171
Views
4
CrossRef citations to date
0
Altmetric
Coagulation

Do mono- or diphenol substitutions in phenanthroline-based ligands serve in effective separation of Am3+/Eu3+ ions?- Insights from DFT calculations

, & ORCID Icon
Pages 627-641 | Received 03 Aug 2022, Accepted 12 Dec 2022, Published online: 28 Dec 2022

REFERENCES

  • Environmental Protection Agency (EPA). Carbon Pollution Emission Guidelines for Existing Stationary Sources: Electric Utility Generating Units; 2015.
  • Zhang, X.; Wu, Q.; Lan, J.; Yuan, L.; Xu, C.; Chai, Z.; Shi, W. Highly Selective Extraction of Pu (IV) and Am (III) by N,N′-Diethyl-N,N′-Ditolyl-2,9-Diamide-1,10-Phenanthroline Ligand: An Experimental and Theoretical Study. Sep. Purif. Technol. 2019, 223, 274. DOI: 10.1016/j.seppur.2019.04.072.
  • Baumgärtner, F.; Ertel, D. The Modern Purex Process and Its Analytical Requirements. J. Radioanal. Nucl. Chem. 1980, 58, 11. DOI: 10.1007/BF02533770.
  • Kubota, M.; Fukase, T. Formation of Precipitate in High-Level Liquid Waste from Nuclear Fuel Reprocessing. J. Nucl. Sci. Technol. 1980, 17, 783. DOI: 10.1080/18811248.1980.9732654.
  • Magill, J.; Berthou, V.; Haas, D.; Galy, J.; Schenkel, R.; Wiese, J.; Heusener, G.; Tommasi, J.; Youinou, G. Impact Limits of Partitioning and Transmutation Scenarios on the Radiotoxicity of Actinides in Radioactive Waste. Nucl. Energy-London. 2003, 42, 263. DOI: 10.1680/nuen.42.5.263.37622.
  • Jang, J.; Harwood, L. M.; Lee, D. S. 5-Bromo-2,9-Bis(5,6-Diphenyl-1,2,4-Triazin-3-Yl)-1,10-Phenanthrolin as an Efficient Ligand for Selective Removal of Strontium and Cobalt from Aqueous Solution. Bull. Korean Chem. Soc. 2019, 40, 424. DOI: 10.1002/bkcs.11706.
  • O.N.E. Agency. NEA Newsletter; OECD Nuclear Energy Agency, 1999.
  • Gorden, A. E.; DeVore, M. A.; Maynard, B. A. Coordination Chemistry with F-Element Complexes for an Improved Understanding of Factors That Contribute to Extraction Selectivity. Inorg. Chem. 2013, 52, 3445. DOI: 10.1021/ic300887p.
  • Panak, P. J.; Geist, A. Chem. Rev. 2013, 113, 1199. DOI: 10.1021/cr3003399.
  • Mahanty, B.; Mohapatra, P. K.; Leoncini, A.; Huskens, J.; Verboom, W. Evaluation of Three Novel Benzene-Centered Tripodal Diglycolamide Ligands for the Pertraction of americium(iii) Through Flat Sheet Membranes for Nuclear Waste Remediation Applications. Sep. Purif. Technol. 2019, 229, 115846. DOI: 10.1016/j.seppur.2019.115846.
  • Lebreton, F.; Prieur, D.; Horlait, D.; Delahaye, T.; Jankowiak, A.; Léorier, C.; Jorion, F.; Gavilan, E.; Desmoulière, F. Recent Progress on Minor-Actinide-Bearing Oxide Fuel Fabrication at CEA Marcoule. J. Nucl. Mater. 2013, 438, 99. DOI: 10.1016/j.jnucmat.2013.02.079.
  • Bennie, R. B.; Livingston, D. J.; Joel, C.; Jeyanthi, D.; Solomon, R. V. Crystal structure, chemical nuclease activity, and VHPO mimicking potential of oxovanadium(IV) complexes—A combined experimental and computational study. Appl. Organomet. Chem. 2020, 35(2), e6106. DOI: 10.1002/aoc.6106.
  • Pearson, R. G. The HSAB Principle — More Quantitative Aspects. Inorganica Chim. Acta. 1995, 240, 93. DOI: 10.1016/0020-1693(95)04648-8.
  • Petit, L.; Daul, C.; Adamo, C.; Maldivi, P. DFT Modeling of the Relative Affinity of Nitrogen Ligands for Trivalent F Elements: An Energetic Point of View. New. J. Chem. 2007, 31, 1738. DOI: 10.1039/b706332f.
