469
Views
5
CrossRef citations to date
0
Altmetric
Membranes

Methods of visualizing hydrodynamics and fouling in membrane filtration systems: recent trends

, &
Pages 101-130 | Received 21 Jan 2022, Accepted 09 Jun 2022, Published online: 20 Jun 2022

References

  • Lay, W. C. L.; Liu, Y.; Fane, A. G. Impacts of salinity on the performance of high retention membrane bioreactors for water reclamation: A review. Water. Res. Elsevier Ltd. 2010, 44, 21–40. DOI: 10.1016/j.watres.2009.09.026.
  • Shirazi, S.; Lin, C. J.; Chen, D. Inorganic fouling of pressure-driven membrane processes - A critical review. Desalin. Elsevier B.V. 2010, 250, 236–248. DOI: 10.1016/j.desal.2009.02.056.
  • Chong, T. H.; Wong, F. S.; Fane, A. G. Implications of critical flux and cake enhanced osmotic pressure (CEOP) on colloidal fouling in reverse osmosis: Experimental observations. J. Membr. Sci. 2008, 314, 101–111. DOI: 10.1016/j.memsci.2008.01.030.
  • Hoek, E. M. V.; Elimelech, M. Cake-Enhanced Concentration Polarization: A New Fouling Mechanism for Salt-Rejecting Membranes. Environ. Sci. Technol. 2003, 37, 5581–5588. DOI: 10.1021/es0262636.
  • Chong, T. H.; Wong, F. S.; Fane, A. G. Enhanced concentration polarization by unstirred fouling layers in reverse osmosis: Detection by sodium chloride tracer response technique. J. Membr. Sci. 2007, 287, 198–210. DOI: 10.1016/j.memsci.2006.10.035.
  • Tang, C. Y.; Chong, T. H.; Fane, A. G. Colloidal interactions and fouling of NF and RO membranes: A review. Adv. Colloid Interface Sci., Elsevier B.V. 2011, 164, 126–143. DOI: 10.1016/j.cis.2010.10.007.
  • Sutariya, B.; Karan, S. A realistic approach for determining the pore size distribution of nanofiltration membranes. Sep. Purif. Technol. 2022, 293, 121096. DOI: 10.1016/j.seppur.2022.121096.
  • Da Costa, A. R.; Fane, A. G.; Wiley, D. E. Ultrafiltration of whey protein solutions in spacer-filled flat channels. J. Membr. Sci. 1993, 76, 245–254. DOI: 10.1016/0376-7388(93)85221-H.
  • Jeong, K.; Park, M.; Oh, S.; Kim, J. H. Impacts of flow channel geometry, hydrodynamic and membrane properties on osmotic backwash of RO membranes—CFD modeling and simulation. Desalination. 2020, 476, 114229. DOI: 10.1016/j.desal.2019.114229.
  • Karode, S. K.; Kumar, A. Flow visualization through spacer filled channels by computational fluid dynamics I. Pressure drop and shear rate calculations for flat sheet geometry. J. Membr. Sci. 2001, 193, 69–84. DOI: 10.1016/S0376-7388(01)00494-X.
  • Vrouwenvelder, J. S.; van Paassen, J. A. M.; Wessels, L. P.; van Dam, A. F.; Bakker, S. M. The Membrane Fouling Simulator: A practical tool for fouling prediction and control. J. Membr. Sci. 2006, 281, 316–324. DOI: 10.1016/j.memsci.2006.03.046.
  • Haidari, A.; Heijman, S.; Van Der Meer, W. Optimal design of spacers in reverse osmosis. Sep. Purif. Technol. 2018, 192, 441–456. DOI: 10.1016/j.seppur.2017.10.042.
  • Kennedy, M.; Zhizhong, L.; Febrina, E.; Van Hoof, S.; Shippers, J. Effects of coagulation on filtration mechanisms in dead-end ultrafiltration. Water Sci. Technol. 2003, 3, 109–116.
  • Xin, T.; Yong, C.; Yun-Hong, W.; Yuan, B.; Tong, Y.; Xue-Hao, Z.; Nozomu, I.; Hui-jia, L.; Hong-Ying, H.; Yin-Hu, W. Fouling properties of reverse osmosis membranes along the feed channel in an industrial-scale system for wastewater reclamation. Sci. Total Environ. 2020, 713, 136673. DOI: 10.1016/j.scitotenv.2020.136673.
  • Zhaoyang, S.; Ting, L.; Xing, L.; Nigel, J. D. G.; Wenzheng, Y. Tracking metal ion-induced organic membrane fouling in nanofiltration by adopting spectroscopic methods: Observations and predictions. Sci. Total Environ. 2020, 708, 135051. DOI: 10.1016/j.scitotenv.2019.135051.
  • Ning, R. Y. Reverse osmosis process chemistry relevant to the Gulf. Desalination. 1999, 123, 157–164. DOI: 10.1016/S0011-9164(99)00069-7.
  • Alejandro, L.; Rosana, M.; Rocío, L.-R.; Rocío, P.-R.; Juan, J. B. Identification, resistance to antibiotics and biofilm formation of bacterial strains isolated from a reverse osmosis system of a drinking water treatment plant. Sci. Total Environ. 2021, 774, 145718. DOI: 10.1016/j.scitotenv.2021.145718.
  • Watnick, P.; Kolter, R. Biofilm, city of microbes. J. Bacteriol. 2000, 182, 2675–2679. DOI: 10.1128/JB.182.10.2675-2679.2000.
  • Ma, B.; Ding, Y.; Wang, B.; Qi, Z.; Bai, Y.; Liu, R.; Liu, H.; Qu, J. Influence of sedimentation with pre-coagulation on ultrafiltration membrane fouling performance. Sci. Total Environ. 2020, 708, 134671. DOI: 10.1016/j.scitotenv.2019.134671.
  • Mohammad, Y. A.; Mohammad, A. A.-G.; Dana, A. D. N.; Hazim, Q.; Nabil, Z. Investigating the effect of temperature on calcium sulfate scaling of reverse osmosis membranes using FTIR, SEM-EDX and multivariate analysis. Sci. Total Environ. 2020, 703, 134726. DOI: 10.1016/j.scitotenv.2019.134726.
  • Cohen, R. D.; Probstein, R. F. Colloidal fouling of reverse osmosis membranes. J. Colloid Interface Sci. 1986, 114, 194–207. DOI: 10.1016/0021-9797(86)90252-3.
  • Li, Q.; Elimelech, M. Organic fouling and chemical cleaning of nanofiltration membranes: Measurements and mechanisms. Environ. Sci. Technol. 2004, 38, 4683–4693. DOI: 10.1021/es0354162.
  • Van Hoof, S. C. J. M.; Minnery, J. G.; Mack, B. Performing a membrane autopsy. Desalin. Water Reuse. 2002, 11, 40–46.
  • Choudhury, R. R.; Gohil, J. M.; Mohanty, S.; Nayak, S. K. Antifouling, fouling release and antimicrobial materials for surface modification of reverse osmosis and nanofiltration membranes. J. Mater. Chem. A, RoyalSoc. Chem. 2018, 6, 313–333. DOI: 10.1039/C7TA08627J.
  • Xia, S.; Wan, Y.; Li, N.; Zhao, Y. Investigation of combined fouling behavior in nano-filtration process under various feed conditions. Sep. Sci. Technol. 2016, 51(4), 681–691. DOI: 10.1080/01496395.2015.1117104.
  • Xia, Y.; Cheng, C.; Wang, R.; Nie, C.; Deng, J.; Zhao, C. Ag-nanogel blended polymeric membranes with antifouling, hemocompatible and bactericidal capabilities. J. Mater Chem. B. 2015, 3(48), 9295–9304. DOI: 10.1039/C5TB01523E.
  • Zhang, F.; Zhang, W.; Yu, Y.; Deng, B.; Li, J.; Jin, J. Sol–gel preparation of PAA-g-PVDF/TiO2 nanocomposite hollow fiber membranes with extremely high water flux and improved antifouling property. J. Membr. Sci. 2013, 432, 25–32. DOI: 10.1016/j.memsci.2012.12.041.
  • Zhu, J.; Zheng, J.; Zhang, Q.; Zhang, S. Antifouling ultrafiltration membrane fabricated from poly (arylene ether ketone) bearing hydrophilic hydroxyl groups. J. Appl. Polym. Sci. 2016, 133(1). DOI: 10.1002/app.42809.
