384
Views
6
CrossRef citations to date
0
Altmetric
Adsorption

Thermodynamics, kinetics and isotherm studies on the removal of anionic Azo-dye (Congo red) using synthesized Chitosan/Moringa oleifera gum hydrogel composites

, &
Pages 13-28 | Received 24 Jan 2022, Accepted 18 Jul 2022, Published online: 02 Aug 2022

References

  • Naseem, K.; Farooqi, Z. H.; Begum, R.; Irfan, A. Removal of Congo Red Dye from Aqueous Medium by Its Catalytic Reduction Using Sodium Borohydride in the Presence of Various Inorganic nano-catalysts: A Review. J. Clean. Prod. 2018, 187, 296–307. DOI: 10.1016/j.jclepro.2018.03.209.
  • El-Harby, N. F.; Ibrahim, S. M. A.; Mohamed, N. A. Adsorption of Congo Red Dye onto Antimicrobial Terephthaloyl Thiourea cross-linked Chitosan Hydrogels. Water Sci. Technol. 2017, 76(10), 2719–2732. DOI: 10.2166/wst.2017.442.
  • Litefti, K.; Freire, M. S.; Stitou, M.; González-Álvarez, J. Adsorption of an Anionic Dye (Congo Red) from Aqueous Solutions by Pine Bark. Sci. Rep. 2019, 9(1), 16530. DOI: 10.1038/s41598-019-53046-z.
  • Nawaz, M. S.; Ahsan, M. Comparison of physico-chemical, Advanced Oxidation and Biological Techniques for the Textile Wastewater Treatment. Alex. Eng. J. 2014, 53(3), 717–722. DOI: 10.1016/j.aej.2014.06.007.
  • Pourjavadi, A.; Harzandi, A. M.; Hosseinzadeh, H. Synthesis of a Novel polysaccharide-based Superabsorbent Hydrogel via Graft Copolymerization of Acrylic Acid onto kappa-carrageenan in Air. Eur. Polym. J. 2004, 40(7), 1363–1370. DOI: 10.1016/j.eurpolymj.2004.02.016.
  • Chang, C.; Duan, B.; Cai, J.; Zhang, L. Superabsorbent Hydrogels Based on Cellulose for Smart Swelling and Controllable Delivery. Eur. Polym. J. 2010, 46(1), 92–100. DOI: 10.1016/j.eurpolymj.2009.04.033.
  • Guilherme, M. R.; Aouada, F. A.; Fajardo, A. R.; Martins, A. F.; Paulino, A. T.; Davi, M. F. T.; Rubira, A. F.; Muniz, E. C. Superabsorbent Hydrogels Based on Polysaccharides for Application in Agriculture as Soil Conditioner and Nutrient Carrier: A Review. Eur. Polym. J. 2015, 72, 365–385. DOI: 10.1016/j.eurpolmj.2015.04.017.
  • Cheng, B.; Pei, B.; Wang, Z.; Hu, Q. Advances in chitosan-based Superabsorbent Hydrogels. RSC Adv. 2017, 7(67), 42036–42046. DOI: 10.1039/c7ra07104c.
  • Cui, H. F.; Wu, W. W.; Li, M. M.; Song, X.; Lv, Y.; Zhang, -T.-T. A Highly Stable Acetylcholinesterase Biosensor Based on chitosan-TiO2-graphene Nanocomposites for Detection of Organophosphate Pesticides. Biosens. Bioelectron. 2018, 99, 223–229. DOI: 10.1016/j.bios.2017.07.068.
  • Babu, V. R.; Hosamani, K. M.; Aminabhavi, T. M. Preparation and in-vitro Release of Chlorothiazide Novel pH-sensitive chitosan-N,N′-dimethylacrylamide semi-interpenetrating Network Microspheres. Carbohydr. Polym. 2008, 71(2), 208–217. DOI: 10.1016/j.carbpol.2007.05.039.
