412
Views
3
CrossRef citations to date
0
Altmetric
Review Article

Advancements in the chemical treatment of potable water and industrial wastewater using the coagulation–flocculation process

, , , , , & show all
Pages 2619-2630 | Received 17 Apr 2023, Accepted 23 May 2023, Published online: 12 Jun 2023

References

  • Zaharia, C.; Suteu, D.; Muresan, A.; Muresan, R.; Popescu, A. Textile Wastewater Treatment by Homogeneous Oxidation with Hydrogen Peroxide. Environ. Eng. Manage. J. 2009, 8(6), 1359–1369. DOI: 10.30638/eemj.2009.199.
  • Gao, B. Y.; Wang, Y.; Yue, Q. Y.; Wei, J. C.; Li, Q. The Size and Coagulation Behavior of a Novel Composite Inorganic–Organic Coagulant. Sep. Purif. Techn. 2008, 62(3), 544–550. DOI: 10.1016/j.seppur.2008.02.023.
  • Chen, W.; Zheng, H.; Zhai, J.; Wang, Y.; Xue, W.; Tang, X.; Zhang, Z.; Sun, Y. Characterization and Coagulation–Flocculation Performance of a Composite Coagulant: Poly-Ferric-Aluminum-Silicate-Sulfate. Desalinat. Water Treat. 2015, 56(7), 1776–1786. DOI: 10.1080/19443994.2014.958109.
  • Sahu, O.; Chaudhari, P. Review on Chemical Treatment of Industrial Waste Water. J. Appl. Sci. Environ. Manage. 2013, 17(2), 241–257. DOI: 10.4314/jasem.v17i2.8.
  • Zaleschi, L.; Teodosiu, C.; Cretescu, I.; Rodrigo, M. A. A Comparative Study of Electrocoagulation and Chemical Coagulation Processes Applied for Wastewater Treatment. Environ. Eng. Manage. J. 2012, 11(8), 1517–1525. DOI: 10.30638/eemj.2012.190.
  • Duan, J.; Gregory, J. Coagulation by Hydrolysing Metal Salts. Adv. Coll. Interf. Sci. 2003, 100-102, 475–502. DOI: 10.1016/S0001-8686(02)00067-2.
  • Gregory, J.Particles in Water Particles in Water: Properties and Processes.CRC Press.2005.10.1201/9780203508459
  • Li, C.; Busquets, R.; Moruzzi, R. B.; Campos, L. C. Preliminary Study on Low-Density Polystyrene Microplastics Bead Removal from Drinking Water by Coagulation-Flocculation and Sedimentation. J. Water Process Eng. 2021, 44, 102346. DOI: 10.1016/j.jwpe.2021.102346.
  • Aguilar, M. I.; Sáez, J.; Lloréns, M.; Soler, A.; Ortuño, J. F. Microscopic Observation of Particle Reduction in Slaughterhouse Wastewater by Coagulation-Flocculation Using Ferric Sulphate as Coagulant and Different Coagulant Aids. Water. Res. 2003, 37(9), 2233–2241. DOI: 10.1016/S0043-1354(02)00525-0.
  • Ghernaout, D.; Badis, A.; Braikia, G.; Mataam, N.; Fekhar, M.; Ghernaout, B.; Boucherit, A. Enhanced Coagulation for Algae Removal in a Typical Algeria Water Treatment Plant. Environ. Eng. Manage. J. 2017, 16(10), 2303–2315. DOI: 10.30638/eemj.2017.238.
  • Wei, N.; Zhang, Z.; Liu, D.; Wu, Y.; Wang, J.; Wang, Q. Coagulation Behavior of Polyaluminum Chloride: Effects of pH and Coagulant Dosage. Chin. J. Chem. Eng. 2015, 23(6), 1041–1046. DOI: 10.1016/j.cjche.2015.02.003.