  • Geraldes, V.; Semião, V.; De Pinho, M. N. Flow management in nanofiltration spiral wound modules with ladder-type spacers. J. Membr. Sci. 2002, 203, 87–102. DOI: 10.1016/S0376-7388(01)00753-0.
  • Radu, A. I.; van Steen, M. S. H.; Vrouwenvelder, J. S.; van Loosdrecht, M. C. M.; Picioreanu, C. Spacer geometry and particle deposition in spiral wound membrane feed channels. Water. Res. Elsevier Ltd. 2014, 64, 160–176. DOI: 10.1016/j.watres.2014.06.040.
  • Charfi, A.; Harmand, J.; Ben Amar, N.; Grasmick, A.; Héran, M. Deposit membrane fouling: influence of specific cake layer resistance and tangential shear stresses. Water Sci. Technol. 2014, 70(1), 40–46. DOI: 10.2166/wst.2014.186.
  • Chan, C.; Bérubé, P.; Hall, E. Relationship between types of surface shear stress profiles and membrane fouling. Water Res. 2011, 45(19), 6403–6416. DOI: 10.1016/j.watres.2011.09.031.
  • Du, X.; Wang, Y.; Leslie, G.; Li, G.; Liang, H. Shear stress in a pressure‐driven membrane system and its impact on membrane fouling from a hydrodynamic condition perspective: a review. J. Chem. Technol. Biotechnol. 2017, 92(3), 463–478. DOI: 10.1002/jctb.5154.
  • Wang, Q.; Wang, Y.; Chen, B. Z.; Lu, T. D.; Wu, H. L.; Fan, Y. Q.; Xing, W.; Sun, S. P. Designing High-Performance Nanofiltration Membranes for High-Salinity Separation of Sulfate and Chloride in the Chlor-Alkali Process. Ind. Eng. Chem. Res. 2019, 58, 12280–12290. DOI: 10.1021/acs.iecr.9b02217.
  • Ahmad, S.; Ahmed, S. M. Membrane technology in food processing. In Food Processing: Strategies for Quality Assessment; Malik, A., Erginkaya, Z., Ahmad, S., Erten, H., Eds.; Springer: New york, 2014; pp 379–394. DOI: 10.1007/978-1-4939-1378-7_15.
  • Farooque, A. M.; Jamaluddin, A. T. M.; Al-Reweli, A. R.; Jalaluddin, P. A. M.; Al-Marwani, S. M.; Al-Mobayed, A. S. A.; Qasim, A. H. Comparative study of various energy recovery devices used in SWRO process, 2004.
  • Wang, Z.; Deshmukh, A.; Du, Y.; Elimelech, M. Minimal and zero liquid discharge with reverse osmosis using low-salt-rejection membranes. Water. Res. Elsevier Ltd. 2020, 170, 115317. DOI: 10.1016/j.watres.2019.115317.
  • Sutariya, B.; Raval, H. Analytical study of optimum operating conditions in a semi-batch closed-circuit reverse osmosis (CCRO) process. Sep. Purif. Technol., Elsevier B.V. 2021, 264, 118421. DOI: 10.1016/j.seppur.2021.118421.
  • Malek, A.; Hawlader, M. N. A.; Ho, J. C. Design and economics of RO seawater desalination. Desalination. 1996, 105, 245–261. DOI: 10.1016/0011-9164(96)00081-1.
  • Sutariya, B.; Raval, H. Energy and resource‐efficient reverse osmosis system with tunable recovery for brackish water desalination and heavy metal removal. Water Environ. J. 2022. DOI: 10.1111/wej.12788.
  • Beluci, N. D. C. L.; Mateus, G. A. P.; Miyashiro, C. S.; Homem, N. C.; Gomes, R. G.; Fagundes-Klen, M. R.; Bergamasco, R.; Vieira, A. M. S. Hybrid treatment of coagulation/flocculation process followed by ultrafiltration in TIO2-modified membranes to improve the removal of reactive black 5 dye. Sci. Total Environ. 2019, 664, 222–229. DOI: 10.1016/j.scitotenv.2019.01.199.
  • Hoslett, J.; Massara, T. M.; Malamis, S.; Ahmad, D.; van den Boogaert, I.; Katsou, E.; Ahmad, B.; Ghazal, H.; Simons, S.; Wrobel, L. Surface water filtration using granular media and membranes: A review. Sci. Total Environ. 2018, 639, 1268–1282. DOI: 10.1016/j.scitotenv.2018.05.247.
  • Shu, W.; Changjun, M.; Kang, X.; Xianzheng, Z.; Xia, H. Surface charge regulation of reverse osmosis membrane for anti-silica and organic fouling. Sci. Total Environ. 2020, 715, 137013. DOI: 10.1016/j.scitotenv.2020.137013.
  • Jun-Cheng, H.; Yi-Kang, Z.; Long-Fei, W.; Yang, M.; Guo-Guang, F.; Kun-Qiao, L.; Cai-Huan, T.; Zhen-Xun, Y. Modification of regenerated cellulose ultrafiltration membranes with multi-walled carbon nanotubes for enhanced antifouling ability: Field test and mechanism study. Sci. Total Environ. 2021, 780, 146657. DOI: 10.1016/j.scitotenv.2021.146657.
  • Youbing, Z.; Shuili, Y.; Bing, Z.; Jianfeng, L.; Dongsheng, Z.; Zhengyang, G.; Chao, G.; Guicai, L. Antifouling performance of polytetrafluoroethylene and polyvinylidene fluoride ultrafiltration membranes during alkali/surfactant/polymer flooding wastewater treatment: Distinctions and mechanisms. Sci. Total Environ. 2018, 642, 988–998. DOI: 10.1016/j.scitotenv.2018.06.145.
  • Gul, A.; Hruza, J.; Yalcinkaya, F. Fouling and Chemical Cleaning of Microfiltration Membranes: A Mini-Review. Polymers. 2021, 13(6), 846. DOI: 10.3390/polym13060846.
  • Lebron, Y. A. R.; Moreira, V. R.; da Costa, P. R.; Alkmin, A. R.; de França Neta, L. S.; Cerqueira, A. C.; Amaral, M. C. S. Chemical cleaning procedures on permeability recovery and lifespan of MBR membranes treating petroleum refinery wastewater: From bench-to pilot-scale applications. Journal of Water Process Engineering. 2021, 44, 102411.
  • van Rooij, F.; Scarf, P.; Do, P. Planning the restoration of membranes in RO desalination using a digital twin. Desalination. 2022, 519, 115214. DOI: 10.1016/j.desal.2021.115214.
  • Li, Y.; Wang, H.; Wang, S.; Xiao, K.; Huang, X. Enzymatic Cleaning Mitigates Polysaccharide-Induced Refouling of RO Membrane: Evidence from Foulant Layer Structure and Microbial Dynamics. Environ. Sci. Technol. 2021, 55(8), 5453–5462. DOI: 10.1021/acs.est.0c04735.
  • Zhou, S.; Shao, Y.; Gao, N.; Li, L.; Deng, J.; Tan, C.; Zhu, M. Influence of hydrophobic/hydrophilic fractions of extracellular organic matters of Microcystis aeruginosa on ultrafiltration membrane fouling. Sci. Total Environ. 2014, 470, 201–207. DOI: 10.1016/j.scitotenv.2013.09.052.
  • Zheng, X.; Khan, M. T.; Cao, X.; Croue, J.-P. Importance of origin and characteristics of biopolymers in reversible and irreversible fouling of ultrafiltration membranes. Sci. Total Environ. 2021, 784, 147157. DOI: 10.1016/j.scitotenv.2021.147157.
  • Chesters, S. P.; Pena, N.; Gallego, S.; Fazel, M.; Armstrong, M. W.; Del Vigo, F. Results from 99 seawater RO membrane autopsies. IDA J. Desalin. Water Reuse. 2013, 5(1), 40–47. DOI: 10.1179/2051645213Y.0000000006.
  • Jones, S. A.; Pihlajamäki, A.; Bird, M. The role of synthetic membrane pre-treatment in influencing filtration performance over multiple operational cycles. Sep. Sci. Technol. 2012, 47(8), 1119–1128. DOI: 10.1080/01496395.2011.648471.
  • Chon, K.; Cho, J. Fouling behavior of dissolved organic matter in nanofiltration membranes from a pilot-scale drinking water treatment plant: an autopsy study. Chem. Eng. J. 2016, 295, 268–277. DOI: 10.1016/j.cej.2016.03.057.