  • Bashir, S.; Teo, Y. Y.; Ramesh, S.; Ramesh, K. Synthesis, Characterization, Properties of N-succinyl chitosan-g-poly (Methacrylic Acid) Hydrogels and in Vitro Release of Theophylline. Polym. 2016, 92, 36–49. DOI: 10.1016/j.polymer.2016.03.045.
  • Jana, S.; Sen, K. K. Chitosan — Locust Bean Gum Interpenetrating Polymeric Network Nanocomposites for Delivery of Aceclofenac. Int. J. Biol. Macromol. 2017, 102, 878–884. DOI: 10.1016/j.ijbiomac.2017.04.097.
  • Cui, L.; Jia, J.; Guo, Y.; Liu, Y.; Zhu, P. Preparation and Characterization of IPN Hydrogels Composed of Chitosan and Gelatin cross-linked by Genipin. Carbohydr. Polym. 2014, 99, 31–38. DOI: 10.1016/j.carbpol.2013.08.048.
  • Parwani, L.; Bhatnagar, M.; Bhatnagar, A.; Sharma, V.; Sharma, V. Evaluation of Moringa Oleifera Seed biopolymer-PVA Composite Hydrogel in Wound Healing Dressing. Iran. Polym. J. (Eng Ed). 2016, 25(11), 919–931. DOI: 10.1007/s13726-016-0479-8.
  • Panda, D.; Choudhury, N. S. K.; Yedukondalu, M.; Si, S.; Gupta, R. Evaluation of Gum of Moringa Oleifera as a Binder and Release Retardant in Tablet Formulation. Ind. J. Pharm. Sc. 2008, 70(5), 614. DOI: 10.4103/0250-474X.45400.
  • Vigneshwaran, S.; Karthikeyan, P.; Sirajudheen, P.; Meenakshi, S. Optimization of Sustainable chitosan/Moringa. Oleifera as Coagulant Aid for the Treatment of Synthetic Turbid water–A Systemic Study. Environ. Chem. Ecotox. 2020, 2, 132–140. DOI: 10.1016/j.enceco.2020.08.002.
  • Naqvi, S. M. K.; Khan, Z.; Mirza, E. H.; Chandio, A.; Manzoor, F.; Niaz, R.; Khan, A. A.; AlKhureif, A. A. Fabrication and Characterization of Polyvinyl alcohol/chitosan/moringa-extract Hydrogel Patch for wound-healing Applications. Mat. Exp. 2021, 11(1), 107–115. DOI: 10.1166/mex.2021.1895.
  • León, O.; Muñoz-Bonilla, A.; Soto, D.; Pérez, D.; Rangel, M.; Colina, M.; Fernández-García, M. Removal of Anionic and Cationic Dyes with Bioadsorbent Oxidized Chitosans. Carbohydr. Polym. 2018, 194, 375–383. DOI: 10.1016/j.carbpol.2018.04.072.
  • Tu, H.; Yu, Y.; Chen, J.; Shi, X.; Zhou, J.; Deng, H.; Du, Y. Highly cost-effective and high-strength Hydrogels as Dye Adsorbents from Natural Polymers: Chitosan and Cellulose. Polym. Chem. 2017, 8(19), 2913–2921. DOI: 10.1039/C7PY00223H.
  • Sami, A. J.; Butt, Y. N.; Nasar, S. Elimination of a Carcinogenic Anionic Dye Congo Red from Water using Hydrogels Based on Chitosan, Acrylamide and Graphene Oxide. J. Bioprocess Biotech. 2018. DOI: 10.4172/2155-9821.1000334.
  • Chan, K.; Morikawa, K.; Shibata, N.; Zinchenko, A. Adsorptive Removal of Heavy Metal Ions, Organic Dyes, and Pharmaceuticals by DNA–chitosan Hydrogels. Gels. 2021, 7(3), 112. DOI: 10.3390/gels7030112.
  • Ramakrishnan, R. K.; Padil, V. V. T.; Wacławek, S.; Černík, M.; Varma, R. S. Eco-friendly and Economic, Adsorptive Removal of Cationic and Anionic Dyes by bio-based Karaya gum—chitosan Sponge. Polym. 2021, 13(2), 251. DOI: 10.3390/polym13020251.
