127
Views
1
CrossRef citations to date
0
Altmetric
Extraction

Biosurfactant Based Reverse Micellar Extraction of Lactoperoxidase from Whey: Exploitation of Rhamnolipid Characteristics for Back Extraction

, ORCID Icon &
Pages 1360-1371 | Received 13 Aug 2022, Accepted 23 Feb 2023, Published online: 12 Mar 2023

References

  • Yafei, L.; Xuewan, W.; Mianbin, W.; Wanping, Z. Simultaneous Isolation of Lactoferrin and Lactoperoxidase from Bovine Colostrum by SPEC 70 SLS Cation Exchange Resin. Int. J. Environ. Res. Public Health. 2011, 8, 3764–3776. DOI: 10.3390/ijerph8093764.
  • Cals, M. M.; Mailliart, P.; Brignon, G.; Anglade, P.; Dumas, B. R. Primary Structure of Bovine Lactoperoxidase, a Fourth Member of a Mammalian Heme Peroxidase Family. Euro. J. Biochem. 1991, 198, 733–739. DOI: 10.1111/j.1432-1033.1991.tb16073.x.
  • Boscolo, B.; Leal, S. S.; Salgueiro, C. A.; Ghibaudi, E. M.; Gomes, C. M. The Prominent Conformational Plasticity of Lactoperoxidase: A Chemical and pH Stability Analysis. Biochim. Biophys. Acta. 2009, 1794, 1041–1048. DOI: 10.1016/j.bbapap.2009.03.003.
  • Ludikhuyze, L. R.; Claeys, W. L.; Hendrickx, M. E. Effect of High-Pressure Treatment on Denaturation of Bovine Lactoferrin and Lactoperoxidase. J. Dairy Res. 2001, 68(4), 625–637. DOI: 10.1017/S0022029901005118.
  • Guo, M.; Wang, G. Whey Protein Polymerisation and Its Applications in Environmentally Safe Adhesives. Int. J Dairy Technol. 2016, 69(4), 481–488.
  • Ramos, O. L.; Pereira, R. N.; Martins, A.; Rodrigues, R.; Fuciños, C.; Teixeira, J. A.; Pastrana, L.; Malcata, F. X.; Vicente, A. A. Design of Whey Protein Nanostructures for Incorporation and Release of Nutraceutical Compounds in Food. Crit. Rev. Food Sci. Nutr. 2017, 57(7), 1377–1393. DOI: 10.1080/10408398.2014.993749.
  • Goto, M.; Kuroki, M.; Ono, T.; Nakashio, F. Protein Extraction by New Reversed Micelles with di (Tridecyl) Phosphoric Acid. Sep. Purif. Technol. 1995, 30, 89–99. DOI: 10.1080/01496399508012215.
  • Kaur, R.; Mahajan, R. K. Twin-Tailed Surfactant Induced Conformational Changes in Bovine Serum Albumin: A Detailed Spectroscopic and Physicochemical Study. Rsc. Adv. 2014, 4, 29450–29462. DOI: 10.1039/C4RA03653K.
  • Pawar, S. S.; Iyyaswami, R.; Belur, P. D. Selective Extraction of Lactoferrin from Acidic Whey Using Ctab/n-Heptanol Reverse Micellar System. J. Food Sci. Technol. 2019, 56, 2553–2562. DOI: 10.1007/s13197-019-03738-1.
  • Jayachandran, D.; Chityala, S.; Prabhu, A. A.; Dasu, V. V. Cationic Reverse Micellar Based Purification of Recombinant Glutaminase Free L-Asparaginase II of Bacillus Subtilis WB800N from Fermentation Media. Protein Expr. Purif. 2019, 157, 1–8. DOI: 10.1016/j.pep.2019.01.002.