  • Rojas-Serrano, F.; Marín, E.; Pérez, J. I.; Gómez, M. Á. Autopsy of ultrafiltration membranes for drinking-water production with in-line coagulation and ozonation pre-treatments. Desalin. Water Treat. 2016, 57(42), 19619–19631. DOI: 10.1080/19443994.2015.1106986.
  • Cai, Y.; Galili, N.; Gelman, Y.; Herzberg, M.; Gilron, J. Evaluating the impact of pretreatment processes on fouling of reverse osmosis membrane by secondary wastewater. J. Membr. Sci. 2021, 623, 119054. DOI: 10.1016/j.memsci.2021.119054.
  • Ruiz-García, A.; Melián-Martel, N.; Mena, V. Fouling characterization of RO membranes after 11 years of operation in a brackish water desalination plant. Desalin., Elsevier. 2018, 430, 180–185. DOI: 10.1016/j.desal.2017.12.046.
  • García-Triñanes, P.; Chairopoulou, M. A.; Campos, L. C. Investigating reverse osmosis membrane fouling and scaling by membrane autopsy of a bench scale device. Environmental Technology. 2021, 1–14. DOI: 10.1080/09593330.2021.1918262.
  • Vrouwenvelder, J. S.; Manolarakis, S. A.; van der Hoek, J. P.; van Paassen, J. A. M.; van der Meer, W. G. J.; van Agtmaal, J. M. C.; Prummel, H. D. M.; Kruithof, J. C.; van Loosdrecht, M. C. M. Quantitative biofouling diagnosis in full scale nanofiltration and reverse osmosis installations. Water Res. 2008, 42, 4856–4868. Elsevier Ltd DOI: 10.1016/j.watres.2008.09.002.
  • Kim, L. H.; Nava-Ocampo, M.; van Loosdrecht, M. C. M.; Kruithof, J. C.; Vrouwenvelder, J. S. The membrane fouling simulator: Development, application, and early-warning of biofouling in RO treatment. Desalin. Water Treat. 2018, 126, 1–23. DOI: 10.5004/dwt.2018.23081.
  • Xu, R.; Qin, W.; Zhang, B.; Wang, X.; Li, T.; Zhang, Y.; Wen, X. Nanofiltration in pilot scale for wastewater reclamation: Long-term performance and membrane biofouling characteristics. Chem. Eng. J. 2020, 395, 125087. DOI: 10.1016/j.cej.2020.125087.
  • Kim, S. J.; Oh, B. S.; Yu, H. W.; Kim, L. H.; Kim, C. M.; Yang, E. T.; Shin, M. S.; Jang, A.; Hwang, M. H.; Kim, I. S. Foulant characterization and distribution in spiral wound reverse osmosis membranes from different pressure vessels. Desalin. Elsevier B.V. 2015, 370, 44–52. DOI: 10.1016/j.desal.2015.05.013.
  • Jeong, S.; Naidu, G.; Vollprecht, R.; Leiknes, T. O.; Vigneswaran, S. In-depth analyses of organic matters in a full-scale seawater desalination plant and an autopsy of reverse osmosis membrane. Sep. Purif. Technol. 2016, 162, 171–179. DOI: 10.1016/j.seppur.2016.02.029.
  • Tang, F.; Hu, H. Y.; Sun, L. J.; Sun, Y. X.; Shi, N.; Crittenden, J. C. Fouling characteristics of reverse osmosis membranes at different positions of a full-scale plant for municipal wastewater reclamation. Water. Res. Elsevier Ltd. 2016, 90, 329–336. DOI: 10.1016/j.watres.2015.12.028.
  • Luo, H.; Cui, Y.; Zhang, H.; Li, C.; Wang, Z.; Song, P. Analyzing and verifying the association of spiral-wound reverse osmosis membrane fouling with different secondary effluents: full-scale experiments. Sci. Total Environ., Elsevier B.V. 2020, 711, 135150. DOI: 10.1016/j.scitotenv.2019.135150.
  • Farhat, S.; Bali, M.; Kamel, F. Membrane autopsy to provide solutions to operational problems of Jerba brackish water desalination plant. Desalin., Elsevier. 2018, 445, 225–235. DOI: 10.1016/j.desal.2018.08.013.
  • Vrouwenvelder, J. S.; Manolarakis, S. A.; Veenendaal, H. R.; Van Der Kooij, D. Biofouling potential of chemicals used for scale control in RO and NF membranes. Desalination. 2000, 132, 1–10. DOI: 10.1016/S0011-9164(00)00129-6.
  • Ashfaq, M. Y.; Al-Ghouti, M. A.; Al Disi, Z. A.; Zouari, N. Interaction of seawater microorganisms with scalants and antiscalants in reverse osmosis systems. Desalination. 2020, 487, 114480. DOI: 10.1016/j.desal.2020.114480.
  • Sweity, A.; Oren, Y.; Ronen, Z.; Herzberg, M. The influence of antiscalants on biofouling of RO membranes in seawater desalination. Water. Res. Elsevier Ltd. 2013, 47, 3389–3398. DOI: 10.1016/j.watres.2013.03.042.
  • Tanuwidjajaa, D.; Jina, X.; Huanga, X.; Marambio-Jonesa, C.; Jawora, A.; Zhangb, M.; Jiangb, S.; Chengc, R.; Hoeka, E. M. Comparison of membrane fouling and cleaning in one-pass reverse osmosis and two-pass nanofiltration approaches to seawater desalination. Desalin. Water Treat. 2020, 193, 235–250. DOI: 10.5004/dwt.2020.25832.
  • Zhao, D.; Su, C.; Liu, G.; Zhu, Y.; Gu, Z. Performance and autopsy of nanofiltration membranes at an oil-field wastewater desalination plant. Environ. Sci. Pollut. Res. 2019, 26(3), 2681–2690. DOI: 10.1007/s11356-018-3797-x.
  • Lee, Y.-G.; Kim, S.; Shin, J.; Rho, H.; Kim, Y. M.; Cho, K. H.; Eom, H.; Oh, S.-E.; Cho, J.; Chon, K. Sequential effects of cleaning protocols on desorption of reverse osmosis membrane foulants: Autopsy results from a full-scale desalination plant. Desalination. 2021, 500, 114830. DOI: 10.1016/j.desal.2020.114830.
  • Sanawar, H.; Bucs, S. S.; Pot, M. A.; Zlopasa, J.; Farhat, N. M.; Witkamp, G.-J.; Kruithof, J. C.; van Loosdrecht, M.; Vrouwenvelder, J. S. Pilot-scale assessment of urea as a chemical cleaning agent for biofouling control in spiral-wound reverse osmosis membrane elements. Membranes. 2019, 9(9), 117. DOI: 10.3390/membranes9090117.
  • Dongsheng, Z.; Liping, Q.; Jiyu, S.; Junxia, L.; Zonghua, W.; Youbing, Z.; Guicai, L. Efficiencies and mechanisms of chemical cleaning agents for nanofiltration membranes used in produced wastewater desalination. Sci. Total Environ. 2019, 652, 256–266. DOI: 10.1016/j.scitotenv.2018.10.221.
  • Huang, J.; Luo, J.; Chen, X.; Feng, S.; Wan, Y. New insights into effect of alkaline cleaning on fouling behavior of polyamide nanofiltration membrane for wastewater treatment. Sci. Total Environ. 2021, 780, 146632. DOI: 10.1016/j.scitotenv.2021.146632.
  • Bucs, S. S.; Valladares Linares, R.; Marston, J. O.; Radu, A. I.; Vrouwenvelder, J. S.; Picioreanu, C. Experimental and numerical characterization of the water flow in spacer-filled channels of spiral-wound membranes. Water Res. 2015, 87, 299–310. DOI: 10.1016/j.watres.2015.09.036.
  • Dreszer, C.; Wexler, A. D.; Drusová, S.; Overdijk, T.; Zwijnenburg, A.; Flemming, H. C.; Kruithof, J. C.; Vrouwenvelder, J. S. In-situ biofilm characterization in membrane systems using Optical Coherence Tomography: Formation, structure, detachment and impact of flux change. Water. Res. Elsevier Ltd. 2014, 67, 243–254. DOI: 10.1016/j.watres.2014.09.006.