  • Ranote, S.; Kumar, D.; Kumari, S.; Kumar, R.; Chauhan, G. S.; Joshi, V. Green Synthesis of Moringa Oleifera gum-based Bifunctional Polyurethane Foam Braced with Ash for Rapid and Efficient Dye Removal. Chem. Engg. J. 2019, 361, 1586–1596. DOI: 10.1016/j.cej.2018.10.194.
  • Ranote, S.; Chauhan, G. S.; Joshi, V. Etherified Moringa Oleifera Gum as Rapid and Effective Dye Adsorbents. Chem. Engg. J. 2020, 387, 124055. DOI: 10.1016/j.cej.2020.124055.
  • Ravikumar, K.; Udayakumar, J. Moringa Oleifera Gum Composite a Novel Material for Heavy Metals Removal. Int. J. Environ. Anal. Chem. 2019, 1–41. DOI: 10.1080/03067319.2019.1686142.
  • Ahmad, S.; Manzoor, K.; Purwar, R.; Ikram, S. Morphological and Swelling Potential Evaluation of Moringa Oleifera gum/poly (Vinyl Alcohol) Hydrogels as a Superabsorbent. ACS omega. 2020, 5(29), 17955–17961. DOI: 10.1021/acsomega.0c01023.
  • Singh, B.; Kumar, A. Network Formation of Moringa Oleifera Gum by Radiation Induced Crosslinking: Evaluation of Drug Delivery, Network Parameters and Biomedical Properties. Int. J. Bio. Macromol. 2018, 108, 477–488. DOI: 10.1016/j.ijbiomac.2017.12.04.
  • Teimouri, A.; Nasab, S. G.; Vahdatpoor, N.; Habibollahi, S.; Salavati, H.; Chermahini, A. N. Chitosan /Zeolite Y/Nano ZrO2 Nanocomposite as an Adsorbent for the Removal of Nitrate from the Aqueous Solution. Int. J. Biol. Macromol. 2016, 93, 254–266. DOI: 10.1016/j.ijbiomac.2016.05.089.
  • Ganji, F.; Vasheghani-Farahani, S.; Vasheghani-Farahani, E. Theoretical Description of Hydrogel Swelling: A Review. Iran. Polym. J. 2010, 19(5), 375–398.
  • Sievers, J.; Sperlich, K.; Stahnke, T.; Kreiner, C.; Eickner, T.; Martin, H.; Guthoff, R. F.; Schünemann, M.; Bohn, S.; Stachs, O. Determination of Hydrogel Swelling Factors by Two Established and a Novel non-contact Continuous Method. J. Appl. Polym. Sci. 2021, 138(18), 50326. DOI: 10.1002/app.50326.
  • Huang, Z. G.; Wang, T.; Yi, H. Y.; Li, X. Study on the Adsorption of Methylene Blue from Dye Wastewater by Humulus Japonicus Leaves. In: E3S Web of Conferences, Harbin, China, 25-27 December 2020; 2021. DOI: 10.1051/e3sconf/202123603028.
  • Moussout, H.; Ahlafi, H.; Aazza, M.; Maghat, H. Critical of Linear and Nonlinear Equations of pseudo-first Order and pseudo-second Order Kinetic Models. Karbala Int. J. Modern Sci. 2018, 4(2), 244–254. DOI: 10.1016/j.kijoms.2018.04.001.
  • Ho, Y. S. Review of second-order Models for Adsorption Systems. J. Hazard. Mater. 2006, 136(3), 681–689. DOI: 10.1016/j.jhazmat.2005.12.043.
  • Saǧ, Y.; Aktay, Y. Kinetic Studies on Sorption of Cr(VI) and Cu(II) Ions by Chitin, Chitosan and Rhizopus Arrhizus. Biochem. Eng. J. 2002, 12(2), 143–153. DOI: 10.1016/S1369-703X(02)00068-2.