  • Miguirditchian, M.; Guillaneux, D.; Francois, N.; Airvault, S.; Ducros, S.; Thauvin, D.; Madic, C.; Illemassene, M.; Lagarde, G.; Krupa, J.-C. Complexation of lanthanide(iii) and actinide(iii) Cations with Tridentate Nitrogen-Donor Ligands: A Luminescence and Spectrophotometric Study. Nucl. Sci. Eng. 2006, 153, 223. DOI: 10.13182/NSE06-A2608.
  • Hudson, M. J.; Harwood, L. M.; Laventine, D. M.; Lewis, F. W. Use of Soft Heterocyclic N-Donor Ligands to Separate Actinides and Lanthanides. Inorg. Chem. 2013, 52, 3414. DOI: 10.1021/ic3008848.
  • Colette, S.; Amekraz, B.; Madic, C.; Berthon, L.; Cote, G.; Moulin, C. Europium(iii) Interaction with a Polyaza-Aromatic Extractant Studied by Time-Resolved Laser-Induced Luminescence: A Thermodynamical Approach. Inorg. Chem. 2004, 43, 6745. DOI: 10.1021/ic049311r.
  • Wu, Q.-Y.; Song, Y.-T.; Ji, L.; Wang, C.-Z.; Chai, Z.-F.; Shi, W.-Q. Phys. Chem. Chem. Phys. 2017, 19, 26969. DOI: 10.1039/C7CP04625A.
  • Horwitz, E.; Muscatello, A.; Kalina, D.; Kaplan, L. Sep. Sci. Technol. 1981, 16, 417. DOI: 10.1080/01496398108068530.
  • Naganawa, H.; Suzuki, H.; Tachimori, S.; Nasu, A.; Sekine, T. Effect of the Hydrophobic Anion of Picrate on the Extraction of europium(iii) with Diamide. Bull. Chem. Soc. Jpn. 2000, 73, 623. DOI: 10.1246/bcsj.73.623.
  • Lipin, R.; Ebenezer, C.; Solomon, R. V. Theoretical Evaluation of Mixed N-, O- Donor Based TMPhenDa Ligand in Selective Complexation with Actinide (III) Ions Over Lanthanide (III) Ions. J. Mol. Liq. 2021, 332, 115819. DOI: 10.1016/j.molliq.2021.115819.
  • Kobayashi, T.; Akutsu, K.; Nakase, M.; Suzuki, S.; Shiwaku, H.; Yaita, T. Sep. Sci. Technol. 2019, 54, 2077. DOI: 10.1080/01496395.2019.1575880.
  • Yang, Y.; Zhang, Z.; Yang, L.; Liu, J.; Xu, C.; Luo, S.; Rao, L. Inorg. Chem. 2019, 58, 6064. DOI: 10.1021/acs.inorgchem.9b00319.
  • Borisova, N. E.; Kostin, A. A.; Reshetova, M. D.; Lyssenko, K. A.; Belova, E. V.; Myasoedov, B. F. The Structurally Rigid Tetradentate N,N′,O,O′-Ligands Based on Phenanthroline for Binding of F-Elements: The Substituents Vs. Structures of the Complexes. Inorganica Chim. Acta. 2018, 478, 148. DOI: 10.1016/j.ica.2018.03.042.
  • Xiao, C.-L.; Wang, C.-Z.; Yuan, L.-Y.; Li, B.; He, H.; Wang, S.; Zhao, Y.-L.; Chai, Z.-F.; Shi, W.-Q. Excellent Selectivity for Actinides with a Tetradentate 2,9-Diamide-1,10-Phenanthroline Ligand in Highly Acidic Solution: A Hard–Soft Donor Combined Strategy. Inorg. Chem. 2014, 53, 1712. DOI: 10.1021/ic402784c.
  • Nakase, M.; Kobayashi, T.; Shiwaku, H.; Suzuki, S.; Grimes, T. S.; Mincher, B. J.; Yaita, T. Solvent Extr. Ion Exch. 2018, 36, 633. DOI: 10.1080/07366299.2018.1532137.
  • Xu, L.; Pu, N.; Li, Y.; Wei, P.; Sun, T.; Xiao, C.; Chen, J.; Xu, C. Selective Separation and Complexation of Trivalent Actinide and Lanthanide by a Tetradentate Soft–Hard Donor Ligand: Solvent Extraction, Spectroscopy, and DFT Calculations. Inorg. Chem. 2019, 58, 4420. DOI: 10.1021/acs.inorgchem.8b03592.