  • Krishna, S. H.; Srinivas, N. D.; Raghavarao, K. S. M. S.; Karanth, N. G. 2002. History and Trends in Bioprocessing and Biotransformation. Advances in Biochemical Engineering/Biotechnology. In Reverse Micellar Extraction for Downstream Processing of Proteins/enzymes. Dutta, N. N., Eds. Vol. 75: pp. 119–183: Springer
  • Zhen, G.; Fusheng, C.; Hongshun, Y.; Kunlun, L.; Lifen, Z. Kinetics of Protein Extraction in Reverse Micelle. Int. J. Food. Prop. 2015, 18(8), 1707–1718. DOI: 10.1080/10942912.2014.919318.
  • Jarudilokkul, S.; Poppenborg, L. H.; Stuckey, D. C. Backward Extraction of Reverse Micellar Encapsulated Proteins Using a Counterionic Surfactant. Biotechnol. Bioeng. 1999, 62(5), 593–601. DOI: 10.1002/(SICI)1097-0290(19990305)62:5<593:AID-BIT11>3.0.CO;2-Z.
  • Lee, B. K.; Hong, D. P.; Lee, S. S.; Kuboi, R. Analysis of Protein Back-Extraction Processes in Alcohol- and Carboxylic Acid-Mediated AOT Reverse Micellar Systems Based on Structural Changes of Proteins and Reverse Micelles. Biochem. Eng. J. 2004, 22(1), 71–79. DOI: 10.1016/j.bej.2004.08.004.
  • Dong, X.; Meng, Y.; Feng, X.; Sun, Y. A Metal-Chelate Affinity Reverse Micellar System for Protein Extraction. Biotechnol. Prog. 2010, 26(1), NA-NA. DOI: 10.1002/btpr.291.
  • Otzen, D. E. Biosurfactants and Surfactants Interacting with Membranes and Proteins: Same but Different? Biochim. Biophys. Acta. 2017, 1859, 639–649. DOI: 10.1016/j.bbamem.2016.09.024.
  • Gudina, E. J.; Rangarajan, V.; Sen, R.; Rodrigues, L. R. Potential Therapeutic Applications of Biosurfactants. Trends Pharmacol. Sci. 2013, 34(12), 667–675. DOI: 10.1016/j.tips.2013.10.002.
  • Madsen, J. K.; Pihl, R.; Møller, A. H.; Madsen, A. T.; Otzen, D. E.; Andersen, K. K. The Anionic Biosurfactant Rhamnolipid Does Not Denature Industrial Enzymes. Front. Microbiol. 2015, 6, 292. DOI: 10.3389/fmicb.2015.00292.
  • Ramírez, I. M.; García-Roman, M.; Fernandez-Arteaga, A. Rhamnolipids: Highly Compatible Surfactants for the Enzymatic Hydrolysis of Waste Frying Oils in Microemulsion Systems. ACS Sustainable Chem. Eng. 2017, 5, 6768–6775. DOI: 10.1021/acssuschemeng.7b01008.
  • Miao, S.; Callow, N.; Dashtbozorg, S. S.; Salager, J.; Ju, L. Ethylation of Di-Rhamnolipids: A Green Route to Produce Novel Sugar Fatty Acid Nonionic Surfactants. J. Surfact. Deterg. 2014, 17, 1069–1080. DOI: 10.1007/s11743-014-1641-y.
  • Helvac, S. S.; Peker, S.; Özdemir, G. Effect of Electrolytes on the Surface Behaviour of Rhamnolipids R1 and R2. Colloids Surf. B. 2004, 35, 225–233. DOI: 10.1016/j.colsurfb.2004.01.001.
  • Özdemir, G.; Peker, S.; Helvaci, S. S. Effect of pH on the Surface and Interfacial Behaviour of Rhamnolipids R1 and R2. Colloids Surf. A Physicochem. Eng. Asp. 2004, 234, 135–143. DOI: 10.1016/j.colsurfa.2003.10.024.
  • Karanth, S.; Iyyaswami, R. Analysis of Ionic and Non-Ionic Surfactants Blends Used For the Reverse Micellar Extraction of Lactoperoxidase from Whey. Asia-Pac. J. Chem. Eng. 2021, 16, 2. DOI: 10.1002/apj.2590.
