96
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of tris(2-methylbutyl) phosphate for U/Th separation from U-Th and U-Th-REE solutions by cross current mode

, &
Pages 2605-2618 | Received 16 Mar 2023, Accepted 05 May 2023, Published online: 22 May 2023

References

  • Cox, M. Solvent Extraction in Hydrometallurgy. In Solvent Extraction Principles and Practice, Revised and Expanded; CRC Press: Boca Raton, 2004; pp 1–24. DOI: 10.1201/9780203021460.
  • Kislik, V. S. Chapter 5 - Examples of Application of Solvent Extraction Techniques in Chemical, Radiochemical, Biochemical, Pharmaceutical, Analytical Separations, and Wastewater Treatment. In Solvent Extraction; Kislik, V. S., Ed.; Elsevier: Amsterdam, 2012; pp 185–314. DOI: 10.1016/B978-0-444-53778-2.10005-6.
  • Navratil, J. D. Solvent Extraction in Nuclear Technology. 1986, 58(6), 885–888. DOI: 10.1351/pac198658060885.
  • El-Nadi, Y. A. Solvent Extraction and Its Applications on Ore Processing and Recovery of Metals: Classical Approach. Sep. Purif. Rev. 2017, 46(3), 195–215. DOI: 10.1080/15422119.2016.1240085.
  • Gorden, A. E. V.; DeVore, M. A., II; Maynard, B. A. Coordination Chemistry with f-Element Complexes for an Improved Understanding of Factors That Contribute to Extraction Selectivity. Inorg. Chem. 2013, 52(7), 3445–3458. DOI: 10.1021/ic300887p.
  • Nash, K. L. A Review of the Basic Chemistry and Recent Developments in Trivalent f-Elements Separations. Solvent. Extr. Ion Exch. 1993, 11(4), 729–768. DOI: 10.1080/07366299308918184.
  • Karakosta, C.; Pappas, C.; Marinakis, V.; Psarras, J. Renewable Energy and Nuclear Power Towards Sustainable Development: Characteristics and Prospects. Renew. Sustainable Energy. Rev. 2013, 22, 187–197. DOI: 10.1016/j.rser.2013.01.035.
  • Brook, B. W.; Alonso, A.; Meneley, D. A.; Misak, J.; Blees, T.; van Erp, J. B. Why Nuclear Energy is Sustainable and Has to Be Part of the Energy Mix. Sustain. Mater. Technol. 2014, 1-2, 8–16. DOI: 10.1016/j.susmat.2014.11.001.
  • Chen, L.; Msigwa, G.; Yang, M.; Osman, A. I.; Fawzy, S.; Rooney, D. W.; Yap, P. -S. Strategies to Achieve a Carbon Neutral Society: A Review. Environ. Chem. Lett. 2022, 20(4), 2277–2310. DOI: 10.1007/s10311-022-01435-8.
  • Fawzy, S.; Osman, A. I.; Doran, J.; Rooney, D. W. Strategies for Mitigation of Climate Change: A Review. Environ. Chem. Lett. 2020, 18(6), 2069–2094. DOI: 10.1007/s10311-020-01059-w.
  • Pavel, G. L.; Budu, A. R.; Moraru, D. E. Optimization of Energy Mix - Nuclear Power and Renewable Energy for Low Emissions Energy Source a Benefit for Generations to Come. Energy. Procedia. 2017, 112, 412–417. DOI: 10.1016/j.egypro.2017.03.1092.
  • van der Zwaan, B. The Role of Nuclear Power in Mitigating Emissions from Electricity Generation. Energy. Strategy. Rev. 2013, 1(4), 296–301. DOI: 10.1016/j.esr.2012.12.008.
  • Schiermeier, Q.; Tollefson, J.; Scully, T.; Witze, A.; Morton, O. Energy Alternatives: Electricity Without Carbon. Nature. 2008, 454(7206), 816–823. DOI: 10.1038/454816a.
  • Sovacool, B. K. Critically Weighing the Costs and Benefits of a Nuclear Renaissance. J. Integr. Environ. Sci. 2010, 7(2), 105–123. DOI: 10.1080/1943815X.2010.485618.
  • Nayak, A. K.; Kumar, A.; Dhami, P. S.; Asnani, C. K.; Singh, P. Thorium Technology Development in an Indian Perspective. In Thorium—Energy for the Future; Nayak, A. K. Sehgal, B. R., Eds.; Singapore: Springer Singapore, 2019; pp. 27–82.