  • Bristow, N. W.; Vogt, S. J.; O’Neill, K. T.; Vrouwenvelder, J. S.; Johns, M. L.; Fridjonsson, E. O. Flow field in fouling spiral wound reverse osmosis membrane modules using MRI velocimetry. Desalin., Elsevier. 2020, 491, 114508. DOI: 10.1016/j.desal.2020.114508.
  • Rodrigues, C.; Garcia-Algado, P.; Semião, V.; de Pinho, M. N.; Geraldes, V. Concentration boundary layer visualization in nanofiltration by holographic interferometry with light deflection correction. J. Membr. Sci., Elsevier. 2013, 447, 306–314. DOI: 10.1016/j.memsci.2013.07.035.
  • Virtanen, T.; Reinikainen, S. P.; Lahti, J.; Mänttäri, M.; Kallioinen, M. Visual tool for real-time monitoring of membrane fouling via Raman spectroscopy and process model based on principal component analysis. Sci. Rep. 2018, 8, 1–8. DOI: 10.1038/s41598-018-29268-y.
  • Shakaib, M.; Hasani, S. M. F.; Mahmood, M. Study on the effects of spacer geometry in membrane feed channels using three-dimensional computational flow modeling. J. Membr. Sci. 2007, 297, 74–89. DOI: 10.1016/j.memsci.2007.03.010.
  • Santos, J. L. C.; Geraldes, V.; Velizarov, S.; Crespo, J. G. Investigation of flow patterns and mass transfer in membrane module channels filled with flow-aligned spacers using computational fluid dynamics (CFD). J. Membr. Sci. 2007, 305, 103–117. DOI: 10.1016/j.memsci.2007.07.036.
  • Li, Y. L.; Tung, K. L. The effect of curvature of a spacer-filled channel on fluid flow in spiral-wound membrane modules. J. Membr. Sci. 2008, 319, 286–297. DOI: 10.1016/j.memsci.2008.03.069.
  • Kostoglou, M.; Karabelas, A. J. Comprehensive simulation of flat-sheet membrane element performance in steady state desalination. Desalin. Elsevier B.V. 2013, 316, 91–102. DOI: 10.1016/j.desal.2013.01.033.
  • Radu, A. I.; Vrouwenvelder, J. S.; van Loosdrecht, M. C. M.; Picioreanu, C. Modeling the effect of biofilm formation on reverse osmosis performance: Flux, feed channel pressure drop and solute passage. J. Membr. Sci., Elsevier B.V. 2010, 365, 1–15. DOI: 10.1016/j.memsci.2010.07.036.
  • Cao, Z.; Wiley, D. E.; Fane, A. G. CFD simulations of net-type turbulence promoters in a narrow channel. J. Membr. Sci. 2001, 185, 157–176. DOI: 10.1016/S0376-7388(00)00643-8.
  • Li, Y. L.; Tung, K. L.; Chen, Y. S.; Hwang, K. J. CFD analysis of the initial stages of particle deposition in spiral-wound membrane modules. Desalin. Elsevier B.V. 2012, 287, 200–208. DOI: 10.1016/j.desal.2011.10.001.
  • Anqi, A. E.; Alkhamis, N.; Oztekin, A. Numerical simulation of brackish water desalination by a reverse osmosis membrane. Desalination. 2015, 369, 156–164. DOI: 10.1016/j.desal.2015.05.007.
  • Amokrane, M.; Sadaoui, D.; Koutsou, C. P.; Karabelas, A. J.; Dudeck, M. A study of flow field and concentration polarization evolution in membrane channels with two-dimensional spacers during water desalination. J. Membr. Sci., Elsevier. 2015, 477, 139–150. DOI: 10.1016/j.memsci.2014.11.029.
  • Chieh, T. H.; Onn, L. S.; Min, L. K.; Chung, C. K. Study of the effect of spacer on the performance of spiral wound membrane for water treatment using CFD modelling. AIP Conference Proceedings. 2019, 2157(1), 020023. DOI: 10.1063/1.5126558.
  • Schwinge, J.; Wiley, D. E.; Fletcher, D. F. Simulation of the flow around spacer filaments between channel walls. 2. Mass-transfer enhancement. Ind. Eng. Chem. Res. 2002, 41, 4879–4888. DOI: 10.1021/ie011015o.
  • Schwinge, J.; Wiley, D. E.; Fletcher, D. F. Simulation of the flow around spacer filaments between narrow channel walls. 1. Hydrodynamics. Ind. Eng. Chem. Res. 2002, 41, 2977–2987. DOI: 10.1021/ie010588y.
  • Geraldes, V.; Semiao, V.; Pinho, M. N. Hydrodynamics and concentration polarization in NF/RO spiral-wound modules with ladder-type spacers. Desalination. 2003, 157, 395–402. DOI: 10.1016/S0011-9164(03)00422-3.
  • Geraldes, V.; Semiao, V.; De Pinho, M. N. Concentration polarisation and flow structure within nanofiltration spiral-wound modules with ladder-type spacers. Comput. Struct. 2004, 82, 1561–1568. DOI: 10.1016/j.compstruc.2004.03.052.
  • Schwinge, J.; Wiley, D. E.; Fletcher, D. F. A CFD study of unsteady flow in narrow spacer-filled channels for spiral-wound membrane modules. Desalination. 2002, 146, 195–201. DOI: 10.1016/S0011-9164(02)00470-8.
  • Fimbres-Weihs, G. A.; Wiley, D. E.; Fletcher, D. F. Unsteady flows with mass transfer in narrow zigzag spacer-filled channels: A numerical study. Ind. Eng. Chem. Res. 2006, 45, 6594–6603. DOI: 10.1021/ie060243l.
  • Fimbres-Weihs, G. A.; Wiley, D. E. Numerical study of mass transfer in three-dimensional spacer-filled narrow channels with steady flow. J. Membr. Sci. 2007, 306, 228–243.
  • Liang, Y. Y.; Fimbres Weihs, G. A.; Wiley, D. E. CFD modelling of electro-osmotic permeate flux enhancement in spacer-filled membrane channels. J. Membr. Sci. 2016, 507, 107–118. DOI: 10.1016/j.memsci.2016.02.012.
  • Geraldes, V.; Semião, V.; De Pinho, M. N. The effect of the ladder-type spacers configuration in NF spiral-wound modules on the concentration boundary layers disruption. Desalination. 2002, 146, 187–194. DOI: 10.1016/S0011-9164(02)00467-8.
  • Salcedo-Díaz, R.; García-Algado, P.; García-Rodríguez, M.; Fernández-Sempere, J.; Ruiz-Beviá, F. Visualization and modeling of the polarization layer in crossflow reverse osmosis in a slit-type channel. J. Membr. Sci. 2014, 456, 21–30. DOI: 10.1016/j.memsci.2014.01.019.
  • Vrouwenvelder, J. S.; Picioreanu, C.; Kruithof, J. C.; van Loosdrecht, M. C. M. Biofouling in spiral wound membrane systems: Three-dimensional CFD model based evaluation of experimental data. J. Membr. Sci. 2010, 346, 71–85. DOI: 10.1016/j.memsci.2009.09.025.
  • Ranade, V. V.; Kumar, A. Comparison of flow structures in spacer-filled flat and annular channels. Desalination. 2006, 191, 236–244. DOI: 10.1016/j.desal.2006.03.003.
  • Li, F.; Meindersma, G. W.; De Haan, A. B.; Reith, T. Optimization of non-woven spacers by CFD and validation by experiments. Desalination. 2002, 146, 209–212. DOI: 10.1016/S0011-9164(02)00472-1.
  • Li, F.; Meindersma, W.; De Haan, A. B.; Reith, T. Optimization of commercial net spacers in spiral wound membrane modules. J. Membr. Sci. 2002, 208, 289–302. DOI: 10.1016/S0376-7388(02)00307-1.
  • Koutsou, C. P.; Yiantsios, S. G.; Karabelas, A. J. Direct numerical simulation of flow in spacer-filled channels: Effect of spacer geometrical characteristics. J. Membr. Sci. 2007, 291, 53–69. DOI: 10.1016/j.memsci.2006.12.032.
  • Lau, K. K.; Abu Bakar, M. Z.; Ahmad, A. L.; Murugesan, T. Feed spacer mesh angle: 3D modeling, simulation and optimization based on unsteady hydrodynamic in spiral wound membrane channel. J. Membr. Sci. 2009, 343, 16–33. DOI: 10.1016/j.memsci.2009.07.001.
