199
Views
3
CrossRef citations to date
0
Altmetric
Flocculation

Modified biofloc technology and its effects on water quality and growth of catfish

ORCID Icon, , & ORCID Icon
Pages 944-960 | Received 13 Aug 2022, Accepted 04 Jan 2023, Published online: 19 Jan 2023

References

  • Kementerian Kelautan dan Perikanan (KKP), 2020. KKP Lakukan Integrasi Dan Inovasi Program Budidaya Berkelanjutan. [in Indonesian]. https://kkp.go.id/djpb/artikel/14323-kkp-lakukan-integrasi-dan-inovasi-program-budidaya-berkelanjutan
  • Yi, Y.; Lin, C. K.; Dan Diana, J. S. Hybrid Catfish (Clarias Macrocephalus >< C. Gariepinus) and Nile Tilapia (Oreochromis Niloticus) Culture in an Integrated Pen Compound System: Growth Performance and Nutrient Budgets. Aquaculture. 2003, 217, 395–408. DOI: 10.1016/S0044-8486(02)00540-9.
  • Hargreaves, J. A. Biofloc Production Systems for Aquaculture. Southern. Regional. Aquacult. Center. 2013, 4305, 1–12.
  • Avnimelech, Y. Biofloc Technology: A Practical Guide Book, 3rd ed.; Baton Rouge: Louisiana, United States, 2015.
  • Khanjani, M. H.; Sharifinia, M. Biofloc Technology as a Promising Tool to Improve Aquaculture Production. Rev. Aquacult. 2020, 12, 1836–1850. DOI: 10.1111/raq.12412.
  • El-Sayed, A. M. Use of Biofloc Technology in Shrimp Aquacul- Ture: A Comprehensive Review, with Emphasis on the Last Decade. Rev. Aquacult. 2021, 13, 676–705. DOI: 10.1111/raq.12494.
  • Emerenciano, M. G. C.; Rombenso, A. N.; Vieira, F.; Martins, M. A.; Coman, G. J.; Truong, H. H.; Noble, T. H.; Simon, C. J. Intensi- Fication of Penaeid Shrimp Culture: An Applied Review of Advances in Production Systems, Nutrition and Breeding. Animals. 2022, 12, 236. DOI: 10.3390/ani12030236.
  • Anand, P. S. S.; Kohli, M. P. S.; Kumar, S.; Sundaray, J. K.; Roy, S. D.; Venkateshwarlu, G.; Sinha, A.; Pailan, G. H. Effect of Dietary Supplementation of Biofloc on Growth Performance and Digestive Enzyme Activities in Penaeus Monodon. Aquaculture. 2014, 418–419, 108–115. DOI: 10.1016/j.aquaculture.2013.09.051.
  • Kuhn, D. D.; Boardman, G. D.; Lawrence, A. L.; Marsh, L.; Flick, G. J., Jr. Microbial Floc Meal as a Replacement Ingredient for Fish Meal and Soybean Protein in Shrimp Feed. Aquaculture. 2009, 296, 51–57. DOI: 10.1016/j.aquaculture.2009.07.025.
  • Kuhn, D. D.; Lawrence, A. L.; Boardman, G. D.; Patnaik, S.; Marsh, L.; Flick, G. J. Evaluation of Two Types of Bioflocs Derived from Biological Treatment of Fish Effluent as Feed Ingredients for Pacific White Shrimp. Litopenaeus vannamei. Aquaculture. 2010, 303, 28–33. DOI: 10.1016/j.aquaculture.2010.03.001.
  • Piedrahita, R. H. Reducing the Potential Environmental Impact of Tank Aquaculture Effluents Through Intensification and Recirculation. Aquaculture. 2003, 226, 35–44. DOI: 10.1016/S0044-8486(03)00465-4.
  • Wasielesky, W.; Atwood, H.; Stokes, A.; Browdy, C. L. Effect of Natural Production in a Zero Exchange Suspended Microbial Floc Based Super-Intensive Culture System for White Shrimp, Litopenaeus Vannamei. Aquaculture. 2006, 258(1), 396–403. DOI: 10.1016/j.aquaculture.2006.04.030.
  • Avnimelech, Y.; Kochba, M. Evaluation of Nitrogen Uptake and Excretion by Tilapia in Biofloc Tanks, Using 15 N Tracing. Aquaculture. 2009, 287, 163–168. DOI: 10.1016/j.aquaculture.2008.10.009.
  • Avnimelech, Y. Feeding with Microbial Flocs by Tilapia in Minimal Discharge Bioflocs Technology Ponds. Aquaculture. 2007, 264, 140–147. DOI: 10.1016/j.aquaculture.2006.11.025.
  • Azim, M. E.; Little, D. C. The Biofloc Technology (BFT) in Indoor Tanks: Water Quality, Biofloc Composition, and Growth and Welfare of Nile Tilapia (Oreochromis Niloticus). Aquaculture. 2008, 283, 29–35. DOI: 10.1016/j.aquaculture.2008.06.036.
