128
Views
3
CrossRef citations to date
0
Altmetric
Water treatment

Numerical simulation study on the structure optimization of liquid separation device in supersonic separator

, , , &
Pages 789-808 | Received 08 Jun 2022, Accepted 06 Dec 2022, Published online: 28 Dec 2022

References

  • Fadiran, G.; Adebusuyi, A. T.; Fadiran, D. Natural Gas Consumption and Economic Growth: Evidence from Selected Natural Gas Vehicle Markets in Europe. Energy. 2019, 169, 467–477. DOI: 10.1016/J.ENERGY.2018.12.040.
  • Dong, K. Y.; Sun, R. J.; Hochman, G. Do Natural Gas and Renewable Energy Consumption Lead to Less CO2 Emission? Empirical Evidence from a Panel of BRICS Countries. Energy. 2017, 141, 1466–1478. DOI: 10.1016/j.energy.2017.11.092.
  • Campos, A. F.; Da Silva, N. F.; Pereira, M. G.; Freitas, M. A. V. A Review of Brazilian Natural Gas Industry: Challenges and Strategies. Renew. Sust. Energy Rev. 2017, 75, 1207–1216. DOI: 10.1016/j.rser.2016.11.104.
  • Liang, F. Y.; Ryvak, M.; Sayeed, S.; Zhao, N. The Role of Natural Gas as a Primary Fuel in the Near Future, Including Comparisons of Acquisition, Transmission and Waste Handling Costs of as with Competitive Alternatives. Chem. Cent. J 2012, 6(S1), S1–4. DOI: 10.1186/1752-153X-6-S1-S4.
  • Rahimpour, M. R.; Jokar, S. M.; Feyzi, P.; Asghari, R. Investigating the Performance of Dehydration Unit with Cold finger Technology in Gas Processing Plant. J. Pet. Sci. Eng. 2013, 12, 1–12. DOI: 10.1016/j.jngse.2013.01.001.
  • Cao, X. W.; Bian, J. Supersonic Separation Technology for Natural Gas Processing: A Review. Chem. Eng. Process. 2019, 136, 138–151. DOI: 10.1016/j.cep.2019.01.007.
  • Wen, C.; Cao, X. W.; Yang, Y. An Unconventional Supersonic Liquefied Technology for Natural Gas. Energy Educ. Sci. Technol. Part A. 2012, 30, 651–660.
  • Bian, J.; Cao, X. W.; Yang, W.; Edem, M. A.; Yin, P.; Jiang, W. Supersonic Liquefaction Properties of Natural Gas in the Laval Nozzle. Energy. 2018, 159, 706–715. DOI: https://doi.org/10.1016/j.energy.2018.06.196.
  • Brouwer, J.; Epsom, H., 2003. Twister Supersonic Gas Conditioning for Unmanned Platforms and Subsea Gas Processing. Proceedings of the offshore Europe conference, Aberdeen, UK, 83977, 219–225. 10.2118/83977-MS.
  • Alferov, V. I.; Baguiro, L. A.; Dmitriev, L.; Feygin, V.; Imaev, S.; Lace, J. R. Supersonic Nozzle Efficiently Separates Natural Gas Components. Oil Gas J. 2005, 103, 53–58.
  • Malyshkina, M. M. The Structure of Gas Dynamic Flow in a Supersonic Separator of Natural Gas. High Temp. 2008, 46(1), 69–76. DOI: 10.1134/s10740-008-1010-5.
  • Malyshkina, M. M. The Procedure for Investigation of the Efficiency Purification of Natural Gases in a Supersonic Separator. High Temp. 2010, 48(2), 244–250. DOI: 10.1134/S0018151X10020161.
  • Bian, J.; Jiang, W. M.; Teng, L.; Liu, Y.; Wang, S. W.; Deng, Z. F. Structure Improvements and Numerical Simulation of Supersonic Separators. Chem. Eng. Process. 2016, 110, 214–219. DOI: 10.1016/j.cep.2016.10.012.