  • Koutsou, C. P.; Yiantsios, S. G.; Karabelas, A. J. A numerical and experimental study of mass transfer in spacer-filled channels: Effects of spacer geometrical characteristics and Schmidt number. J. Membr. Sci. 2009, 326, 234–251. DOI: 10.1016/j.memsci.2008.10.007.
  • Li, Y. L.; Tung, K. L.; Lu, M. Y.; Huang, S. H. Mitigating the curvature effect of the spacer-filled channel in a spiral-wound membrane module. J. Membr. Sci. 2009, 329, 106–118. DOI: 10.1016/j.memsci.2008.12.026.
  • Li, Y. L.; Tung, K. L. CFD simulation of fluid flow through spacer-filled membrane module: selecting suitable cell types for periodic boundary conditions. Desalin. Elsevier B.V. 2008, 233, 351–358. DOI: 10.1016/j.desal.2007.09.061.
  • Koutsou, C. P.; Karabelas, A. J. Towards optimization of spacer geometrical characteristics for spiral wound membrane modules. Desalin. Water Treat. 2010, 18, 139–150. DOI: 10.5004/dwt.2010.1382.
  • Li, F.; Meindersma, W.; De Haan, A. B.; Reith, T. Novel spacers for mass transfer enhancement in membrane separations. J. Membr. Sci. 2005, 253, 1–12. DOI: 10.1016/j.memsci.2004.12.019.
  • Ranade, V. V.; Kumar, A. Fluid dynamics of spacer filled rectangular and curvilinear channels. J. Membr. Sci. 2006, 271, 1–15. DOI: 10.1016/j.memsci.2005.07.013.
  • Koutsou, C. P.; Karabelas, A. J. A novel retentate spacer geometry for improved spiral wound membrane (SWM) module performance. J. Membr. Sci., Elsevier. 2015, 488, 129–142. DOI: 10.1016/j.memsci.2015.03.064.
  • Gu, B.; Adjiman, C. S.; Xu, X. Y. The effect of feed spacer geometry on membrane performance and concentration polarisation based on 3D CFD simulations. J. Membr. Sci., Elsevier. 2017, 527, 78–91. DOI: 10.1016/j.memsci.2016.12.058.
  • Rodríguez, L. M. G.; Lechuga, F. T. Three-Dimensional Modeling and Simulation of Multilayer Spacers for Spiral Wound Membrane Modules. In Membranes: Materials, Simulations, and Applications; Maciel-Cerda, A., Ed.; Switzerland: Springer, Cham, 2017; pp 87–95. DOI: 10.1007/978-3-319-45315-6_10.
  • Han, Z.; Terashima, M.; Liu, B.; Yasui, H. Impact of modified spacer on flow pattern in narrow spacer-filled channels for spiral-wound membrane modules. Environ. - MDPI. 2018, 5, 1–17.
  • Sutariya, B.; Sargaonkar, A.; Markam, B. K.; Raval, H. 3D CFD study and optimisation of static mixer type feed spacer for reverse osmosis. Chem. Eng. J. Adv. 2022, 11. DOI: 10.1016/j.ceja.2022.100335.
  • Saeed, A.; Vuthaluru, R.; Yang, Y.; Vuthaluru, H. B. Effect of feed spacer arrangement on flow dynamics through spacer filled membranes. Desalination. 2012, 285, 163–169. DOI: 10.1016/j.desal.2011.09.050.
  • Mojab, S. M.; Pollard, A.; Pharoah, J. G.; Beale, S. B.; Hanff, E. S. Unsteady laminar to turbulent flow in a spacer-filled channel. Flow, Turbulence and Combustion. 2014, 92, 563–577. DOI: 10.1007/s10494-013-9514-4.
  • Qamar, A.; Bucs, S.; Picioreanu, C.; Vrouwenvelder, J.; Ghaffour, N. Hydrodynamic flow transition dynamics in a spacer filled filtration channel using direct numerical simulation. J. Membr. Sci. 2019, 590. DOI: 10.1016/j.memsci.2019.117264.
  • Liang, Y. Y.; Chapman, M. B.; Fimbres Weihs, G. A.; Wiley, D. E. CFD modelling of electro-osmotic permeate flux enhancement on the feed side of a membrane module. J. Membr. Sci. 2014, 470, 378–388. DOI: 10.1016/j.memsci.2014.07.039.
  • Liang, Y. Y.; Toh, K. Y.; Fimbres Weihs, G. A. 3D CFD study of the effect of multi-layer spacers on membrane performance under steady flow. J. Membr. Sci., Elsevier B.V. 2019, 580, 256–267. DOI: 10.1016/j.memsci.2019.02.015.
  • Toh, K. Y.; Liang, Y. Y.; Lau, W. J.; Fimbres Weihs, G. A. 3D CFD study on hydrodynamics and mass transfer phenomena for SWM feed spacer with different floating characteristics. Chem. Eng. Res. Des. Inst. Chem. Eng. 2020, 159, 36–46. DOI: 10.1016/j.cherd.2020.04.010.
  • Geraldes, V. M.; Semiao, V. A.; De Pinho, M. N. Nanofiltration mass transfer at the entrance region of a slit laminar flow. Ind. Eng. Chem. Res. 1998, 37, 4792–4800. DOI: 10.1021/ie980198k.
  • Wiley, D. E.; Fletcher, D. F. Techniques for computational fluid dynamics modelling of flow in membrane channels. J. Membr. Sci. 2003, 211, 127–137. DOI: 10.1016/S0376-7388(02)00412-X.
  • Vrouwenvelder, J. S.; Bakker, S. M.; Cauchard, M.; Le Grand, R.; Apacandié, M.; Idrissi, M.; Lagrave, S.; Wessels, L. P.; van Paassen, J. A. M.; Kruithof, J. C., et al. The membrane fouling simulator: A suitable tool for prediction and characterisation of membrane fouling. Water Sci. Technol. 2007, 55, 197–205. DOI: 10.2166/wst.2007.259.
  • Sanawar, H.; Pinel, I.; Farhat, N. M.; Bucs, S. S.; Zlopasa, J.; Kruithof, J. C.; Witkamp, G. J.; van Loosdrecht, M. C. M.; Vrouwenvelder, J. S. Enhanced biofilm solubilization by urea in reverse osmosis membrane systems. Water Res. X, Elsevier Ltd. 2018, 1, 100004.
  • Staal, M.; Farhat, N.; Van Loosdrecht, M.; Vrouwenvelder, J. Biofouling patterns in spacer-filled channels: High-resolution imaging for characterization of heterogeneous biofilms. Desalin. Water Treat. 2017, 80, 1–10. DOI: 10.5004/dwt.2017.20863.
  • Graf von der Schulenburg, D. A.; Vrouwenvelder, J. S.; Creber, S. A.; van Loosdrecht, M. C. M.; Johns, M. L. Nuclear magnetic resonance microscopy studies of membrane biofouling. J. Membr. Sci. 2008, 323, 37–44. DOI: 10.1016/j.memsci.2008.06.012.
  • Vrouwenvelder, J. S.; Graf von der Schulenburg, D. A.; Kruithof, J. C.; Johns, M. L.; van Loosdrecht, M. C. M. Biofouling of spiral-wound nanofiltration and reverse osmosis membranes: A feed spacer problem. Water Res. 2009, 43, 583–594.
  • Vrouwenvelder, J. S.; van Loosdrecht, M. C. M.; Kruithof, J. C. Early warning of biofouling in spiral wound nanofiltration and reverse osmosis membranes. Desalin. Elsevier B.V. 2011, 265, 206–212. DOI: 10.1016/j.desal.2010.07.053.
  • Peyton, B. M. Effects of shear stress and substrate loading rate on PSEUDOMONAS AERUGINOSA biofilm thickness and density. Water Res. 1996, 30, 29–36. DOI: 10.1016/0043-1354(95)00110-7.
  • Picioreanu, C.; Van Loosdrecht, M. C. M.; Heijnen, J. J. Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechnol. Bioeng. 2001, 72, 205–218. DOI: 10.1002/1097-0290(20000120)72:2<205::AID-BIT9>3.0.CO;2-L.
  • Sanawar, H.; Siddiqui, A.; Bucs, S. S.; Farhat, N. M.; van Loosdrecht, M. C. M.; Kruithof, J. C.; Vrouwenvelder, J. S. Applicability of short-term accelerated biofouling studies to predict long-term biofouling in reverse osmosis membrane systems. Desalin. Water Treat. 2017, 97, 72–78. DOI: 10.5004/dwt.2017.21625.