  • Chenot, C. C.; Robiette, R. L.; Collin, S. First Evidence of the Cysteine and Glutathione Conjugates of 3-Sulfanylpentan-1-Ol in Hop (Humulus Lupulus L.). J. Agric. Food Chem. 2019, 67(14), 4002. DOI: 10.1021/acs.jafc.9b00225.
  • Zhang, X.; Yuan, L.; Chai, Z.; Shi, W. A New Solvent System Containing N,N′-Diethyl-N,N′-Ditolyl-2,9-Diamide-1,10-Phenanthroline in 1-(Trifluoromethyl)-3-Nitrobenzene for Highly Selective UO 2 2+ Extraction. Sep. Purif. Technol. 2016, 168, 232. DOI: 10.1016/j.seppur.2016.05.056.
  • Wang, C.; Wu, Q.-Y.; Wang, C.-Z.; Lan, J.-H.; Nie, C.-M.; Chai, Z.-F.; Shi, W.-Q. Theoretical Insights into Selective Separation of Trivalent Actinide and Lanthanide by Ester and Amide Ligands Based on Phenanthroline Skeleton. Dalton Trans. 2020, 49, 4093. DOI: 10.1039/D0DT00218F.
  • Liu, Y.; Wang, C.-Z.; Wu, Q.-Y.; Lan, J.-H.; Chai, Z.-F.; Liu, Q.; Shi, W.-Q. Theoretical Insights into Transplutonium Element Separation with Electronically Modulated Phenanthroline-Derived Bis-Triazine Ligands. Inorg. Chem. 2021, 60, 10267. DOI: 10.1021/acs.inorgchem.1c00668.
  • Liu, Y.; Wang, C.-Z.; Wu, Q.-Y.; Lan, J.-H.; Chai, Z.-F.; Liu, Q.; Shi, W.-Q. Theoretical Prediction of the Potential Applications of Phenanthroline Derivatives in Separation of Transplutonium Elements. Inorg. Chem. 2020, 59, 11469. DOI: 10.1021/acs.inorgchem.0c01271.
  • Ziegler, T.; Autschbach, J.; Bashford, D.; Bérces, A.; Bickelhaupt, F.; Bo, C.; Boerrigter, P.; Cavallo, L.; Chong, D.; Deng, L. ADF developers version, Theoretical Chemistry; 2016.
  • Lenthe, E. V.; Baerends, E.-J.; Snijders, J. G. Relativistic Regular Two-Component Hamiltonians. J. Chem. Phys. 1993, 99, 4597. DOI: 10.1063/1.466059.
  • van Lenthe, E.; Ehlers, A.; Baerends, E.-J. Geometry Optimizations in the Zero Order Regular Approximation for Relativistic Effects. J. Chem. Phys. 1999, 110, 8943. DOI: 10.1063/1.478813.
  • Te Velde, G. T.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J.; Snijders, J. G.; Ziegler, T. Chemistry with ADF. J. Comput. Chem. 2001, 22, 931. DOI: 10.1002/jcc.1056.
  • Roger, M.; Belkhiri, L.; Thuéry, P.; Arliguie, T.; Fourmigué, M.; Boucekkine, A.; Ephritikhine, M. Lanthanide(iii)/actinide(iii) Differentiation in Mixed Cyclopentadienyl/Dithiolene Compounds from X-Ray Diffraction and Density Functional Theory Analysis. Organometallics. 2005, 24, 4940. DOI: 10.1021/om050329z.
  • Zaiter, A.; Amine, B.; Bouzidi, Y.; Belkhiri, L.; Boucekkine, A.; Ephritikhine, M. Selectivity of Azine Ligands Toward lanthanide(iii)/actinide(iii) Differentiation: A Relativistic DFT Based Rationalization. Inorg. Chem. 2014, 53, 4687. DOI: 10.1021/ic500361b.
  • Teyar, B.; Boucenina, S.; Belkhiri, L.; Le Guennic, B.; Boucekkine, A.; Mazzanti, M. Theoretical Investigation of the Electronic Structure and Magnetic Properties of Oxo-Bridged Uranyl(v) Dinuclear and Trinuclear Complexes. Inorg. Chem. 2019, 58, 10097. DOI: 10.1021/acs.inorgchem.9b01237.
  • Kias, F.; Talbi, F.; Elkechai, A.; Boucekkine, A. C F Bond Breaking by Bare Actinide Monocations in the Gas Phase: A Relativistic DFT Study. Comput. Theor. Chem. 2017, 1118, 133. DOI: 10.1016/j.comptc.2017.09.002.