  • Wu, F. C.; Tseng, R. L.; Juang, R. S. Characteristics of Elovich Equation Used for the Analysis of Adsorption Kinetics in dye-chitosan Systems. Chem. Eng. J. 2009, 150(2–3), 366–373. DOI: 10.1016/j.cej.2009.01.014.
  • Kajjumba, G. W.; Aydın, S.; Güneysu, S. Adsorption Isotherms and Kinetics of Vanadium by Shale and Coal Waste. Adsorp. Sci. Technol. 2018, 36(3–4), 936–952. DOI: 10.1177/0263617417733586.
  • Ho, Y. S.; McKay, G. Application of Kinetic Models to the Sorption of Copper (II) on to Peat. Adsorp. Sci. Technol. 2002, 20(8), 797–815. DOI: 10.1260/026361702321104282.
  • Saruchi, K. V.; Kumar, V. Adsorption Kinetics and Isotherms for the Removal of Rhodamine B Dye and Pb +2 Ions from Aqueous Solutions by a Hybrid ion-exchanger. Arab. J. Chem. 2019, 12(3), 316–329. DOI: 10.1016/j.arabjc.2016.11.009.
  • Mahmoud, M. A. Kinetics and Thermodynamics of Aluminum Oxide Nanopowder as Adsorbent for Fe (III) from Aqueous Solution. Beni-Suef Univ. J. Appl. Sci. 2015, 4(2), 142–149. DOI: 10.1016/j.bjbas.2015.05.008.
  • Zhao, Y.; Zhao, X.; Deng, J.; He, C. Utilization of chitosan–clinoptilolite Composite for the Removal of Radio cobalt from Aqueous Solution: Kinetics and Thermodynamics. J. Radioanal. Nucl. Chem. 2016, 308(2), 701–709. DOI: 10.1007/s10967-015-4475-9.
  • Islam, S.; Bhuiyan, M. A. R.; Islam, M. N. Chitin and Chitosan: Structure, Properties and Applications in Biomedical Engineering. J. Polym. Environ. 2017, 25(3), 854–866. DOI: 10.1007/s10924-016-0865-5.
  • Sehmi, S. K.; Allan, E.; MacRobert, A. J.; Parkin, I. The Bactericidal Activity of glutaraldehyde-impregnated Polyurethane. Microbiol. Open. 2016, 55, 891–897. DOI:10.1002/mbo3.378.
  • Gu, F.; Kim, J. M.; Hayat, K.; Xia, S.; Feng, B.; Zhang, X. Characteristics and Antioxidant Activity of Ultrafiltrated Maillard Reaction Products from a casein-glucose Model System. Food Chem. 2009, 117(1), 48–54. DOI: 10.1016/j.foodchem.2009.03.074.
  • Lund, M. N.; Ray, C. A. Control of Maillard Reactions in Foods: Strategies and Chemical Mechanisms. J. Agric. Food Chem. 2017, 65(23), 4537–4552. DOI: 10.1021/acs.jafc.7b00882.
  • Jarald, E. E.; Sumati, S.; Edwin, S.; Ahmad, S.; Patni, S.; Daud, A. Characterization of Moringa Oleifera Lam. Gum to Establish It as a Pharmaceutical Excipient. Indian J. Pharma. Edu. Res. 2012, 46(3), 211–216.
  • Gupta, V. N.; Shivakumar, H. G. Investigation of Swelling Behavior and Mechanical Properties of a pH-Sensitive Superporous Hydrogel Composite. Iran J. Pharm. Res. 2012, 11(2), 481–493. DOI: 10.22037/ijpr.2012.1097.
  • Khushbu,; Warkar, S. G.; Kumar, A. Synthesis and Assessment of Carboxymethyl Tamarind Kernel Gum Based Novel Superabsorbent Hydrogels for Agricultural Applications. Polym. J. 2019, 2019, 182. DOI: 10.1016/j.polymer.2019.121823.