  • Gimmelshtein, M. M.; Semiat, R. Investigation of flow next to membrane walls. J. Membr. Sci. 2005, 264(1–2), 137–150. DOI: 10.1016/j.memsci.2005.04.033.
  • Willems, P.; Deen, N.; Kemperman, A. J.; Lammertink, R. G.; Wessling, M.; van Sint Annaland, M.; Kuipers, J.; van der Meer, W. G. J. Use of Particle Imaging Velocimetry to measure liquid velocity profiles in liquid and liquid/gas flows through spacer filled channels. J. Membr. Sci. 2010, 362(1–2), 143–153. DOI: 10.1016/j.memsci.2010.06.029.
  • Liu, J.; Liu, Z.; Xu, X.; Liu, F. Saw-tooth spacer for membrane filtration: Hydrodynamic investigation by PIV and filtration experiment validation. Chem. Eng. Process. 2015, 91, 23–34. DOI: 10.1016/j.cep.2015.03.013.
  • Xi, C.; Marks, D. L.; Schlachter, S.; Luo, W.; Boppart, S. A. High-resolution three-dimensional imaging of biofilm development using optical coherence tomography. J. Biomed. Opt. 2006, 11(3), 034001. DOI: 10.1117/1.2209962.
  • Derlon, N.; Koch, N.; Eugster, B.; Posch, T.; Pernthaler, J.; Pronk, W.; Morgenroth, E. Activity of metazoa governs biofilm structure formation and enhances permeate flux during Gravity-Driven Membrane (GDM) filtration. Water Res. 2013, 47(6), 2085–2095. DOI: 10.1016/j.watres.2013.01.033.
  • Derlon, N.; Peter-Varbanets, M.; Scheidegger, A.; Pronk, W.; Morgenroth, E. Predation influences the structure of biofilm developed on ultrafiltration membranes. Water Res. 2012, 46(10), 3323–3333. DOI: 10.1016/j.watres.2012.03.031.
  • Janjaroen, D.; Ling, F.; Monroy, G.; Derlon, N.; Mogenroth, E.; Boppart, S. A.; Liu, W.-T.; Nguyen, T. H. Roles of ionic strength and biofilm roughness on adhesion kinetics of Escherichia coli onto groundwater biofilm grown on PVC surfaces. Water Res. 2013, 47(7), 2531–2542. DOI: 10.1016/j.watres.2013.02.032.
  • Wagner, M.; Taherzadeh, D.; Haisch, C.; Horn, H. Investigation of the mesoscale structure and volumetric features of biofilms using optical coherence tomography. Biotechnol. Bioeng. 2010, 107(5), 844–853. DOI: 10.1002/bit.22864.
  • Pangrle, B.; Walsh, E.; Moore, S.; DiBiasio, D. Investigation of fluid flow patterns in a hollow fiber module using magnetic resonance velocity imaging. Biotechnol. Tech. 1989, 3(1), 67–72. DOI: 10.1007/BF01876224.
  • Vrouwenvelder, J.; Von Der Schulenburg, D. G.; Kruithof, J.; Johns, M.; Van Loosdrecht, M. Biofouling of spiral-wound nanofiltration and reverse osmosis membranes: a feed spacer problem. Water Res. 2009, 43(3), 583–594. DOI: 10.1016/j.watres.2008.11.019.
  • Zargar, M.; Ujihara, R.; Vogt, S. J.; Vrouwenvelder, J. S.; Fridjonsson, E. O.; Johns, M. L. Imaging of membrane concentration polarization by NaCl using 23Na nuclear magnetic resonance. J. Membr. Sci., Elsevier B.V. 2020, 600, 117868. DOI: 10.1016/j.memsci.2020.117868.
  • Fernández-Sempere, J.; Ruiz-Beviá, F.; García-Algado, P.; Salcedo-Díaz, R. Experimental study of concentration polarization in a crossflow reverse osmosis system using Digital Holographic Interferometry. Desalination. 2010, 257(1–3), 36–45. DOI: 10.1016/j.desal.2010.03.010.
  • Fernández-Sempere, J.; Ruiz-Beviá, F.; Salcedo-Díaz, R.; García-Algado, P. Diffusion studies in polarized reverse osmosis processes by holographic interferometry. Opt. Lasers Eng. 2008, 46(12), 877–887. DOI: 10.1016/j.optlaseng.2008.02.004.
  • Virtanen, T.; Reinikainen, S.-P.; Kögler, M.; Mänttäri, M.; Viitala, T.; Kallioinen, M. Real-time fouling monitoring with Raman spectroscopy. J. Membr. Sci. 2017, 525, 312–319. DOI: 10.1016/j.memsci.2016.12.005.
  • Miller, D. J.; Araújo, P. A.; Correia, P. B.; Ramsey, M. M.; Kruithof, J. C.; van Loosdrecht, M. C. M.; Freeman, B. D.; Paul, D. R.; Whiteley, M.; Vrouwenvelder, J. S. Short-term adhesion and long-term biofouling testing of polydopamine and poly(ethylene glycol) surface modifications of membranes and feed spacers for biofouling control. Water Res. 2012, 46, 3737–3753. DOI: 10.1016/j.watres.2012.03.058.
  • Bucs, S. S.; Linares, R. V.; Farhat, N.; Matin, A.; Khan, Z.; Van Loosdrecht, M. C. M.; Yang, R.; Wang, M.; Gleason, K. K.; Kruithof, J. C., et al. Coating of reverse osmosis membranes with amphiphilic copolymers for biofouling control. Desalin. Water Treat. 2017, 68, 1–11. DOI: 10.5004/dwt.2017.20369.
  • Araújo, P. A.; Miller, D. J.; Correia, P. B.; Van Loosdrecht, M. C. M.; Kruithof, J. C.; Freeman, B. D.; Paul, D. R.; Vrouwenvelder, J. S. Impact of feed spacer and membrane modification by hydrophilic, bactericidal and biocidal coating on biofouling control. Desalination. 2012, 295, 1–10. DOI: 10.1016/j.desal.2012.02.026.
  • Adout, A.; Kang, S.; Asatekin, A.; Mayes, A. M.; Elimelech, M. Ultrafiltration membranes incorporating amphiphilic comb copolymer additives prevent irreversible adhesion of bacteria. Environ. Sci. Technol. 2010, 44, 2406–2411. DOI: 10.1021/es902908g.
  • Wang, C.; Such, G. K.; Widjaya, A.; Lomas, H.; Stevens, G.; Caruso, F.; Kentish, S. E. Click poly(ethylene glycol) multilayers on RO membranes: Fouling reduction and membrane characterization. J. Membr. Sci., Elsevier B.V. 2012, 409-410, 9–15. DOI: 10.1016/j.memsci.2012.02.049.
  • Peeva, L. G.; Gibbins, E.; Luthra, S. S.; White, L. S.; Stateva, R. P.; Livingston, A. G. Effect of concentration polarisation and osmotic pressure on flux in organic solvent nanofiltration. J. Membr. Sci. 2004, 236(1–2), 121–136. DOI: 10.1016/j.memsci.2004.03.004.
  • Asatekin, A.; Olivetti, E. A.; Mayes, A. M. Fouling resistant, high flux nanofiltration membranes from polyacrylonitrile-graft-poly(ethylene oxide). J. Membr. Sci. 2009, 332, 6–12. DOI: 10.1016/j.memsci.2009.01.029.
  • Yi, Z.; Zhu, L. P.; Xu, Y. Y.; Zhao, Y. F.; Ma, X. T.; Zhu, B. K. Polysulfone-based amphiphilic polymer for hydrophilicity and fouling-resistant modification of polyethersulfone membranes. J. Membr. Sci., Elsevier B.V. 2010, 365, 25–33. DOI: 10.1016/j.memsci.2010.08.001.
  • Zhao, Y. F.; Zhu, L. P.; Yi, Z.; Zhu, B. K.; Xu, Y. Y. Improving the hydrophilicity and fouling-resistance of polysulfone ultrafiltration membranes via surface zwitterionicalization mediated by polysulfone-based triblock copolymer additive. J. Membr. Sci., Elsevier. 2013, 440, 40–47. DOI: 10.1016/j.memsci.2013.03.064.