  • Kovacs, A.; Konings, R. J.; Gibson, J. K.; Infante, I.; Gagliardi, L. Quantum Chemical Calculations and Experimental Investigations of Molecular Actinide Oxides. Chem. Rev. 2015, 115, 1725. DOI: 10.1021/cr500426s.
  • Aebersold, L. E.; Wilson, A. K. Considering Density Functional Approaches for Actinide Species: The An66 Molecule Set. J. Phys. Chem. A. 2021, 125, 7029. DOI: 10.1021/acs.jpca.1c06155.
  • Pettersson, L.; Wahlgren, U. An Investigation of Basis Sets and Basis Set Superposition Error in Transition Metals Using Frozen Core and Frozen Orbital Techniques. Chem. Phys. 1982, 69, 185. DOI: 10.1016/0301-0104(82)88145-7.
  • Von Barth, U.; Gelatt, C. Validity of the Frozen-Core Approximation and Pseudopotential Theory for Cohesive Energy Calculations. Phys. Rev. B. 1980, 21, 2222. DOI: 10.1103/PhysRevB.21.2222.
  • Wang, C.-Z.; Lan, J.-H.; Wu, Q.-Y.; Zhao, Y.-L.; Wang, X.-K.; Chai, Z.-F.; Shi, W.-Q. Density Functional Theory Investigations of the Trivalent lanthanide and actinide Extraction Complexes with Diglycolamides. Dalton Trans. 2014, 43, 8713. DOI: 10.1039/c4dt00032c.
  • Sadhu, B.; Sundararajan, M.; Bandyopadhyay, T. Efficient Separation of Europium Over Americium Using Cucurbit-[5]-Uril Supramolecule: A Relativistic DFT Based Investigation. Inorg. Chem. 2016, 55, 598. DOI: 10.1021/acs.inorgchem.5b01627.
  • Pettersson, L. G.; Wahlgren, U.; Gropen, O. Effective Core Potential Calculations Using Frozen Orbitals. Applications to Transition Metals. Chem. Phys. 1983, 80(7). DOI: 10.1016/0301-0104(83)85164-7.
  • Ziegler, T.; Rauk, A. On the Calculation of Bonding Energies by the Hartree Fock Slater Method. Theor. Chim. Acta. 1977, 46, 1. DOI: 10.1007/BF02401406.
  • Fernández, I.; Frenking, G. J. Org. Chem. 2007, 72, 7367. DOI: 10.1021/jo071262n.
  • Schnaars, K.; Kaneko, M.; Fujisawa, K. Inorg. Chem. 2021, 60, 2477. DOI: 10.1021/acs.inorgchem.0c03405.
  • Mayer, I. Bond Order and Valence Indices: A Personal Account. J. Comput. Chem. 2007, 28, 204. DOI: 10.1002/jcc.20494.
  • Bridgeman, A. J.; Cavigliasso, G.; Ireland, L. R.; Rothery, J. The Mayer Bond Order as a Tool in Inorganic Chemistry†. J. Chem. Soc. Dalton Trans. 2001, 2095. DOI: 10.1039/b102094n.
  • Rodríguez, J. I.; Bader, R. F.; Ayers, P. W.; Michel, C.; Götz, A. W.; Bo, C. A High Performance Grid-Based Algorithm for Computing QTAIM Properties. Chem. Phys. Lett. 2009, 472, 149. DOI: 10.1016/j.cplett.2009.02.081.
  • Rodríguez, J. I. An Efficient Method for Computing the QTAIM Topology of a Scalar Field: The Electron Density Case. J. Comput. Chem. 2013, 34, 681. DOI: 10.1002/jcc.23180.
  • Autschbach, J.; King, H. F. Analyzing Molecular Static Linear Response Properties with Perturbed Localized Orbitals. J. Chem. Phys. 2010, 133, 044109. DOI: 10.1063/1.3455709.
  • Emamian, S.; Lu, T.; Kruse, H.; Emamian, H. Exploring Nature and Predicting Strength of Hydrogen Bonds: A Correlation Analysis Between Atoms-In-Molecules Descriptors, Binding Energies, and Energy Components of Symmetry-Adapted Perturbation Theory. J. Comput. Chem. 2019, 40, 2868. DOI: 10.1002/jcc.26068.
  • Fonseca Guerra, C.; Handgraaf, J. W.; Baerends, E. J.; Bickelhaupt, F. M. Voronoi Deformation Density (VDD) Charges: Assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD Methods for Charge Analysis. J. Comput. Chem. 2004, 25, 189. DOI: 10.1002/jcc.10351.