  • Kumar, R.; Bhatia, K. L. Standardization of Method for Lactoperoxidase Assay in Milk. Lait. 1999, 79(2), 269–274. DOI: 10.1051/lait:1999222.
  • Walker, J. M. The Bicinchoninic Acid (BCA) Assay for Protein Quantitation. In The Protein Protocols Handbook. Springer Protocols Handbooks; Walker, J. M., Ed.; Humana Press, 2002; pp 11–14.
  • Xie, Y.; Li, Y.; Ye, R. Effect of Alcohols on the Phase Behavior of Microemulsions Formed by a Biosurfactant—rhamnolipid. J Dispers. Sci. Technol. 2005, 26, 455–461. DOI: 10.1081/DIS-200054576.
  • Sabatini, D. A.; Acosta, E.; Harwell, J. H. Linker Molecules in Surfactant Mixtures. Curr. Opin. Colloid. Interface Sci. 2003, 8, 316–326. DOI: 10.1016/S1359-0294(03)00082-7.
  • Peng, X.; Yuan, X.; Zeng, G.; Huang, H.; Wang, H.; Liu, H.; Bao, S.; Ma, Y.; Cui, K.; Leng, L., et al. Synchronous Extraction of Lignin Peroxidase and Manganese Peroxidise from Phanerochaete Chrysosporium Fermentation Broth. Sep. Purif. Technol. 2014, 123, 164–170. DOI: 10.1016/j.seppur.2013.12.009.
  • Matzke, S. F.; Creagh, A. L.; Haynes, C. A.; Prausnitz, J. M.; Blanch, H. W. Mechanisms of Protein Solubilization in Reverse Micelles. Biotechnol. Bioeng. 1992, 40, 91–102. DOI: 10.1002/bit.260400114.
  • Bala, T.; Prasad, B. L. V.; Sastry, M.; Kahaly, M. U.; Waghmare, U. V. Interaction of Different Metal Ions with Carboxylic Acid Group: A Quantitative Study. J. Phys. Chem. A. 2007, 111(28), 6183–6190. DOI: 10.1021/jp067906x.
  • Andrews, B. A.; Haywood, K. Effect of pH, Ion Type and Ionic Strength on Partitioning of Proteins in Reverse Micelle Systems. J. Chromatogr. A. 1994, 668, 55–60. DOI: 10.1016/0021-9673(94)80091-X.
  • Hemavathi, A. B.; Hebbar, H. U.; Raghavarao, K. S. M. S. Mixed Reverse Micellar Systems for Extraction and Purification of β-Glucosidase. Sep. Purif. Technol. 2010, 71, 263–268. DOI: 10.1016/j.seppur.2009.11.026.
  • Tripet, B.; Cepeniene, D.; Kovacs, J. M.; Mant, C. T.; Krokhin, O. V.; Hodges, R. S. Requirements for Prediction of Peptide Retention Time in Reversed-Phase High-Performance Liquid Chromatography: Hydrophilicity/Hydrophobicity of Side-Chains at the N- and C-Termini of Peptides are Dramatically Affected by the End-Groups and Location. J. Chromatography. A. 2007, 1141(2), 212–225. DOI: 10.1016/j.chroma.2006.12.024.
  • Wetlaufer, D. B.; Koenigbauer, M. R. Surfactant-Mediated Protein Hydrophobic-Interaction Chromatography. J. Chromatography. A. 1986, 359(none), 55–60. DOI: 10.1016/0021-9673(86)80061-9.
  • García-Garibay, M.; Luna-Salazar, A.; Casas, L. T. Antimicrobial Effect of the Lactoperoxidase System in Milk Activated by Immobilized Enzymes. Food. Biotechnol. 1995, 9(3), 157–166. DOI: 10.1080/08905439509549890.
  • Kamau, D. N.; Doores, S.; Pruitt, K. M. Antibacterial Activity of the Lactoperoxidase System Against Listeria Monocytogenes and Staphylococcus Aureus in Milk. J. Food Prot. 1990, 53(12), 1010–1014. DOI: 10.4315/0362-028X-53.12.1010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.