  • Jiang, J. Q. The Role of Coagulation in Water Treatment. Curr. Opin. Chem. Eng. 2015, 8, 36–44. DOI: 10.1016/j.coche.2015.01.008.
  • Abujazar, M. S. S.; Karaağaç, S. U.; Abu Amr, S. S.; Alazaiza, M. Y. D.; Bashir, M. J. Recent Advancement in the Application of Hybrid Coagulants in Coagulation-Flocculation of Wastewater: A Review. J. Journal Of Cleaner Production. 2023, 345, 131133. DOI: 10.1016/j.jclepro.2022.131133.
  • Mojad, M.; Ashok Mundhe, A. S. S. Turbidity of Water Removal by Using Natural Coagulants. Int. J Eng. Sci Management. 2017, 7, 269–272.
  • Muthuraman, G.; Sasikala, S. Removal of Turbidity from Drinking Water Using Natural Coagulants. J. Ind. Eng. Chem. 2014, 20(4), 1727–1731. DOI: 10.1016/j.jiec.2013.08.023.
  • Jiang, J. Q.; Graham, N. J. D. Pre-Polymerised Inorganic Coagulants and Phosphorus Removal by Coagulation - a Review. Water. SA. 1998, 24(3), 237–244.
  • Asadollahfardi, G.; Zangooei, H.; Motamedi, V.; Davoodi, M. Selection of Coagulant Using Jar Test and Analytic Hierarchy Process: A Case Study of Mazandaran Textile Wastewater. Adv. Environ. Res. 2018, 7(1), 1–11.
  • Jin, P.; Song, J.; Yang, L.; Jin, X.; Wang, X. C. Selective Binding Behavior of Humic Acid Removal by Aluminum Coagulation. Environ. Pollut. 2018, 233, 290–298. DOI: 10.1016/j.envpol.2017.10.058.
  • Fuller, G. W. Progress in Water Purification. J .American Water Works Association. 1933, 25(11), 1566–1576. DOI: 10.1002/j.1551-8833.1933.tb18344.x.
  • Pernitsky, D. J.; Edzwald, J. K. Selection of Alum and Polyaluminum Coagulants: Principles and Applications. J Water Supply Res. Tec. 2006, 55(2), 121–141. DOI: 10.2166/aqua.2006.062.
  • Wang, P.; Jiao, R.; Liu, L.; Xiao, F.; An, G.; Wang, D. Optimized Coagulation Pathway of Al13: Effect of in-Situ Aggregation of Al13. Chemosphere. 2019, 230, 76–83. DOI: 10.1016/j.chemosphere.2019.05.053.
  • Liu, L.; Yang, Q.; Wang, P.; Xiao, F.; Jiao, R.; An, G.; Wang, D. Efficient Purification of Al30 by Organic Complexation Method. J. Environ Sci. 2019, 80, 240–247. DOI: 10.1016/j.jes.2018.12.017.
  • Van Benschoten, J. E.; Edzwald, J. K. Chemical Aspects of Coagulation Using Aluminum Salts—II. Coagulation of Fulvic Acid Using Alum and Polyaluminum Chloride. Water. Res. 1990, 24(12), 1527–1535. DOI: 10.1016/0043-1354(90)90087-M.
  • Aguilar, M. I.; Sáez, J.; Lloréns, M.; Soler, A.; Ortuño, J. F.; Meseguer, V.; Fuentes, A. Improvement of Coagulation–Flocculation Process Using Anionic Polyacrylamide as Coagulant Aid. Chemosphere. 2005, 58(1), 47–56. DOI: 10.1016/j.chemosphere.2004.09.008.
  • Papić, S.; Koprivanac, N.; Božić, A. L. Removal of Reactive Dyes from Wastewater Using Fe(iii) Coagulant. Color. Technol. 2000, 116(11), 352–358. DOI: 10.1111/j.1478-4408.2000.tb00013.x.
  • Errais, E.; Duplay, J.; Darragi, F. Textile Dye Removal by Natural Clay – Case Study of Fouchana Tunisian Clay. Environ. Technol. 2010, 31(4), 373–380. DOI: 10.1080/09593330903480080.
