124
Views
0
CrossRef citations to date
0
Altmetric
Extraction

Reactive separation of gallic acid using trioctylamine in oleyl alcohol and dodecane mixtures: Equilibrium insights, modeling and optimization using RSM and ANN approaches

, , , ORCID Icon &
Pages 473-485 | Received 28 Apr 2022, Accepted 20 Sep 2022, Published online: 08 Oct 2022

References

  • Dang, Y. Y.; Zhang, H.; Xiu, Z. L. Microwave-Assisted Aqueous Two-Phase Extraction of Phenolics from Grape (Vitis vinifera) Seed. J. Chem. Tech. Biotech. 2014, 89(10), 1576–1581. DOI: 10.1002/JCTB.4241.
  • González, N.; Otero, A.; Conde, E.; Falquée, M. A.; Domínguez, H.; Domínguez, H. Extraction of Phenolics from Broom Branches Using Green Technologies. J. Chem. Tech. Biotech. 2017, 92(6), 1345–1352. DOI: 10.1002/jctb.5129.
  • Kouroutzidou, E.; Georgaki, I.; Mantzavinos, D.; Manios, T. Anaerobic Biodegradability of Gallic Acid Found in Olive Mill Wastewaters. J. Chem. Tech. Biotech. 2006, 81(9), 1594–1599. DOI: 10.1002/jctb.1555.
  • Pandey, S.; Wasewar, K. S.; Kumar, S.; Kumar, S. Reactive Extraction of Gallic Acid Using Trioctylamine and Tributyl Phosphate with Natural Oils. Chem. Eng. Technol. 2022, 45(3), 526–534. DOI: 10.1002/ceat.202100449.
  • Sanza, M. A.; N, D. I.; C, C. L. M.; Gracia, L. Analysis for Low Molecular Weight Phenolic Compounds in a Red Wine Aged in Oak Chips. Analytica. Chimica. Acta. 2004, 513(1), 229–237. DOI: 10.1016/S0003-2670(03)01510-1.
  • Dai, J.; Mumper, R. J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules. 2010, 15(10), 7313–7352. DOI: 10.3390/molecules15107313.
  • Nayeem, N.; Smb, A.; Salem, H.; Ahel-Alfqy, S. Gallic Acid: A Promising Lead Molecule for Drug Development. J. App. Pharm. 2016, 8(2), 213. DOI: 10.4172/1920-4159.1000213.
  • Kalita, D.; Kar, R.; Handique, J. G. A Theoretical Study on the Antioxidant Property of Gallic Acid and Its Derivatives. J. Chem. Theory Comput. 2012, 11(2), 391–402. DOI: 10.1142/S0219633612500277.
  • Barberan, T.; Clifford, M. N. Dietary Hydroxyl Benzoic Acid Derivatives-Nature, Occurrence and Dietary Burden. J. Sci. Food Agric. 2000, 80(7), 1024–1032. DOI: 10.1002/(SICI)1097-0010(20000515)80:7<1024:AID-JSFA567>3.0.CO;2-S.
  • Lokeswari, N. Gallic Acid Production by Immobilization of Aspergillus Orzae. Int. J. Sci. Eng. Res. 2013, 4(6), 472–475.
  • Tiwari, P.; Singh, A.; Singh, U.; Maurya, S.; Singh, M. Nutritional Importance of Some Dry Fruits Based on Their Phenolic Acids. Internet J. Nutr. Wellness. 2009, 8, 1–5. DOI: 10.5580/1b5d.
  • Patty, F. A. Industrial Hygiene and Toxicology. Volume II. Toxicology, 2nd ed.; Interscience Publishers: New York, 1963.
  • Athankar, K. K.; Wasewara, K. L.; Varmaa, M. N.; Shende, D. Z. Reactive Extraction of Gallic Acid with Tri-N-Caprylylamine. New J. Chem. 40. 2016, 40(3), 2413–2417. DOI: 10.1039/C5NJ03007B.
  • Eda, S.; Borra, A.; Parthasarathy, R.; Bankupalli, S.; Bhargava, S.; Thella, P. K. Recovery of Levulinic Acid by Reactive Extraction Using Tri-N-octylamineinMethyl Isobutyl Ketone: Equilibrium and Thermodynamic Studies and Optimization Using Taguchi Multivariate Approach. Sep. Purif. Technol. 2018, 197, 314–324. DOI: 10.1016/j.seppur.2018.01.014.