  • Platte, J. E. Indian Nuclear Fuel Cycle Decision-Making: An Analysis of Influences. J. Risk. Res. 2014, 17(1), 7–21. DOI: 10.1080/13669877.2013.822923.
  • Achuthan, P. V.; Ramanujam, A. Aqueous Reprocessing by THOREX Process. In Thoria-Based Nuclear Fuels: Thermophysical and Thermodynamic Properties, Fabrication, Reprocessing, and Waste Management; Das, D., Bharadwaj, S. R., Eds.; Springer London: London, 2013; pp 279–333.
  • Miloš, R. Nature, Sources, Resources, and Production of Thorium; IntechOpen: London, 2017; pp 201–212. DOI: 10.5772/65855.
  • Kakodkar, A.; Sinha, R. K. Energy from Thorium. Indian. J Power And River Valley. Develop. 2002, 52(9–10), 165–172.
  • Preinfalk, C.; Morteani, G. The Industrial Applications of Rare Earth Elements; Springer: Berlin, Heidelberg, 1989; Vol. 7. pp 359–370. DOI: 10.1007/978-3-642-87262-4_19.
  • Zhu, Z.; Pranolo, Y.; Cheng, C. Y. Separation of Uranium and Thorium from Rare Earths for Rare Earth Production – a Review. Miner. Eng. 2015, 77, 185–196. DOI: 10.1016/j.mineng.2015.03.012.
  • Habashi, F. Extractive Metallurgy of Rare Earths. Can. Metall. Q. 2013, 52(3), 224–233. DOI: 10.1179/1879139513Y.0000000081.
  • Eskandari Nasab, M. Solvent Extraction Separation of Uranium(VI) and Thorium(IV) with Neutral Organophosphorus and Amine Ligands. Fuel. 2014, 116, 595–600. DOI: 10.1016/j.fuel.2013.08.043.
  • García, A. C.; Latifi, M.; Amini, A.; Chaouki, J. Separation of Radioactive Elements from Rare Earth Element-Bearing Minerals. Metals. 2020, 10, 1524. DOI: 10.3390/met10111524.
  • Biswas, S.; Pathak, P. N.; Singh, D. K.; Roy, S. B. Comparative Evaluation of Tri-n-Butyl Phosphate (TBP) and Tris(2-Ethylhexyl) Phosphate (TEHP) for the Recovery of Uranium from Monazite Leach Solution. Sep. Sci. Technol. 2013, 48(13), 2013–2019. DOI: 10.1080/01496395.2013.790449.
  • Singh, H.; Gupta, C. K. Solvent Extraction in Production and Processing of Uranium and Thorium. Mineral Process. Extr. Metall. Rev. 2000, 21(1–5), 307–349. DOI: 10.1080/08827500008914172.
  • McKay, H. A. C.; Miles, J. H.; Swanson, J. L. Applications of Tributyl Phosphate in Nuclear Fuel Processing. In Science and Technology of Tributyl Phosphate; Wallace, W., Schulz, L. L. B., Navratil, J. D., Eds.; CRC Press: Boca Raton, Florida, 1984; Vol. 3, pp 267–327.
  • Balasubramaniam, G. R.; Chitnis, R. T.; Ramanujam, A.; Venkatesan, M. Laboratory Studies on the Recovery of Uranium-233 from Irradiated Thorium by Solvent Extraction Using 5% TBP Shell Sol-T as Solvent, BARC-940; India, 1977.
  • Bond, W. D. The Thorex Process. In Science and Technology of Tributyl Phosphate; Wallace, W., Schulz, L. L. B., Navratil, J. D., Bender, K. P., Eds.; CRC press: Boca Raton, Florida, 1990; pp 225–247.
  • Shoun, R. R.; Thompson, M. C. Chemical Properties and Reactions. In Science and Technology of Tributyl Phosphate (Synthesis, Properties, Reactions and Analysis) ; Wallace, W., Schulz, L. L. B., Navratil, J. D., Eds.; CRC press: Boca Raton, Florida, 1984; Vol. 1, pp 137–160.
  • Vasudeva Rao, P. R.; Kolarik, Z. A Review of Third Phase Formation in Extraction of Actinides by Neutral Organophosphorus Extractants. Solvent. Extr. Ion Exch. 1996, 14(6), 955–993. DOI: 10.1080/07366299608918378.
  • Srinivasan, T. G.; Vasudeva Rao, P. R.; Sood, D. D. The Effect of Temperature on the Extraction of Uranium(VI) from Nitric Acid by Tri-n-Amyl Phosphate. Solvent. Extr. Ion Exch. 1997, 15(1), 15–31. DOI: 10.1080/07366299708934463.