  • Hou, D. Y.; Jiang, W. M.; Zhao, W. X.; Bian, J.; Liu, Y.; Lai, X. Y. Effect of Line type of Convergent Section on Supersonic Condensation Characteristics of CH4-CO2 Mixture Gas in Laval Nozzle. Chem. Eng. Process. 2018, 133, 128–136. DOI: 10.1016/j.cep.2018.09.016.
  • Chen, J. N.; Jiang, W.; Lai, X. Y.; Cao, X. W.; Bian, J.; Bi, Z. G. Study on the Influence of Wall-Mounted Cyclone on the Purification and Separation Performance of Supersonic Separator. Chem. Eng. Process. 2020, 150. DOI:10.1016/j.cep.2020.107898. 107898-1-107898-7.
  • Cao, X. W.; Yang, W. The Dehydration Performance Evaluation of a New Supersonic Swirling Separator. J. Nat. Gas. Sci. Eng. 2015, 27, 1667–1676. DOI: 10.1016/j.jngse.2015.10.029.
  • Wen, C.; Cao, X. W.; Yang, Y.; Zhang, J. Supersonic Swirling Characteristics of Natural Gas in Convergent-Divergent Nozzles. Petrol. Sci. 2011, 8(1), 114–119. DOI: 10.1007/s12182-011-0123-3.
  • Wen, C.; Cao, X. W.; Yang, Y. Swirling Flow of Natural Gas in Supersonic Separators. Chem. Eng. Process. 2011, 7(7), 644–649. DOI: 10.1016/j.cep.2011.03.008.
  • Wen, C.; Yang, Y.; Walther, J. H.; Pang, K. M.; Feng, Y. Effects of Delta Wing on the Particle Flow in a Novel Gas Supersonic Separator. Powder Technol. 2016, 304, 261–267. DOI: 10.1016/j.powtec.2016.07.061.
  • Liu, X. W.; Liu, Z. L.; Li, Y. X. Investigation on Separation Efficiency in Supersonic Separator with Gas-Droplet Flow Based on DPM Approach. Sep. Sci. Technol. 2014, 49(17), 2603–2612. DOI: 10.1080/01496395.2014.938755.
  • Eriqitai, H. A. N.; Duan, R.; Wu, M.; WU, M. Performance of Dual-Throat Supersonic Separation Device with Porous Wall Structure. Chin. J. Chem. Eng. 2014, 22(4), 370–382. DOI: 10.1016/S1004-9541(14)60065-3.
  • Wang, Y. G.; Hu, D. P. Structure Improvements and Numerical Simulation of Supersonic Separators with Diversion Cone for Separation and Purification. R.S.C. Adv 2018, 8(19), 10228–10236. DOI: 10.1039/C7RA13198D.
  • Jassim, E.; Abdi, M. A.; Muzychka, Y. Computational Fluid Dynamics Study for Flow of Natural Gas Through High-Pressure Supersonic Nozzles: Part 1: Real Gas Effects and Shockwave. Petrol Sci. Technol. 2008, 26(15), 1757–1772. DOI: 10.1080/10916460701287847.
  • Jassim, E.; Abdi, M. A.; Muzychka, Y. Computational Fluid Dynamics Study for Flow of Natural Gas Through High-Pressure Supersonic Nozzles: Part 2: Nozzle Geometry and Vorticity. Petrol Sci. Technol. 2008, 26(15), 1773–1785. DOI: 10.1080/10916460701304410.
  • Bian, J.; Cao, X. W.; Yang, W.; Guo, D.; Xiang, C. C. Prediction of Supersonic Condensation Process of Methane Gas Considering Real Gas Effects. Appl. Therm. Eng. 2020, 164, 114508. DOI: 10.1016/j.applthermaleng.2019.114508.