  • Eggert, A.; Maßmann, T.; Kreyenschulte, D.; Becker, M.; Heyman, B.; Büchs, J.; Jupke, A. Integrated in-Situ Product Removal Process Concept for Itaconic Acid by Reactive Extraction, pH-Shift Back Extraction and Purification by pH-Shift Crystallization. Sep. Purif. Technol. 2019, 215, 463–472. DOI: 10.1016/j.seppur.2019.01.011.
  • Ena, A.; Pintucci, C.; Carlozzi, P. The Recovery of Polyphenols from Olive Mill Waste Using Two Adsorbing Vegetable Matrices. J. Biotech. 2012, 157(4), 573–577. DOI: 10.1016/j.jbiotec.2011.06.027.
  • Lin, S. H.; Juang, R. S. Adsorption of Phenol and Its Derivatives from Water Using Synthetic Resins and Low-Cost Natural Adsorbents: A Review. J. Env. Manag. 2009, 90(3), 1336–1349. DOI: 10.1016/j.jenvman.2008.09.003.
  • Mushtaq, M.; Sultana, B.; Bhatti, H. N.; Asghar, M. RSM Based Optimized Enzyme-Assisted Extraction of Antioxidant Phenolics from Underutilized Watermelon (Citrullus lanatusThunb.) Rind. J. Food Sci. Tech. 2015, 52(8), 5048–5056. DOI: 10.1007/s13197-014-1562-9.
  • Pandey, S.; Kumar, S. Reactive Extraction of Gallic Acid from Aqueous Solution with Tri-N-Octylamine in Oleyl Alcohol: Equilibrium, Thermodynamics and Optimization Using RSM-rCcd. Sep. Purif. Technol. 2020, 231, 115904. DOI: 10.1016/j.seppur.2019.115904.
  • Said, M.; Ahmad, A.; Wahab, M. A. Removal of Phenol During Ultrafiltration of Palm Oil Mill Effluent (POME): Effect of pH, Ionic Strength, Pressure and Temperature. Der. Pharma. Chemica. 2013, 5(3), 190–196.
  • Šalić, A.; Tušek, A.; Fabek, D.; Rukavina, I.; Zelić, B. Aqueous Two-Phase Extraction of Polyphenols Using a Microchannel System - Process Optimization and Intensification. Food Tech. Biotech. 2011, 49, 495–501.
  • Datta, D.; Kumar, S.; Uslu, H. Status of the Reactive Extraction as a Method of Separation. J. Chem. 2015, 2015, 1–16. DOI: 10.1155/2015/853789.
  • Datta, D.; Kumar, S. Reactive Extraction of Glycolic Acid Using Tri-N-Butyl Phosphate and Tri-N-Octylamine in Six Different Diluents: Experimental Data and Theoretical Predictions. Ind. Eng. Chem. Res. 2011, 50(5), 3041–3048. DOI: 10.1021/ie102024u.
  • Kumar, S.; Babu, B. V.; Wasewar, K. L. Investigations of Biocompatible Systems for Reactive Extraction of Propionic Acid Using Aminic Extractants (Trioctylamine and Aliquat 336). Biotech. Bioprocess. Eng. 2012, 17(6), 1252–1260. DOI: 10.1007/s12257-012-0310-0.
  • Kumar, S.; Datta, D.; Babu, B. V. Experimental Data and Theoretical (Chemodel Using Differential Evolution Approach and Linear Salvation Energy Relation Model) Predictions on Reactive Extraction of Mono Carboxylic Acids Using Tri-N-Octylamine. J. Chem. Eng. Data. 2010, 55(10), 4290–4300. DOI: 10.1021/je100449c.
  • Uslu, H.; Datta, D.; Bamufleh, H. S. Reactive Extraction of Phenol from Aqueous Solution Using Tri-Octylamine Dissolved in Alkanes and Alcohols. J. Mol. Liq. 2015, 212, 430–435. DOI: 10.1016/j.molliq.2015.10.004.