  • Ebeling, J. M.; Timmons, M. B.; Bisogni, J. J. Engineering Analysis of the Stoichiometry of Photoautotrophic, Autotrophic, and Heterotrophic Control of Ammonia-Nitrogen in Aquaculture in Aquaculture Production Systems. Aquaculture. 2006, 257, 346–358. DOI: 10.1016/j.aquaculture.2006.03.019.
  • Minabi, K.; Sourinejad, I.; Alizadeh, M.; Ghatrami, E. R.; Khanjani, M. H. Effects of Different Carbon to Nitrogen Ratios in the Biofloc System on Water Quality, Growth, and Body Composition of Common Carp (Cyprinus Carpio L.) Fingerlings. Aquac. Int. 2020, 28, 1883–1898. DOI: 10.1007/s10499-020-00564-7.
  • Khanjani, M. H.; Sharifinia, M. Biofloc Technology with Addition Molasses as Carbon Sources Applied to Litopenaeus Vanna- Mei Juvenile Production Under the Effects of Different C/N Ratios. Aquac. Int. 2022, 30, 383–397. DOI: 10.1007/s10499-021-00803-5.
  • Deswati, D.; Safni, S.; Khairiyah, K.; Yusuf, Y.; Pardi, H.; Pardi, H. Environmental Detoxification of Heavy Metals in Flood & Drain Aquaponic System Based on Biofloc Technology. Int. J. Environ. Anal. Chem. 2020a, 102, 7155–7164. DOI: 10.1080/03067319.2020.1826463.
  • Deswati, D.; Safni, S.; Khairiyah, K.; Yani, E.; Yusuf, Y.; Refinel, R.; Pardi, H. Biofloc technology: Water quality (pH, temperature, DO, COD, BOD) in a flood & drain aquaponic system. Int. J. Environ. Anal. Chem. 2020b, 102, 6835–6844. DOI: 10.1080/03067319.2020.1826463.
  • Deswati, D.; Elsa Yani, E.; Safni, S.; Pardi, H.; Pardi, H. Development Methods in Aquaponics Systems Using Biofloc to Improve Water Quality (Amoia, Nitrite, Nitrate) and Growth of Tilapia and Samhong Mustard. Int. J. Environ. Anal. Chem. 2020c, 102, 7824–7834. DOI: 10.1080/03067319.2020.1839437.
  • Safni, D.; Isara, L. P.; Pardi, H.; Roesma, D. I.; Pardi, H. Hydroton-Biofloc-Based Aquaponics (Hydroton-Flocponics): Towards Good Water Quality and Macro-Micro Nutrient. AACL. Bioflux. 2021a, 14(04), 3127–3144. DOI: 10.31788/RJC.2021.1446576.
  • Deswati, D.; Tetra, O. N.; Isara, L. P.; Roesma, D. I.; Pardi, H. Samhong Mustard Cultivation by Utilizing Tilapia Waste in Nutrient Film Technique (NFT) Aquaponics System Based on Biofloc, and Its Impact on Water Quality. Rasayan J. Chem. 2021b, 14(4), 2559–2566. DOI: 10.31788/RJC.2021.1446576.
  • Deswati, U. N.; Yusuf, Y.; Tetra, O. N.; Edelwis, T. W.; Pardi, H. Improvement of Water Quality (Cu, Fe, Zn) in Biofloc Aquaponics Systems by Utilizing Fish Waste as a Source of Micronutrients. AACL. Biofluc. 2021c, 14(6), 3440–3449. DOI: 10.31788/RJC.2021.1446576.
  • Emerenciano, M. G. C.; Martínez-Córdova, L. R.; Martínez-Porchas, M.; Miranda-Baeza, A. Biofloc Technology (BFT): A Tool for Water Quality Management in Aquaculture. In Water Quality; Tutu, H., Ed.; IntechOpen: London (UK), 2017; Vol. 5, pp. 92–109.
  • Das, S. K.; Mandal, A. Environmental Amelioration in Biofloc Based Rearing System of White Leg Shrimp (Litopenaeus Vannamei) in West Bengal, India. Aquat. Living Res. 2021a, 34, 1–12. DOI: 10.1051/alr/2021016.
  • Das, S. K.; Mandal, A. Supplementation of Biofloc in Carp (Cyprinus Carpio Var. Communis) Culture as a Potential Tool of Resource Management in Aquaculture. Aquat. Living Res. 2021b, 34, 1–12. DOI: 10.1051/alr/2021019.
  • Poli, M. A.; Martins, M. A.; Pereira, S. A.; Jesus, G. F. A.; Martins, M. L.; Mouriño, J. L. P.; Vieira, F. N. Increasing Stocking Densities Affect Hemato-Immunological Parameters of Nile Tilapia Reared in an Integrated System with Pacific White Shrimp Using Biofloc Tech- Nology. Aquaculture. 2021, 536, 736497. DOI: 10.1016/j.aquaculture.2021.736497.
