetic Graphene Oxide Nanocomposite for Enhanced Selenium Removal. Sep. Purif. Technol. 2017, 183, 249–257. DOI: 10.1016/j.seppur.2017.04.010.
  • WHO. World Health Organization. Guidelines for Drinking-Water Quality; WHO Press: Geneva, Switzerland, 2011.
  • Donga, C.; Mishra, S. B.; Abd-El-Aziz, A. S.; Mishra, A. K. Advances in Graphene-based Magnetic and graphene-based/TiO2 Nanoparticles in the Removal of Heavy Metals and Organic Pollutants from Industrial Wastewater. J. Inorg. Organomet. Polym. Mater. 2021, 31(2), 463–480. DOI: 10.1007/s10904-020-01679-3.
  • Sherlala, A. I. A.; Raman, A. A. A.; Bello, M. M.; Asghar, A. A Review of the Applications of Organo-functionalized Magnetic Graphene Oxide Nanocomposites for Heavy Metal Adsorption. Chemosphere. 2018, 193, 1004–1017. DOI: 10.1016/j.chemosphere.2017.11.093.
  • Li, M.; Dopilka, A.; Kraetz, A. N.; Jing, H.; Chan, C. K. Layered Double Hydroxide/chitosan Nanocomposite Beads as Sorbents for Selenium Oxoanions. Ind. Eng. Chem. Res. 2018, 57(14), 4978–4987. DOI: 10.1021/acs.iecr.8b00466.
  • Jiménez-López, B. A.; Leyva-Ramos, R.; Salazar-Rábago, J. J.; Jacobo-Azuara, A.; Aragón-Piña, A. Adsorption of Selenium (Iv) Oxoanions on Calcined Layered Double Hydroxides of Mg-Al-CO3 from Aqueous Solution. Effect of Calcination and Reconstruction of Lamellar Structure. Environ. Nanotechnol. Monit. Manage. 2021, 16, 100580. DOI: 10.1016/j.enmm.2021.100580.
  • Kaviya, S. Physical and Chemical Methods for Selenium Removal. Selenium Contamination in Water. 2021, 181–205. DOI: 10.1002/9781119693567.ch10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.