  • Ranote, S.; Ram, B.; Kumar, D.; Chauhan, G. S.; Joshi, V. Functionalization of Moringa Oleifera Gum for Use as Hg2+ Ions Adsorbent. J. Environ. Chem. Eng. 2018, 6(2), 1805–1813. DOI: 10.1016/j.jece.2018.02.032.
  • Gipson, K.; Stevens, K.; Brown, P.; Ballato, J. Infrared Spectroscopic Characterization of Photoluminescent Polymer Nanocomposites. J. Spectrosc. 2015, 2015, 1–9. DOI: 10.1155/2015/489162.
  • Pooresmaeil, M.; Namazi, H. Application of polysaccharide-based Hydrogels for Water Treatments. Hydro. Based on Nat. Poly. 2019, 411–455. DOI: 10.1016/B978-0-12-816421-1.00014-8.
  • Taher, T.; Rohendi, D.; Mohadi, R.; Lesbani, A. Congo Red Dye Removal from Aqueous Solution by acid-activated Bentonite from Sarolangun: Kinetic, Equilibrium, and Thermodynamic Studies. Arab. J. Basic Appl. Sci. 2019, 26(1), 125–136. DOI: 10.1080/25765299.2019.1576274.
  • Sumalatha, S.; Rao, P. P. STUDIES ON BIO-ADSORPTION OF Cd (II) FROM AQUEOUS SOLUTIONS. Editorial Board. 2015, 4(11), 116.
  • Patel, H.; Vashi, R. T. Removal of Congo Red Dye from Its Aqueous Solution Using Natural Coagulants. J. Saudi Chem. Soc. 2012, 16(2), 131–136. DOI: 10.1016/j.jscs.2010.12.003.
  • Wechsler, M. E.; Dang, H. K. H. J.; Dahlhauser, S. D.; Simmonds, S. P.; Reuther, J. F.; Wyse, J. M.; VandeWalle, A. N.; Anslyn, E. V.; Peppas, N. A. Nanogel Receptors for High Isoelectric Point Protein Detection: Influence of Electrostatic and Covalent polymer-protein Interactions. Chem. Commun. 2020, (2020)(56), 6141–6144. DOI: 10.1039/d0cc02200d.
  • Wiśniewska, M.; Sternik, D.; Nowicki, P. Adsorption, Viscosity and Thermal Behaviour of Nanosized Proteins with Different Internal Stability Immobilised on the Surface of Mesoporous Activated Biocarbon Obtained from the Horsetail Herb Precursor. Appl. Nanosci. (Switzerland). 2021. DOI: 10.1007/s13204-021-01759-x.
  • Vijayakumar, G.; Tamilarasan, R.; Dharmendirakumar, M. Adsorption, Kinetic, Equilibrium and Thermodynamic Studies on the Removal of Basic Dye Rhodamine-B from Aqueous Solution by the Use of Natural Adsorbent Perlite. J. Mater. Environ. Sci. 2012, 3(1), 157–170.
  • Sari, A.; Tuzen, M. Biosorption of Total Chromium from Aqueous Solution by Red Algae (Ceramium Virgatum): Equilibrium, Kinetic and Thermodynamic Studies. J. Hazard. Mater. 2008, 160(2–3), 349–355. DOI: 10.1016/j.jhazmat.2008.03.005.
  • Li, M.; Wang, Z.; Li, B. Adsorption Behaviour of Congo Red by cellulose/chitosan Hydrogel Beads Regenerated from Ionic Liquid. Desalin. Water Treat. 2016, 57, 16970–16980. DOI: 10.1080/19443994.2015.1082945.
  • Chatterjee, S.; Chatterjee, T.; Lim, S. R.; Woo, S. H. Effect of the Addition Mode of Carbon Nanotubes for the Production of Chitosan Hydrogel core–shell Beads on Adsorption of Congo Red from Aqueous Solution. Bioresour. Technol. 2011, 102(6), 4402–4409. DOI: 10.1016/j.biortech.2010.12.117.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.