  • Khanjani, M. H.; Eslami, J.; Ghaedi, G.; Sourinejad, I. The Effects of Different Stocking Densities on Nursery Performance of Banana Shrimp (Fenneropenaeus Merguiensis) Reared Under Biofloc Condition. Annals. Animal Sci. 2022a, 22, 1291–1299. DOI: 10.2478/aoas-2022-0027.
  • Esparza-Leal, H. M.; Ponce-Palafox, J. T.; Alvarez-Ruiz, P.; Lopez-´alvarez, E. S.; Vazquez- Montoya, N.; Lopez-Espinoza, M.; Montoya-Mejía, M.; Gomez-Peraza, R. L.; Nava-Perez, E. Effect of Stocking Density and Water Exchange on Performance and Stress Tolerance to Low and High Salinity by Litopenaeus Vannamei Post- Larvae Reared with Biofloc in Intensive Nursery Phase. Aquac. Int. 2020, 28, 1473–1483. DOI: 10.1007/s10499-020-00535-y.
  • Dinda, R.; Mandal, A.; Das, S. K. Neem (Azadirachta Indica A. Juss) Supplemented Biofloc Medium as Alternative Feed in Com- Mon Carp (Cyprinus Carpio Var. communis Linnaeus) culture. J. Appl. Aquac. 2020, 32, 361–379. DOI: 10.1080/10454438.2019.1645076.
  • Dorothy, M. S.; Vungarala, H.; Sudhagar, A.; Reddy, A. K.; Rani Asanaru Majeedkutty, B. Growth, Body Composition and Antioxi- Dant Status of Litopenaeus Vannamei Juveniles Reared at Different Stocking Densities in the Biofloc System Using Inland Saline Groundwater. Aquac. Res. 2021, 52, 6299–6307. DOI: 10.1111/are.15493.
  • Khanjani, M. H.; Sharifinia, M.; Hajirezaee, S. Recent Progress Towards the Application of Biofloc Technology for Tilapia Farming. Aquaculture. 2022b, 552, 738021. DOI: 10.1016/j.aquaculture.2022.738021.
  • Ekasari, J.; Crab, R.; Verstraete, W. Primary Nutritional Content of Bioflocs Cultured with Different Organic Carbon Sources and Salinity. Hayati. J. Biosci. 2010, 17(3), 125–130. DOI: 10.4308/hjb.17.3.125.
  • Khanjani, M. H.; Alizadeh, M.; Sharifinia, M. Effects of Different Carbon Sources on Water Quality, Biofloc Quality, and Growth Performance of Nile Tilapia (Oreochromis Niloticus) Fingerlings in a Heterotrophic Culture System. Aquac. Int. 2021a, 29, 307–321. DOI: 10.1007/s10499-020-00627-9.
  • Khanjani, M. H.; Alizadeh, M.; Mohammadi, M.; Sarsangi Aliabad, H. Biofloc System Applied to Nile Tilapia (Oreochromis Niloticus) Farming Using Different Carbon Sources: Growth Performance, Carcass Analysis, Digestive and Hepatic Enzyme Activity. Iran. J. Fish. Sci. 2021b, 20, 490–513.
  • Setiawan, A.; Ariqoh, R.; Tivani, P.; Pipih, L.; Pudjiastuti, I. Bioflokulasi system teknologi budidaya lele tebar padat tinggi dengan kapasitas 1m3/750 ekor dengan flock forming bacteria. Journal. Inovasi Teknik Kimia. 2016, 1(1), 12–21, in Indonesian.
  • Widanarni, S.; Setiawati, M. Respons imun dan kinerja pertumbuhan ikan lele, Clarias gariepinus (Burchell 1822) pada budidaya sistem bioflok dengan sumber karbon berbeda serta diinfeksi Aeromonas hydrophila. Jurnal. Iktiologi Indonesian. 2017, 16(3), 309–323. [in Indonesian].
  • Hari, B.; Kurup, B. M.; Varghese, J. T.; Schrama, J. W.; Verdegem, M. C. J. The Effect of Carbohydrate Addition on Water Quality and the Nitrogen Budget in Extensive Shrimp Culture Sistems. Aquaculture. 2006, 252, 248–263. DOI: 10.1016/j.aquaculture.2005.06.044.
  • Ogello, E. O.; Outa, N. O.; Obiero, K. O.; Kyule, D. N.; Munguti, J. M. The Prospects of Biofloc Technology (BFT) for Sustainable Aquaculture Development. Scientific. African. 2021, e01053. DOI: 10.1016/j.sciaf.2021.e01053.