  • Ngo, T. H. A.; Nguyen, D. T.; Do, K. D.; Minh Nguyen, T. T.; Mori, S.; Tran, D. T. Surface modification of polyamide thin film composite membrane by coating of titanium dioxide nanoparticles. J. Sci.: Adv. Mater. Devices, Elsevier Ltd. 2016, 1, 468–475.
  • Ma, B.; Wu, G.; Li, W.; Miao, R.; Li, X.; Wang, P. Roles of membrane–foulant and inter/intrafoulant species interaction forces in combined fouling of an ultrafiltration membrane. Sci. Total Environ. 2019, 652, 19–26. DOI: 10.1016/j.scitotenv.2018.10.229.
  • Abdulsalam Ebrahim, M.; Karan, S.; Livingston, A. G. On the influence of salt concentration on the transport properties of reverse osmosis membranes in high pressure and high recovery desalination. J. Membr. Sci. 2020, 594. DOI: 10.1016/j.memsci.2019.117339.
  • Li, Y.; Qi, S.; Tian, M.; Widjajanti, W.; Wang, R. Fabrication of aquaporin-based biomimetic membrane for seawater desalination. Desalination. 2019, 467, 103–112. DOI: 10.1016/j.desal.2019.06.005.
  • Yang, Z.; Saeki, D.; Takagi, R.; Matsuyama, H. Improved anti-biofouling performance of polyamide reverse osmosis membranes modified with a polyampholyte with effective carboxyl anion and quaternary ammonium cation ratio. J. Membr. Sci., Elsevier B.V. 2020, 595, 117529. DOI: 10.1016/j.memsci.2019.117529.
  • Sagle, A. C.; Van Wagner, E. M.; Ju, H.; McCloskey, B. D.; Freeman, B. D.; Sharma, M. M. PEG-coated reverse osmosis membranes: Desalination properties and fouling resistance. J. Membr. Sci. 2009, 340, 92–108. DOI: 10.1016/j.memsci.2009.05.013.
  • Yang, Z.; Saeki, D.; Matsuyama, H. Zwitterionic polymer modification of polyamide reverse-osmosis membranes via surface amination and atom transfer radical polymerization for anti-biofouling. J. Membr. Sci., Elsevier B.V. 2018, 550, 332–339. DOI: 10.1016/j.memsci.2018.01.001.
  • Saeki, D.; Karkhanechi, H.; Matsuura, H.; Matsuyama, H. Effect of operating conditions on biofouling in reverse osmosis membrane processes: Bacterial adhesion, biofilm formation, and permeate flux decrease. Desalin. Elsevier B.V. 2016, 378, 74–79. DOI: 10.1016/j.desal.2015.09.020.
  • Ding, Y.; Maruf, S.; Aghajani, M.; Greenberg, A. R. Surface patterning of polymeric membranes and its effect on antifouling characteristics. Sep. Sci. Technol. 2017, 52(2), 240–257. DOI: 10.1080/01496395.2016.1201115.
  • Xianhui, L.; Yinghiu, M.; Jianxin, L.; Wenshan, G.; Huu Hao, N. In-situ monitoring techniques for membrane fouling and local filtration characteristics in hollow fiber membrane processes: A critical review. J. Membr. Sci. 2017, 528, 187–200. DOI: 10.1016/j.memsci.2017.01.030.
  • Mairal, A. P.; Greenberg, A. R.; Krantz, W. B. Investigation of membrane fouling and cleaning using ultrasonic time-domain reflectometry. Desalination. 2000, 130(1), 45–60. DOI: 10.1016/S0011-9164(00)00073-4.
  • Mairal, A. P.; Greenberg, A. R.; Krantz, W. B.; Bond, L. J. Real-time measurement of inorganic fouling of RO desalination membranes using ultrasonic time-domain reflectometry. J. Membr. Sci. 1999, 159(1–2), 185–196. DOI: 10.1016/S0376-7388(99)00058-7.
  • Chai, G.-Y.; Greenberg, A.; Krantz, W. Ultrasound, gravimetric, and SEM studies of inorganic fouling in spiral-wound membrane modules. Desalination. 2007, 208(1–3), 277–293. DOI: 10.1016/j.desal.2006.06.018.
  • Sim, S.; Suwarno, S.; Chong, T.; Krantz, W.; Fane, A. Monitoring membrane biofouling via ultrasonic time-domain reflectometry enhanced by silica dosing. J. Membr. Sci. 2013, 428, 24–37. DOI: 10.1016/j.memsci.2012.10.032.
  • Wang, J.; Ren, H.; Li, X.; Li, J.; Ding, L.; Geng, J.; Xu, K.; Huang, H.; Hu, H. In situ monitoring of wastewater biofilm formation process via ultrasonic time domain reflectometry (UTDR). Chem. Eng. J. 2018, 334, 2134–2141. DOI: 10.1016/j.cej.2017.11.043.
  • Goosen, M.; Sablani, S.; Al‐Hinai, H.; Al‐Obeidani, S.; Al‐Belushi, R.; Jackson, A. Fouling of reverse osmosis and ultrafiltration membranes: a critical review. Sep. Sci. Technol. 2005, 39(10), 2261–2297. DOI: 10.1081/SS-120039343.
  • Huang, J.; Luo, J.; Chen, X.; Feng, S.; Wan, Y. How do chemical cleaning agents act on polyamide nanofiltration membrane and fouling layer? Ind. Eng. Chem. Res. 2020, 59(40), 17653–17670. DOI: 10.1021/acs.iecr.0c03365.
  • Cen, J.; Vukas, M.; Barton, G.; Kavanagh, J.; Coster, H. Real time fouling monitoring with Electrical Impedance Spectroscopy. J. Membr. Sci. 2015, 484, 133–139. DOI: 10.1016/j.memsci.2015.03.014.
  • Goh, P.; Lau, W.; Othman, M.; Ismail, A. Membrane fouling in desalination and its mitigation strategies. Desalination. 2018, 425, 130–155.
  • Bartman, A. R.; McFall, C. W.; Christofides, P. D.; Cohen, Y. Model-predictive control of feed flow reversal in a reverse osmosis desalination process. J. Process Control. 2009, 19(3), 433–442. DOI: 10.1016/j.jprocont.2008.06.016.
  • Uchymiak, M.; Rahardianto, A.; Lyster, E.; Glater, J.; Cohen, Y. A novel RO ex situ scale observation detector (EXSOD) for mineral scale characterization and early detection. J. Membr. Sci. 2007, 291(1–2), 86–95. DOI: 10.1016/j.memsci.2006.12.038.
  • Cornelissen, E. R.; Harmsen, D. J. H.; Blankert, B.; Wessels, L. P.; van der Meer, W. G. J. Effect of minimal pre-treatment on reverse osmosis using surface water as a source. Desalin. Elsevier B.V. 2021, 509, 115056. DOI: 10.1016/j.desal.2021.115056.
  • Melián-Martel, N.; Sadhwani, J. J.; Malamis, S.; Ochsenkühn-Petropoulou, M. Structural and chemical characterization of long-term reverse osmosis membrane fouling in a full scale desalination plant. Desalin. Elsevier B.V. 2012, 305, 44–53. DOI: 10.1016/j.desal.2012.08.011.
  • Rho, H.; Chon, K.; Cho, J. An autopsy study of a fouled reverse osmosis membrane used for ultrapure water production. Water (Switzerland). 2019, 11(6), 1116. DOI: 10.3390/w11061116.
  • Cran, M.; Gray, S.; Schmidt, J.; Gao, L. Root cause analysis for membrane system validation failure at a full-scale recycled water treatment plant. Desalination. 2022, 523, 115405. DOI: 10.1016/j.desal.2021.115405.
  • Sousa, P.; Soares, A.; Monteiro, E.; Rouboa, A. A CFD study of the hydrodynamics in a desalination membrane filled with spacers. Desalination. 2014, 349, 22–30. DOI: 10.1016/j.desal.2014.06.019.
  • Araújo, P. A.; Kruithof, J. C.; Van Loosdrecht, M. C. M.; Vrouwenvelder, J. S. The potential of standard and modified feed spacers for biofouling control. J. Membr. Sci. 2012, 403-404, 58–70. DOI: 10.1016/j.memsci.2012.02.015.
  • Bucs, S. S.; Radu, A. I.; Lavric, V.; Vrouwenvelder, J. S.; Picioreanu, C. Effect of different commercial feed spacers on biofouling of reverse osmosis membrane systems: A numerical study. Desalination. 2014, 343, 26–37. DOI: 10.1016/j.desal.2013.11.007.