  • Suresh, A.; Sreenivasan, N. L.; Selvan, R.; Antony, M. P.; Srinivasan, T. G.; Koganti, S. B.; Rao, P. R. V. Extraction of U(VI) by Tri-n-Amyl Phosphate Under High Solvent Loading Conditions. Nucl. Technol. 2009, 167(2), 333–338. DOI: 10.13182/NT09-A8968.
  • Suresh, A.; Srinivasan, T. G.; Rao, P. R. V. Extraction of U(VI), Pu(IV) and Th(IV) by Some Trialkyl Phosphates. Solvent. Extr. Ion Exch. 1994, 12(4), 727–744. DOI: 10.1080/07366299408918234.
  • Suresh, A.; Srinivasan, T. G.; Vasudeva Rao, P. R. The Effect of the Structure of Trialkyl Phosphates on Their Physicochemical Properties and Extraction Behavior. Solvent. Extr. Ion Exch. 2009, 27(2), 258–294. DOI: 10.1080/07366290802674481.
  • Benadict Rakesh, K.; Suresh, A.; Vasudeva Rao, P. R. Extraction and Stripping Behaviour of Tri-iso-Amyl Phosphate and Tri-n-Butyl Phosphate in n-Dodecane with U(VI) in Nitric Acid Media. Radiochim. Acta. 2014, 102(7), 619–628. DOI: 10.1515/ract-2014-2175.
  • Sarkar, S.; Chandran, K.; Lavanya, M.; Ramanathan, N.; Clinsha, P. C.; Suresh, A.; Sivaraman, N. Thermal Hazard Assessment of Tris(2-Methyl Butyl) Phosphate: A Comparison with Tri-n-Butyl Phosphate and Tri-n-Amyl Phosphate. Thermochim. Acta. 2019, 671, 181–192. DOI: 10.1016/j.tca.2018.09.019.
  • Sarkar, S.; Rajeswari, S.; Suresh, A.; Sivaraman, N. Hydrodynamic Properties of Tris(2-Methylbutyl) Phosphate and Tri-n-Alkyl Phosphates in n-Dodecane – a Comparative Investigation Between Unirradiated and Gamma Irradiated Solvent Systems. Solvent. Extr. Ion Exch. 2021, 40, 1–22. DOI: 10.1080/07366299.2021.1972648.
  • Sarkar, S.; Suresh, A.; Sivaraman, N. Alpha and Gamma Degradation Behavior of Tri-n-Alkyl Phosphates and Tris(2-Methylbutyl) Phosphate: A Comparative Study. Radiat. Phys. Chem. 2020, 176, 108923. DOI: 10.1016/j.radphyschem.2020.108923.
  • Sarkar, S.; Suresh, A.; Sivaraman, N. Extraction Behaviour of Tris(2-Methylbutyl) Phosphate with Fission Products and Heavy Metal Ions. Solvent. Extr. Ion Exch. 2020, 38(3), 304–317. DOI: 10.1080/07366299.2020.1724662.
  • Sreenivasulu, B.; Suresh, A.; Rajeswari, S.; Ramanathan, N.; Antony, M. P.; Sivaraman, N.; Joseph, M. Physicochemical Properties and Radiolytic Degradation Studies on Tri-iso-Amyl Phosphate (TiAP). Radiochim. Acta. 2017, 105(3), 249–261. DOI: 10.1515/ract-2016-2674.
  • Sarkar, S.; Suresh, A.; Sivaraman, N. Third Phase Formation Behaviour of Tris(2-Methylbutyl) Phosphate and Tri-n-Alkyl Phosphates in the Extraction of Mineral Acids and Tetravalent Metal Ions. Radiochim. Acta. 2021, 109(8), 625–634. DOI: 10.1515/ract-2021-1023.
  • Sarkar, S.; Suresh, A.; Sivaraman, N.; Aswal, V. K. An Insight into Third-Phase Formation in the Extraction of Thorium Nitrate by Tris(2-Methylbutyl) Phosphate and Tri-n-Alkyl Phosphates. Sep. Sci. Technol. 2019, 54(6), 970–984. DOI: 10.1080/01496395.2018.1521832.
  • Sarkar, S.; Suresh, A.; Sivaraman, N.; K Aswal, V. Studies on the Aggregation Behavior of Mineral Acid and Zr(IV) Loaded Tris(2-Methylbutyl) Phosphate and Tri-n-Alkyl Phosphate Systems Using Small Angle Neutron Scattering. Sep. Sci. Technol. 2021, 57, 1–11. DOI: 10.1080/01496395.2021.1954021.