  • Deswati, S. J. Budidaya Lele Berbasis Bioflok. Plantaxia Yogjakarta. [in Indonesian], 2022
  • Aiyushirota. Konsep budidaya udang sistem bakteri heterotrof dengan bioflok. Dikutif dari https://www.aiyushirota.comdiakses pada 5 Maret 2022 [in Indonesian], 2009
  • Suprapto, N. S.; Samtasir, L. S. Biofloc – 165 Rahasia Sukses Teknologi Bioflok. Depok (ID): Agro 165, Depok- Jawa Barat. [in Indonesian]. 2013
  • BSN (Badan Standardisasi Nasional). Cara Uji Biochemical Oxygen Demand/BOD). Nomor 6989.72:2009; Jakarta. [in Indonesian], 2009
  • BSN (Badan Standardisasi Nasional). Cara Uji Chemical Oxygen Demand/COD). Nomor 6989.15:2019; Jakarta. [in Indonesian], 2019a
  • BSN (Badan Standardisasi Nasional). Cara uji nilai permanganat secara titrimetri. Nomor 06-6989.22-2004; Jakarta. [in Indonesian], 2004a
  • BSN (Badan Standardisasi Nasional). Cara uji secara nilai permanganat secara secara gravimetri. Nomor SNI-6898-27-2019; Jakarta. [in Indonesian], 2019b
  • BSN (Badan Standardisasi Nasional). Metode pengujian kadar ortofosfat dan fosfat dalam air dengan alat spektrofotometer secara asam askorbat. Nomor 19-2483-1991; Jakarta. [in Indonesian], 1991
  • BSN (Badan Standardisasi Nasional). Cara uji sulfat, SO42- secara turbidimetri. Nomor 06-6989.20-2004; Jakarta. [in Indonesian], 2004b
  • Pusat Pendidikan Kelautan dan Perikanan (PUSDIK-KP). Modul Teaching Factory Pembesara Ikan Air Tawar. Badan Pengembangan SDM Kelauta dan Perikanan. Jakarta. [in Indonesian], 2012
  • Idris, T.; Dian, S.; Debora, P.; Setiawan; Hani, W.; Muhammad, N.; Hendro, P.; Sonti, M.; HA, N.; PD, G. Budidaya ikan lele sistem bioflok. Direktorat Produksi dan Usaha Budidaya Journal of Agriculture Indonesia. [in Indonesian], 2018.
  • Zafar, N.; Khan, M. A. Growth, Feed Utilization, Mineralization and Antioxidant Response of Stinging Catfish Heteropneustes Fossilis Fed Diets with Different Levels of Manganese. Aquaculture. 2019, 509, 120–128. DOI: 10.1016/j.aquaculture.2019.05.022.
  • Sukardi, P.; Yuwono, E. Nutrisi ikan. Cetakan Pertama UPT. Percetakan dan Penerbitan, Universitas Jenderal Soedirman. Purwokerto: Pureokerto, East Java, Indonesia, [in Indonesian], 2010.
  • Steel, R. G. D.; Torrie, J. H. Principles and Procedures of Statistics a Biometrical Approach, 2nd ed.; McGraw-Hill Book Company: New York, 1980.
  • Ballester, E. L. C.; Abreu, P. C.; Cavalli, R. O.; Emerenciano, M.; Abreu, L.; Wasielesky, W. Effect of Practical Diets with Different Protein Levels on the Performance of Farfantepenaeus Paulensis Juveniles Nursed in a Zero Exchange Suspended Microbial Flocs Intensive System. Aquac. Nutr. 2010, 16(2), 163–172. DOI: 10.1111/j.1365-2095.2009.00648.x.
  • Avnimelech, Y. Biofloc Technology: A Practical Guide Book, 2nd ed.; The World Aquaculture Society, Baton Rouge: Louisiana, United States, 2012.
  • Abakari, G.; Wu, X.; He, X.; Fan, L.; Luo, G. Bacteria in Biofloc Technology Aquaculture Systems: Roles and Mediating Factors. Rev. Aquac. 2022, 14, 1260–1284. DOI: 10.1111/raq.12649.
  • Suresh, A.; Grygolowicz-Pawlak, E.; Pathak, S.; Poh, L. S.; Majid Abdul Bin, M.; Dominiak, D.; Bugge, T. V.; Gao, X.; Ng, W. J. Understanding and Optimization of the Flocculation Process in Biological Wastewater Treatment Processes: A Review. Chemosphere. 2018, 210, 401–416. DOI: 10.1016/j.chemosphere.2018.07.021.
  • de Schryver, P.; Crab, R.; Defoirdt, T.; Boon, N.; Verstraete, W. The Basics of Bio-Flocs Technology: The Added Value for Aquaculture. Aquaculture. 2008, 277, 125–137. DOI: 10.1016/j.aquaculture.2008.02.019.
  • Basuvaraj, M.; Fein, J.; Liss, S. N. Protein and Polysaccharide Content of Tightly and Loosely Bound Extracellular Polymeric Substances and the Development of a Granular Activated Sludge Floc. Water. Res. 2015, 82, 104–117. DOI: 10.1016/j.watres.2015.05.014.