  • Ehrlich, S.; Moellmann, J.; Grimme, S. Dispersion-Corrected Density Functional Theory for Aromatic Interactions in Complex Systems. Acc. Chem. Res. 2013, 46, 916. DOI: 10.1021/ar3000844.
  • Wu, H.; Wu, Q.-Y.; Wang, C.-Z.; Lan, J.-H.; Liu, Z.-R.; Chai, Z.-F.; Shi, W.-Q. Dalton Trans. 2015, 44, 16737. DOI: 10.1039/C5DT02528A.
  • Allen, P.; Bucher, J.; Shuh, D.; Edelstein, N.; Craig, I. Coordination Chemistry of Trivalent Lanthanide and Actinide Ions in Dilute and Concentrated Chloride Solutions. Inorg. Chem. 2000, 39, 595. DOI: 10.1021/ic9905953.
  • Bhattacharyya, A.; Ghanty, T. K.; Mohapatra, P. K.; Manchanda, V. K. Selective americium(iii) Complexation by Dithiophosphinates: A Density Functional Theoretical Validation for Covalent Interactions Responsible for Unusual Separation Behavior from Trivalent Lanthanides. Inorg. Chem. 2011, 50, 3913. DOI: 10.1021/ic102238c.
  • Afsar, A.; Laventine, D. M.; Harwood, L. M.; Hudson, M. J.; Geist, A. Utilizing Electronic Effects in the Modulation of BTPhen Ligands with Respect to the Partitioning of Minor Actinides from Lanthanides. Chem. Comm. 2013, 49, 8534. DOI: 10.1039/c3cc45126g.
  • Arnold, P. L.; Turner, Z. R.; Kaltsoyannis, N.; Pelekanaki, P.; Bellabarba, R. M.; Tooze, R. P. Covalency in CeIv and UIV Halide and N-Heterocyclic Carbene Bonds. Eur. J. Chem. 2010, 16, 9623. DOI: 10.1002/chem.201001471.
  • Ebenezer, C.; Solomon, R. V. Polyhedron. 2021, 210, 115533. DOI: 10.1016/j.poly.2021.115533.
  • Ebenezer, C.; Solomon, R. V. Do Nitrate Ions Preferentially Bind to Ln/An Ion in Nuclear Waste Treatment? – Answers from DFT Calculations. Polyhedron. 2022, 215, 115691. DOI: 10.1016/j.poly.2022.115691.
  • Vlaisavljevich, B.; Miró, P.; Cramer, C. J.; Gagliardi, L.; Infante, I.; Liddle, S. T. On the Nature of Actinide- and Lanthanide-Metal Bonds in Heterobimetallic Compounds. Eur. J. Chem. 2011, 17, 8424. DOI: 10.1002/chem.201100774.
  • Jones, M. B.; Gaunt, A. J.; Gordon, J. C.; Kaltsoyannis, N.; Neu, M. P.; Scott, B. L. Uncovering F-Element Bonding Differences and Electronic Structure in a Series of 1 : 3 and 1 : 4 Complexes with a Diselenophosphinate Ligand. Chem. Sci. 2013, 4, 1189. DOI: 10.1039/c2sc21806b.
  • Stephen, A. D.; Srinivasan, P.; Kumaradhas, P. Bond Charge Depletion, Bond Strength and the Impact Sensitivity of High Energetic 1,3,5-Triamino 2,4,6-Trinitrobenzene (TATB) Molecule: A Theoretical Charge Density Analysis. Comput. Theor. Chem. 2011, 967, 250. DOI: 10.1016/j.comptc.2011.04.026.
  • Altmaier, M.; Gaona, X.; Fanghänel, T. Recent Advances in Aqueous Actinide Chemistry and Thermodynamics. Chem. Rev. 2013, 113, 901. DOI: 10.1021/cr300379w.
  • Ansari, S. A.; Pathak, P.; Mohapatra, P. K.; Manchanda, V. K. Aqueous Partitioning of Minor Actinides by Different Processes. Sep. Purif. Rev. 2011, 40, 43. DOI: 10.1080/15422119.2010.545466.
  • Ebenezer, C.; Solomon, R. V. Tailoring the Selectivity of Phenanthroline Derivatives for the Partitioning of Trivalent Am/Eu Ions – a Relativistic DFT Study. Inorg. Chem. Front. 2021, 8, 3012. DOI: 10.1039/D1QI00097G.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.