  • Anitha, J. K.; Joseph, S.; Rejith, R. G.; Sundararajan, M. Monazite Chemistry and Its Distribution Along the Coast of Neendakara–Kayamkulam Belt, Kerala, India. Sn. Appl. Sci. 2020, 2(5), 812. DOI: 10.1007/s42452-020-2594-6.
  • Pitchaiah, K. C.; Sivaraman, N.; Joseph, M.; Mohapatra, P. K.; Madras, G. Solubility of Tri-iso-Amyl Phosphate in Supercritical Carbon Dioxide and Its Application to Selective Extraction of Uranium. Sep. Sci. Technol. 2017, 52(14), 2224–2237. DOI: 10.1080/01496395.2017.1287737.
  • Gopinath, N. Methodologies for Determination of Thorium, Uranium, Plutonium in Nuclear Fuel. IANCAS. 1998, 3, 156–168.
  • Suresh, A.; Patre, D. K.; Srinivasan, T. G.; Rao, P. R. V. A New Procedure for the Spectrophotometric Determination of Uranium(VI) in the Presence of a Large Excess of Thorium(IV). Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2002, 58(2), 341–347. DOI: 10.1016/S1386-1425(01)00540-6.
  • Gupta, A. K.; Powell, J. E. Successive Determination of Thorium and Rare Earths by Complexometric Titrations. Talanta. 1964, 11(9), 1339–1342. DOI: 10.1016/0039-9140(64)80191-0.
  • Srinivasan, N.; Balasubramanian, G. R.; Chitnis, R. T.; Venkateswaran, S.; Kulkarni, R. T. Laboratory Studies on Acid Thorex Process, BARC-681; India, 1973.
  • Fritz, J. S.; Richard, M. J.; Lane, W. J. Spectrophotometric Determination of Rare Earths. Anal. Chem. 1958, 30(11), 1776–1779. DOI: 10.1021/ac60143a016.
  • Mayankutty, P. C.; Ravi, S.; Nadkarni, M. N. Determination of Free Acidity in Uranyl Nitrate Solutions. J. Radioanaly. Chem. 1982, 68(1), 145–150. DOI: 10.1007/BF02517616.
  • Suresh, A.; Subramaniam, S.; Srinivasan, T. G.; Rao, P. R. V. Studies on U-Th Separations Using Tri-Sec-Butyl Phosphate. Solvent. Extr. Ion Exch. 1995, 13(3), 415–430. DOI: 10.1080/07366299508918283.
  • Chandrasekar, A.; Suresh, A.; Joshi, M.; Sundararajan, M.; Ghanty, T. K.; Sivaraman, N. Highly Selective Separations of U(VI) from a Th(IV) Matrix by Branched Butyl Phosphates: Insights from Solvent Extraction, Chromatography and Quantum Chemical Calculations. Sep. Purif. Techn. 2019, 210, 182–194. DOI: 10.1016/j.seppur.2018.08.005.
  • Chiarizia, R.; Jensen, M. P.; Borkowski, M.; Ferraro, J. R.; Thiyagarajan, P.; Littrell, K. C. Third Phase Formation Revisited: The U(VI), HNO3–TBP, n‐dodecane System. Solvent. Extr. Ion Exch. 2003, 21(1), 1–27. DOI: 10.1081/SEI-120017545.
  • Ellis, R. J. Critical Exponents for Solvent Extraction Resolved Using SAXS. J. Phys. Chem B. 2014, 118(1), 315–322. DOI: 10.1021/jp408078v.
  • Kumari, N.; Pathak, P. N. Dynamic Light Scattering Studies on the Aggregation Behavior of Tributyl Phosphate and Straight Chain Dialkyl Amides During Thorium Extraction. J. Ind. Eng. Chem. 2014, 20(4), 1382–1387. DOI: 10.1016/j.jiec.2013.07.022.
  • Nave, S.; Mandin, C.; Martinet, L.; Berthon, L.; Testard, F.; Madic, C.; Zemb, T. Supramolecular Organisation of Tri-N-Butyl Phosphate in Organic Diluent on Approaching Third Phase Transition. Phys. Chem. Chem. Phys. 2004, 6(4), 799–808. DOI: 10.1039/B311702B.
  • Muthuchamy S.; Nair V.R; Maharana L.M, Application of Solvent Extraction Technique for the Separation of Rare Earths, Thorium and Uranium. In Proceedings of International Symposium on Solvent extraction, Misra, V. N., Das, S. C. Rao, K. S., Eds. Allied Publishers Pvt. Ltd: Bhubaneshwar, India, 2002; pp 511–523.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.