  • Sears, K.; Alleman, J. E.; Barnard, J. L.; Oleszkiewicz, J. A. Density and Activity Characterization of Activated Sludge Flocs. J. Environ. Eng-ASCE. 2006, 132(10), 1235–1242. DOI: 10.1061/(ASCE)0733-9372(2006)132:10(1235).
  • Avnimelech, Y. Biofloc Technology. A Practical Guide Book; The World Aquaculture Society: Baton Rouge, LA, 2009.
  • Mahanand, S. S.; Pandey, P. K. Prospect and Challenges of Biofloc Technology for Sustainable Aquaculture Development. In Advances in Fisheries Biotechnology; Pandey, P. K. Parhi, J., Eds.; Springer: Singapore, 2022; pp. 383–399.
  • Khanjani, M. H.; Mohammadi, A.; Emerenciano, M. G. C. Microorganisms in Biofloc Aquaculture System. Aquacu. Reports, accepted. 2022c. S2352-5134 (22)00296-4, 101300. DOI: 10.1016/j.aqrep.2022.101300.
  • Dauda, A. B. Biofloc Technology: A Review on the Microbial Interactions, Operational Parameters and Implications to Disease and Health Management of Cultured Aquatic Animals. Rev. Aquac. 2020, 12(2), 1193–1210. DOI: 10.1111/raq.12379.
  • Robles-Porchas, G. R.; Gollas-Galvan, T.; Martínez-Porchas, M.; Martínez-Cordova, L. R.; Miranda-Baeza, A.; Vargas-Albores, F. Rev. Aquac. 2020, 12(4), 2228–2249. DOI: 10.1111/raq.12431.
  • Hargreaves, J. A. Photosynthetic Suspended-Growth Systems in Aquaculture. Aquac. Eng. 2006, 34(3), 344–363. DOI: 10.1016/j.aquaeng.2005.08.009.
  • Zafar, M. A.; Rana, M. M. Biofloc Technology: An Eco-Friendly “Green Approach” to Boost Up Aquaculture Production. Aquac. Inter. 2021, 30, 51–72. DOI: 10.1007/s10499-021-00781-8.
  • Schneider, O.; Sereti, V.; Eding, E. H.; Verreth, J. A. J. Analysis of Nutrient Flows in Integrated Intensive Aquaculture Systems. Aquac. Eng. 2005, 32, 379–401. DOI: 10.1016/j.aquaeng.2004.09.001.
  • Bossier, P.; Ekasari, J. Biofloc Technology Application in Aquaculture to Support Sustainable Development Goals. Microb. Biotechnol. 2017, 10, 1012–1016. DOI: 10.1111/1751-7915.12836.
  • Crab, R.; Defoirdt, T.; Bossier, P.; Verstraete, W. Biofloc Technology in Aquaculture: Beneficial Effects and Future Challenges. Aquaculture. 2012, 356, 351–357. DOI: 10.1016/j.aquaculture.2012.04.046.
  • Craig, S.; Helfrich, L. A. Understanding Fish Nutrition, Feeds and Feeding (Publication 420–256).Virginia Cooperative Extension; Willey: Yorktown (Virginia), 2002.
  • Deswati, Z. R.; Sutopo, J.; Tetra, O. N. Flokponik, integrasi akuakultur berbasis bioflok dengan hidroponik. Plantaxia Yogjakarta. [in Indonesian], 2022
  • Zhang, N.; Luo, G.; Tan, H.; Liu, W.; Hou, Z. Growth, Digestive Enzyme Activity and Welfare of Tilapia (Oreochromis Niloticus) Reared in a Biofloc-Based System with Poly-β-Hydroxybutyric as a Carbon Source. Aquaculture. 2016, 464, 710–717. DOI: 10.1016/j.aquaculture.2016.08.013.
  • Samocha, T. M.; Patnaik, S.; Speed, M.; Ali, A. M.; Burger, J. M.; Almeida, R. V.; Ayub, Z.; Harisanto, M.; Horowitz, A.; Brock, D. L. Use of Molasses as Carbon Source in Limited Discharge Nursery and Grow-Out Systems for Litopenaeus Vannamei. Aquac. Eng. 2007, 36(2), 184–191. DOI: 10.1016/j.aquaeng.2006.10.004.
  • GRRI (Government Regulation of the Republic of Indonesian) number 22. Concerning the Implementation of Environmental Protection and Management. [in Indonesian], 2021
  • Simeon, E. O.; Idomo, K. B. S.; Chioma, F. Physicochemical Characteristics of Surface Water and Sediment of Silver River, Southern Ijaw, Bayelsa State, Niger Delta, Nigeria. Am. J. Environ. Sci. Eng. 2019, 3(2), 39–46. DOI: 10.11648/j.ajese.20190302.12.