  • Saeed, A.; Vuthaluru, R.; Vuthaluru, H. B. Investigations into the effects of mass transport and flow dynamics of spacer filled membrane modules using CFD. Chem. Eng. Res. Des. Inst. Chem. Eng. 2015, 93, 79–99. DOI: 10.1016/j.cherd.2014.07.002.
  • Xie, P.; Murdoch, L. C.; Ladner, D. A. Hydrodynamics of sinusoidal spacers for improved reverse osmosis performance. J. Membr. Sci., Elsevier. 2014, 453, 92–99. DOI: 10.1016/j.memsci.2013.10.068.
  • Anqi, A. E.; Alkhamis, N.; Oztekin, A. Computational study of desalination by reverse osmosis - Three-dimensional analyses. Desalin. Elsevier B.V. 2016, 388, 38–49. DOI: 10.1016/j.desal.2016.03.017.
  • Xie, P.; Murdoch, L. C.; Ladner, D. A. Mitigating membrane fouling with sinusoidal spacers. Desalin. Water Treat. 2019, 168, 56–64. DOI: 10.5004/dwt.2019.24406.
  • Haaksman, V. A.; Siddiqui, A.; Schellenberg, C.; Kidwell, J.; Vrouwenvelder, J. S.; Picioreanu, C. Characterization of feed channel spacer performance using geometries obtained by X-ray computed tomography. J. Membr. Sci. 2017, 522, 124–139. DOI: 10.1016/j.memsci.2016.09.005.
  • Abdelbaky, M. M. A.; El-Refaee, M. M. A 3D CFD comparative study between torsioned and non-torsioned net-type feed spacer in reverse osmosis. SN Applied Sciences. 2019, 1, 1059. DOI: 10.1007/s42452-019-1098-8.
  • Zimmerer, C. C.; Kottke, V. Effects of spacer geometry on pressure drop, mass transfer, mixing behavior, and residence time distribution. Desalination. 1996, 104, 129–134. DOI: 10.1016/0011-9164(96)00035-5.
  • Siddiqui, A.; Lehmann, S.; Haaksman, V.; Ogier, J.; Schellenberg, C.; van Loosdrecht, M. C. M.; Kruithof, J. C.; Vrouwenvelder, J. S. Porosity of spacer-filled channels in spiral-wound membrane systems: Quantification methods and impact on hydraulic characterization. Water Res. 2017, 119, 304–311. DOI: 10.1016/j.watres.2017.04.034.
  • Brian, P. L. T. Concentration polarization in reverse osmosis desalination with variable flux and incomplete salt rejection. Ind. Eng. Chem. Fundam. 1965, 4, 439–445. DOI: 10.1021/i160016a014.
  • Wiley, D. E.; Fletcher, D. F. Computational fluid dynamics modelling of flow and permeation for pressure-driven membrane processes. Desalination. 2002, 145, 183–186. DOI: 10.1016/S0011-9164(02)00406-X.
  • Doshi, M. R.; Dewan, K.; Gill, W. N. The effect of concentration dependent viscosity and diffusivity on concentration polarization in reverse osmosis flow systems. AIChE Symp. Ser. 1971, 68, 323.
  • Koutsou, C. P.; Yiantsios, S. G.; Karabelas, A. J. Numerical simulation of the flow in a plane-channel containing a periodic array of cylindrical turbulence promoters. J. Membr. Sci. 2004, 231, 81–90. DOI: 10.1016/j.memsci.2003.11.005.
  • Siddiqui, A.; Lehmann, S.; Bucs, S. S.; Fresquet, M.; Fel, L.; Prest, E. I. E. C.; Ogier, J.; Schellenberg, C.; van Loosdrecht, M. C. M.; Kruithof, J. C., et al. Predicting the impact of feed spacer modification on biofouling by hydraulic characterization and biofouling studies in membrane fouling simulators. Water Res. 2017, 110, 281–287. DOI: 10.1016/j.watres.2016.12.034.
  • Siddiqui, A.; Farhat, N.; Bucs, S. S.; Linares, R. V.; Picioreanu, C.; Kruithof, J. C.; Van Loosdrecht, M. C. M.; Kidwell, J.; Vrouwenvelder, J. S. Development and characterization of 3D-printed feed spacers for spiral wound membrane systems. Water Res. 2016, 91, 55–67. DOI: 10.1016/j.watres.2015.12.052.
  • Farhat, N. M.; Vrouwenvelder, J. S.; Van Loosdrecht, M. C. M.; Bucs, S. S.; Staal, M. Effect of water temperature on biofouling development in reverse osmosis membrane systems. Water. Res. Elsevier Ltd. 2016, 103, 149–159. DOI: 10.1016/j.watres.2016.07.015.
  • Fridjonsson, E. O.; Vogt, S. J.; Vrouwenvelder, J. S.; Johns, M. L. Early non-destructive biofouling detection in spiral wound RO membranes using a mobile earth’s field NMR. J. Membr. Sci. 2015, 489, 227–236. DOI: 10.1016/j.memsci.2015.03.088.
  • Farhat, N. M.; Staal, M.; Bucs, S. S.; Van Loosdrecht, M. C. M.; Vrouwenvelder, J. S. Spatial heterogeneity of biofouling under different cross-flow velocities in reverse osmosis membrane systems. J. Membr. Sci., Elsevier. 2016, 520, 964–971. DOI: 10.1016/j.memsci.2016.08.065.
  • Dreszer, C.; Flemming, H. C.; Wexler, A. D.; Zwijnenburg, A.; Kruithof, J. C.; Vrouwenvelder, J. S. Development and testing of a transparent membrane biofouling monitor. Desalin. Water Treat. 2014, 52, 1807–1819. DOI: 10.1080/19443994.2013.874708.
  • Dreszer, C.; Vrouwenvelder, J. S.; Paulitsch-Fuchs, A. H.; Zwijnenburg, A.; Kruithof, J. C.; Flemming, H. C. Hydraulic resistance of biofilms. J. Membr. Sci., Elsevier. 2013, 429, 436–447. DOI: 10.1016/j.memsci.2012.11.030.
  • Sutariya, B.; Patel, K.; Karan, S. Effects of manual interventions in the winding process on the performance of spiral wound membrane module. Desalin. Water Treat. 2022, 251, 1–6. DOI: 10.5004/dwt.2021.27858.
  • Van Oss, C. J. Interfacial forces in aqueous media; CRC press: Boca Raton, 2006.
  • Naumov, V. A. Influence of Saffman’s lift force on the motion of a particle in a Couette layer. J. Eng. Phys. Thermophys. 1995, 68, 683–686. DOI: 10.1007/BF00858072.
  • Fangchao, Z.; Huaqiang, C.; Yiming, S.; Xiaobo, T.; Yalei, Z.; Libin, Y.; Xuefei, Z. Microalgae harvesting by an axial vibration membrane: The mechanism of mitigating membrane fouling. J. Membr. Sci. 2016, 508, 127–135. DOI: 10.1016/j.memsci.2016.02.007.
  • Jones, E.; Qadir, M.; van Vliet, M. T. H.; Smakhtin, V.; Kang, S. M. The state of desalination and brine production: A global outlook. Sci. Total Environ., Elsevier B.V. 2019, 657, 1343–1356. DOI: 10.1016/j.scitotenv.2018.12.076.
  • Jiang, S.; Li, Y.; Ladewig, B. P. A review of reverse osmosis membrane fouling and control strategies. Sci. Total Environ., Elsevier B.V. 2017, 595, 567–583. DOI: 10.1016/j.scitotenv.2017.03.235.
  • Picioreanu, C.; Vrouwenvelder, J. S.; van Loosdrecht, M. C. M. Three-dimensional modeling of biofouling and fluid dynamics in feed spacer channels of membrane devices. J. Membr. Sci. 2009, 345, 340–354. DOI: 10.1016/j.memsci.2009.09.024.
  • Yuan, X.-T.; Xu, C.-X.; Geng, H.-Z.; Ji, Q.; Wang, L.; He, B.; Jiang, Y.; Kong, J.; Li, J. Multifunctional PVDF/CNT/GO mixed matrix membranes for ultrafiltration and fouling detection. J. Hazard. Mater. 2020, 384, 120978. DOI: 10.1016/j.jhazmat.2019.120978.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.