  • Bian, J.; Cao, X. W.; Yang, W.; Song, X. D.; Xiang, C. C.; Gao, S. Condensation Characteristics of Natural Gas in the Supersonic Liquefaction Process. Energy 2019, 168, 99–110. DOI: 10.1016/j.energy.2018.11.102.
  • Bian, J.; Cao, X. W.; Teng, L.; Sun, Y.; Gao, S. Effects of Inlet Parameters on the Supersonic Condensation and Swirling Characteristics of Binary Natural Gas Mixture. Energy 2019, 188, 116082. DOI: 10.1016/j.energy.2019.116082.
  • Liu, Y.; Cao, X. W.; Yang, J.; Li, Y.; Bian, J. Energy Separation and Condensation Effects in Pressure Energy Recovery Process of Natural Gas Supersonic Dehydration. Energy Convers. Manage. 2021, 245, 114557. DOI: 10.1016/j.enconman.2021.114557.
  • Chen, J. N.; Huang, Z. Numerical Study on Carbon Dioxide Capture in Flue Gas by Converging Diverging Nozzle. Fuel. 2022, 320, 123889. DOI: 10.1016/j.fuel.2022.123889.
  • Chen, J. N.; Huang, Z. Spontaneous Condensation of Carbon Dioxide in Flue Gas at Supersonic State. Energy. 2022, 254, 124418. DOI: 10.1016/j.energy.2022.124418.
  • Pope, S. Turbulent Flows; Cambridge University Press: Cambridge, 2000.
  • Karthick, A. ANSYS FLUENT Tutorial Guide; Ansys Inc: USA, 2014.
  • Rajasekaran, A.; Babu, V. Numerical Simulation of Three-Dimensional Reacting Flow in a Model Supersonic Combustor. J. Propuls. Power. 2006, 22(4), 820–827. DOI: 10.2514/1.14952.
  • Rodriguez, G. C.; Andrew, C. Numerical Analysis of the SCHOLAR Supersonic Combustor. NTRS. 2003, 212689. http://techreports.larc.nasa.gov/ltrs/
  • Yin, G.; Huang, W. X.; Xu, C. X. Prediction of Near-Wall Turbulence Using Minimal Flow Unit. J. Fluid. Mech. 2018, 841, 654–673. DOI: 10.1017/jfm.2018.55.
  • Arina, R. Numerical Simulation of Near-Critical Fluids. Appl. Numer. Math. 2004, 51(4), 409–426. DOI: 10.1016/j.apnum.2004.06.002.
  • Saffman, P. G. The Lift on a Small Sphere in a Slow Shear Flow. J. Fluid. Mech. 1965, 22(2), 385–400. DOI: 10.1017/S0022112065000824.
  • Talbot, L.; Cheng, R. K.; Schefer, R. W.; Willis, D. R. Thermophoresis of Particles in a Heated Boundary Layer. J. Fluid. Mech. 1980, 101(4), 737–758. DOI: 10.1017/S0022112080001905.
  • Wang, Y. G.; Yang, Y.; Hu, D. P.; Xu, D. X.; Yi, L.; Zhang, Y.; Zhang, S. Improvement of Drainage Structure and Numerical Investigation of Droplets Trajectories and Separation Efficiency for Supersonic Separators. Chem. Eng. Process. 2020, 151(1), 107844. DOI: 10.1016/j.cep.2020.107844.
  • Ounis, H.; Ahmadi, G.; Mclaughlin, J. B. Brownian Diffusion of Submicrometer Particles in the Viscous Sublayer. J. Colloid Interf. Sci. 1991, 143(1), 266–277. DOI: 10.1016/0021-9797(91)90458-K.
  • Wen, C.; Li, A. Q.; Walther, J. H.; Yang, Y. Effect of Swirling Device on Flow Behavior in a Supersonic Separator for Natural Gas Dehydration. Separ. Purif. Technol. 2016, 168, 68–73. DOI: 10.1016/j.seppur.2016.05.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.