  • Samudro, G.; Mangkoedihardjo, S. Review on BOD, COD and BOD/COD Ratio: A Triangle Zone for Toxic, Biodegradable and Stable Levels. Inter. J. Acad. Res. 2010, 2(4), 235–239.
  • Papadopoulos, A.; Parissopoulos, G.; Papadopoulos, F.; Karteris, A. Variations of COD/BOD5 Ratio at Different Units of a Wastewater Stabilization Pond Pilot Treatment Facility. In Proceeding of 7th International Conference on Environmental Science and Technology Ermoupolis, India, 16–19, 2001.
  • Mangkoedihardjo, S. Biodegradability Improvement of Industrial Wastewater Using Hyacinth. J. Appl. Sci. 2010, 6(6), 1409–1414. DOI: 10.3923/jas.2006.1409.1414.
  • Koch, M.; Yediler, A.; Lienert, D.; Insel, G.; Kettrup, A. Ozonation of Hydrolyzed Azo Dye Reactive Yellow 84 (CI). Chemosphere. 2002, 46(1), 109–113. DOI: 10.1016/S0045-6535(01)00102-3.
  • Effendie, H. Telaah kualitas air bagi pengelolaan sumberdaya dan lingkungan perairan. Kanisius. Yogyakarta. [in Indonesian], 2003
  • Putra, S. J. W.; Nitisupardjo, M.; Widyorini, N. Analisis hubungan bahan organik dengan total bakteri pada tambak udang intensif sistem semi bioflok di BBPBAP Jepara. Manag. Aquatic. Res. J. 2014, 3(3), 121–129. in Indonesian.
  • Ghosh, S.; Sinha, A.; Sahu, C. Bioaugmentation in the Growth and Water Quality of Live bearing Ornamental Fishes. Aquac. Inter. 2008, 16(5), 393–403. DOI: 10.1007/s10499-007-9152-8.
  • Yuliani, E.; Harahap, S.; Purwanto, E. Efektifitas biofilter bermedia kerikil, pasir, ijuk, botol plastik dan tumbuhan kiapu (Pistia stratiotes) dalam menurunkan kadar BOD5, COD pada limbah cair mie basah. Jurnal Online Mahasiswa (JOM). Bidang Perikanan dan Ilmu Kelautan. 2018, 5(1), 1–9. in Indonesian.
  • Hastuti, Y. P. Nitrifikasi dan Denitrifikasi di Tambak. Jurnal. Akuakultur Indonesian. 2011, 10(1), 89–98. in Indonesian.
  • Kurniawan, A. P. Distribusi vertikal komunitas fitoplankton pada lokasi inlet dan outlet di Waduk Saguling, Cianjur, Jawa Barat. Integra. Lab J. 2018, 4(2), 269–278. in Indonesian.
  • Leonanda, B. D.; Zolanda, Y. Reaktor nitrifikasi biofilter untuk air limbah sisa makanan dan feses ikan. Metal: Journal. Sistem Mekanik dan Termal. 2018, 2(1), 9–14. in Indonesian. DOI: 10.25077/metal.2.1.9-14.2018.
  • Arfiati, D.; Dina, K. F.; Lailiyah, S.; Adialam, E.; Cokrowati, N. Effectiveness of Bacterial Attachment Media to Reduce Organic Matter from Wastewater of Catfish Aquaculture. IOP Conf. Series: Earth and Enviro. Sci. 2020, 493, 012001. DOI: 10.1088/1755-1315/493/1/012001.
  • Iyama, W. A.; Edori, O. S. Comparative Analysis of the Water Quality Status of the Bassan Rivers in Bayelsa State, Nigeria. Int. J. Chem. Eng. Res. 2016, 6(1), 59–69.
  • Rahmanian, N.; Ali, S. H. B.; Homayoonfard, M.; Ali, N. J.; Rehan, M.; Sadef, Y.; Nizami, A. S. Analysis of Physiochemical Parameters to Evaluate the Drinking Water Quality in the State of Perak, Malaysia. J. Chem. 2015, 716125, 10. Article ID. DOI: http://dx.doi.org/10.1155/2015/716125.
  • NRCC (National Research Council of Canada). Effect of Sodium and Potassium in the Canadian Environment No. 150154; Associate Committee on Scientific Criteria for Environmental Quality Otttawa: Japan, 2011.
  • Zidni, I. Pengaruh padat tebar terhadap pertumbuhan benih lele sangkuriang (Clarias gariepinus) dalam sistem akuaponik. Skripsi. Program Studi Perikanan, Fakultas Perikanan dan Ilmu Kelautan Universitas Padjajaran: Bandung, Indonesian, [inR Indonesian], 2013.
  • Tamyiz, M. Perbandingan rasio BOD/COD pada area tambak di hulu dan hilir terhadap biodegradabilitas bahan organik. J. Res and Technol. 2016, 1(01), 9–15.