  • Uslu, H.; Marti, M. E. Equilibrium Data on the Reactive Extraction of Picric Acid from Dilute Aqueous Solutions Using Amberlite LA-2 in Ketones. J. Chem. Eng. Data. 2017, 62(7), 2132–2135. DOI: 10.1021/acs.jced.7b00226.
  • Datta, D.; Kumar, S. Modeling Using Response Surface Methodology and Optimization Using Differential Evolution of Reactive Extraction of Glycolic Acid. Chem. Eng. Comm. 2015, 202(1), 59–69. DOI: 10.1080/00986445.2013.828605.
  • Kumar, A.; Thakur, A. Parametric Optimization of Green Synergistic Reactive Extraction of Lactic Acid Using Trioctylamine, Aliquat336, and Butan-2-Ol in Sunflower Oil by Response Surface Methodology. 2019, 206, 1072–1086.
  • Montgomery, D. Design and Analysis of Experiments; John Wiley & Sons Inc: New Jersey, 2001.
  • Rewatkar, K.; Shende, D. Z.; Wasewar, K. L. Modeling and Optimization of Reactive Extraction of Gallic Acid Using RSM. Chem. Eng. Commun. 2017, 204(4), 522–528. DOI: 10.1080/00986445.2017.1282470.
  • Rewatkar, K.; Shende, D. Z.; Wasewar, K. L. Reactive Separation of Gallic Acid: Experimentation and Optimization Using Response Surface Methodology and Artificial Neural Network. Chem. Biochem. Eng. Q. 2017, 31(1), 33–46. DOI: 10.15255/CABEQ.2016.931.
  • Box, G. E. P.; Hunter, J. S.; Hunter, W. G. Statistics for Experimenters: Design, Innovation and Discovery; John Wiley &Sons Inc: New Jersey, 2006.
  • Evlik, T.; S, A. Y.; Baylan, N.; Gamsızkan, H.; Çehreli, S. Reactive Separation of Malic Acid from Aqueous Solutions and Modeling by Artificial Neural Network (ANN) and Response Surface Methodology (RSM). J. Disp. Sci. Technol. 2020, 3, 1–10. DOI: 10.1080/01932691.2020.1838920.
  • Lazar, R. G.; Blaga, A. C.; Dragoi, E. N.; Galaction, A. I.; Cascaval, D. Application of Reactive Extraction for the Separation of Pseudomonic Acids: Influencing Factors, Interfacial Mechanism, and Process Modelling. Can. J. Chem. Eng. 2021, 1–12. DOI: 10.1002/cjce.24124.
  • Marchitan, N.; Cojocaru, C.; Mereuta, A.; Duca, G.; Cretescu, I.; Gonta, M. Modeling and Optimization of Tartaric Acid Reactive Extraction from Aqueous Solutions: A Comparison Between Response Surface Methodology and Artificial Neural Network. Sep. Puri. Tech. 2010, 75(3), 273–285. DOI: 10.1016/j.seppur.2010.08.016.
  • Waszczyszyn, Z. Fundamentals of Artificial Neural Networks. In Neural Networks in the Analysis and Design of Structures; Waszczyszyn, ZENON, Ed.; Springer-Verlag: Wien, 1999; pp. 1–51. DOI:10.1007/978-3-7091-2484-0.
  • Kumar, S.; Datta, D.; Babu, B. V. Estimation of Equilibrium Parameters Using Differential Evolution in Reactive Extraction of Propionic Acid by Tri-N-Butyl Phosphate. Chem. Eng. Processing: Process Inten. 2011, 50(7), 614–622. DOI: 10.1016/j.cep.2011.03.004.
  • Pandey, S.; Kumar, S. Reactive Extraction of Gallic Acid Using Aminic and Phosphoric Extractants Dissolved in Different Diluents: Effect of Solvent’s Polarity and Column Design. Ind. Eng. Chem. Res. 2018, 57(8), 2976–2987. DOI: 10.1021/acs.iecr.7b05110.
  • Babu, B. V. Process Plant Simulation; Oxford University Press: New Delhi, India, 2004.
  • Thakre, N.; Prajapati, A. K.; Mahapatra, S. P.; Kumar, A.; Khapre, A.; Pal, D. Modeling and Optimization of Reactive Extraction of Citric Acid. J. Chem. Eng. Data. 2016, 61(7), 2614–2623. DOI: 10.1021/acs.jced.6b00274.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.