  • Hidayat, N.; Aminah, S.; Rahmah, N. L. Optimasi protein dan total padatan terlarut dalam ekstrak cacing tanah (Lumbricus rubellus). Jurnal. Teknologi & Industri Hasil Pertanian. 2018, 23(1), 13–20. in Indonesian. DOI: 10.23960/jtihp.v23i1.13-20.
  • Farida, N. F.; Abdullah, S. H.; Priyati, A. Analisis kualitas air pada sistem pengairan akuaponik. Jurnal. Ilmiah Rekayasa Pertanian dan Biosistem. 2017, 5(2), 385–394. in Indonesian. DOI: 10.29303/jrpb.v5i2.54.
  • Atima, W. BOD dan COD sebagai parameter pencemaran air dan baku mutu air limbah. biosel. Biolog. Sci and Educa. 2015, 4(1), 83–93. in Indonesian. DOI: 10.33477/bs.v4i1.532.
  • Machdar, I. Pengantar Pengendalian Pencemaran: Pencemaran Air, Pencemaran Udara, dan Kebisingan, Deepublish: Yogyakarta, Indonesian, [in Indonesian], 2018.
  • Putri, M. N.; Purnomo, P. W.; Soedarsono, P. Profil vertikal bahan organik dasar perairan dengan latar belakang pemanfaatan berbeda di Rawa Pening. Manag. Aquatic. Res. J. 2013, 2(3), 27–36. in Indonesian. DOI: 10.14710/marj.v2i3.4178.
  • Gupta, N.; Pandey, P.; Hussain, J. Effect of Physicochemical and Biological Parameters on the Quality of River Water of Narmada, Madhya Pradesh, India. Water. Sci. 2017, 31, 11–23. DOI: 10.1016/j.wsj.2017.03.002.
  • Kelley, J. L.; Arias-Rodriguez, L.; Martin, D. P.; Yee, M. C.; Custamante, C. D.; Tobler, M. Mechanisms Underlying Adaptation to Life in Hydrogen Sulfide-Rich Environments. Mol. Biol. Evol. 2016, 33, 1419–1434. DOI: 10.1093/molbev/msw020.
  • Megahed, M. The Effect of Microbial Biofloc on Water Quality, Survival and Growth of the Green Tiger Shrimp (Penaeus Semisulcatus) Fed with Different Crude Protein Levels. J. Arab .Aquacult. Soc. 2010, 5, 119–142.
  • Handajani, W. Nutrisi Ikan, UMM Press: Malang, West Java, Indonesia, [in Indonesian], 2010.
  • de Schryver, P.; Boon, N.; Verstraete, W.; Bossier, P. The Biology and Biotechnology Behind Bioflocs. In Biofloc Technology: A Practical Guide Book; Rahmat, R., Ed. World Aquaculture Society (WAS): Netherland, 2012; pp 199–215.
  • Arief, M. Pemberian probiotik yang berbeda pada pakan komersil terhadap pertumbuhan retensi protein dan serat kasar pada ikan nila (Oreochromis sp). Argoveteriner. 2013, 1(2), 88–93. in Indonesian.
  • Delgado, A.; Arroyo López, F. N.; Brito, D.; Peres, C.; Fevereiro, P.; Garrido-Fernández, A. Optimum Bacteriocin Production by Lactobacillus Plantarum Requires Absence of NaCl and Apparently Follows a Mixed Metabolite Kinetics. J. Biotechnol. 2007, 130(2), 193–201. DOI: 10.1016/j.jbiotec.2007.01.041.
  • Gatesoupe, F. J. The Use of Probiotics in Aquaculture. Aquaculture. 1999, 191, 147–165. DOI: http://dx.doi.org/10.1016/S0044-8486(99)00187-8.
  • Nikoskelainen, S.; Ouwehand, A.; Salminen, S.; Bylund, G. Protection of Rainbow Trout (Oncorhynchus Mykiss) from Furunculosis by Lactobacillus Rhamnosus. Aquaculture. 2001, 198, 229–236. DOI: http://dx.doi.org/10.1016/S0044-8486(01)00593-2.
  • Putri, F. S.; Hasan, Z.; Haetami, K. Pengaruh pemberian bakteri probiotik pada pellet yang mengandung kaliandra (Calliandracalothyrsus) terhadap pertumbuhan benih ikan nila (Oreochromis niloticus). Staf Dosen Fakultas Perikanan. dan Ilmu Kelautan Unpad. 2012, 3(4), 291. in Indonesian.
  • Fuentes, J. A. P.; Pérez-Rostro, C. I.; Hernández-Vergara, M. P.; MdC, M.D. Variation of the Bacterial Composition of Biofloc and the Intestine of Nile Tilapia Oreochromis Niloticus, Cultivated Using Biofloc Technology, Supplied Different Feed Rations. Aquacult. Res. 2018, 49(11), 3658–3668. DOI: 10.1111/are.13834.
  • Hariyadi, B.; Haryono, A.; Susilo, U. Evaluation of Feed Efficiency and Protein Efficiency in Grass Carp (ctenopharyngodon Idella Val) Fed with Different Carbohydrate and Energy Levels of Feed; Fakultas Biologi Unseod: Purwokerto, East Java, Indonesia, 2005.
  • Dan Sukirno, S., Analisis kelayakan pembuatan pakan dan budidaya ikan gurame di Desa Glempang Kecamatan Maos Kabupaten Cilacap, Pusat. Penelitian Informatika, 2003, 12, 1–12. in Indonesian.
  • Irianto, A.; Robertson, P. A. W.; Austin, B. Oral Administration of Formalin-Inactivated Cells of Aeromonas Hydrophila A3-51 Controls Infection by a Typical A. Salmonicida in Goldfish. Carassiusauratus (L.). J. Fish Dis. 2003, 26, 117–120. DOI: 10.1046/j.1365-2761.2003.00439.x.
  • Ahmadi, H.; Iskandar; Kurniawati, N. Pemberian Probiotik dalam Pakan Terhadap Pertumbuhan Lele Sangkuriang (Clarias gariepinus) pada Pendederan II. J. Perikanan dan Kelautan. 2012, 3(4), 99–107. in Indonesian.
  • Arief, M.; Fitriani, N.; Subekti, S. Pengaruh Pemberian Probiotik Berbeda pada Pakan Komersial terhadap Pertumbuhan Dan Efisiensi Pakan Ikan Lele Sangkuriang (Clarias Sp.) [The Present Effect Of Different Probiotics On Commercial Feed Towards Growth And Feed Efficiency Of Sangkuriang Catfish (Clarias Sp.)]. Jurnal. Ilmiah Perikanan dan Kelautan. 2014, 6(1), 49–54. in Indonesian. DOI: 10.20473/jipk.v6i1.11381.
  • Kaya, D.; Genc, E.; Genc, M. A.; Aktas, M.; Eroldogan, O. T.; Guroy, D. Biofloc Technology in Recirculating Aquaculture System as a Culture Model for Green Tiger Shrimp, Penaeus Semisulcatus: Effects of Different Feeding Rates and Stocking Densities. Aquaculture. 2020, 528, 735526. DOI: 10.1016/j.aquaculture.2020.735526.
  • Arsyad, R. A. Kajian aplikasi probiotik yang dibuat dari bahan baku lokal terhadap pertumbuhan dan tingkat kelangsungan hidup benih ikan nila (Orechromis niloticus), Jurusan Budidaya Perairan Fakultas Perikanan dan Ilmu Kelautan Universitas Negeri Gorontalo: Gorontalo, Indonesia, [in Indonesian], 2013.
  • Barrow, P. A.; Hardi H. Probiotic for Chickens. In Probiotics the Scientific Basis; Filler, R., Ed.; Chapman and Hall: London, 2001; pp 121–125.
  • Nizar, S. Pengaruh pemberian probiotik dengan dosis yang berbeda pada pakan buatan terhadap laju pertumbuhan dan konversi pakan benih ikan patin (Pangasius sp.) skripsi; [in Indonesian]; Fakultas Perikanan dan Kelautan UNDIP: Semarang, 2006.
  • Browdy, C.; Hargreaves, J.; Hoang, T.; Avnimelech, Y. Biofloc Technology and Shrimp Disease Workshop; The Aquaculture Engineering Society: Copper Hill, VA USA, 2014; pp 83–153.
  • Krummenauer, D.; Peixoto, S.; Cavalli, R. O.; Poersch, L. H.; Wasielesky, W. Super Intensive Culture of White Shrimp, Litopenaeus Vannamei, in a Biofloc Technology System in Southern Brazil at Different Stocking Densities. J. World Aquac. Soc. 2011, 42(5), 726–733. DOI: 10.1111/j.1749-7345.2011.00507.x.
  • Perez-Fuentes, J. A.; Perez-Rostro, C. I.; Hernandez-Vergara, M. P. Pond-Reared Malaysian Prawn Macrobrachium Rosenbergii with the Biofloc System. Aquaculture. 2013, 400, 105–110. DOI: 10.1016/j.aquaculture.2013.02.028.
  • Fitria, A. S. Analisis kelulushidupan dan pertumbuhan benih ikan nila larasati (Oreochromis niloticus) pada berbagai salinitas. Fakultas Perikanan dan Ilmu Kelautan, Universitas Diponegoro.J. Aquace. Manag and Technol. 2012, 1(1), 18–34. in Indonesian.
  • Trisnawati, Y.; Suminto S.; Sudaryono, V. Pengaruh kombinasi pakan buatan dan cacing tanah (Lumbicus rubellus) terhadap efesiensi pemanfaatan pakan, pertumbuhan dan kelulushidupan lele dumbo (Clarias gariepinus). J. Aquac. Manag and Technol. 2014, 3(2), 86–93. [in Indonesian].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.