  • Aboulhassan, M. A.; Souabi, S.; Yaacoubi, A.; Baudu, M. Removal of Surfactant from Industrial Wastewaters by Coagulation Flocculation Process. Int. J. Environ. Sci. Technol. 2006, 3(4), 327–332. DOI: 10.1007/BF03325941.
  • Pernitsky, D. J.; Eng, P. Coagulation. Associated Engginer. Calgary Alberta. Hal. 2003, 1–15.
  • Stumm, W.; Morgan, J. J. Aquatic Chemistry; Wiley-interscience: New York, 1970, Vol. 1022.
  • Sun, F.; Pei, H. Y.; Hu, W. R.; Li, X. Q.; Ma, C. X.; Pei, R. T. The Cell Damage of Microcystis aeruginosa in PACl Coagulation and Floc Storage Processes. Sep. Purif. Techn. 2013, 115, 123–128. DOI: 10.1016/j.seppur.2013.05.004.
  • Yu, J.; Wang, D.; Yan, M.; Ye, C.; Yang, M.; Ge, X. Optimized Coagulation of High Alkalinity, Low Temperature and Particle Water: pH Adjustment and Polyelectrolytes as Coagulant Aids. Environ. Monit. Assess. 2007, 131(1–3), 377–386. DOI: 10.1007/s10661-006-9483-3.
  • Lin, J. L.; Huang, C.; Dempsey, B.; Hu, J. Y. Fate of Hydrolyzed Al Species in Humic Acid Coagulation. Water. Res. 2014, 56, 314–324. DOI: 10.1016/j.watres.2014.03.004.
  • Lin, J. L.; Huang, C.; Chin, C.-J. M.; Pan, J. R. The Origin of Al(oh)3-Rich and Al13-Aggregate Flocs Composition in PACl Coagulation. Water. Res. 2009, 43(17), 4285–4295. DOI: 10.1016/j.watres.2009.06.023.
  • Bertsch, P. M.; Layton, W. J.; Barnhisel, R. I. Speciation of Hydroxy-Aluminum Solutions by Wet Chemical and Aluminum-27 NMR Methods. Soil Sci. Soc. Am. J. 1986, 50(6), 1449–1454. DOI: 10.2136/sssaj1986.03615995005000060014x.
  • Bottero, J. Y.; Cases, J. M.; Fiessinger, F.; Poirier, J. E. Studies of Hydrolyzed Aluminum Chloride Solutions. 1. Nature of Aluminum Species and Composition of Aqueous Solutions. J. Phys. Chem. 1980, 84(22), 2933–2939. DOI: 10.1021/j100459a021.
  • Aygun, A.; Yilmaz, T. Improvement of Coagulation-Flocculation Process for Treatment of Detergent Wastewaters Using Coagulant Aids. Int. J. 2010, 1(2), 97–101.
  • Charki, A.; El Ouarghi, H.; Ahari, M.; El Mansouri, B.; Moumen, A.; El Bouhaddioui, M.; Mejjad, N.; Elhassnaoui, I.; El Mezouary, L.; Ben-Daoud, M., et al. Synthesis of Leachate from the Al Hoceima Controlled Landfill and Characterization (Morocco, North of Africa). E3S. Web Conf. 2022, 314(3), 07007. DOI: 10.1051/e3sconf/202131407007.
  • Charki, A.; El Ouarghi, H.; Ahari, M. H. 2021. Treatability Tests of Synthetic Leachate from the Al-Hoceima City Controlled Landfill. In E3S Web of Conferences (314) 07007.
  • Ahari, M. H.; Touze-Foltz, N.; Mazéas, L. Sorption of Chlorophenols on Geotextile of the Geosynthetic Clay Liners. Environ. Eng. Res. 2020, 25(2), 163–170. DOI: 10.4491/eer.2019.004.
  • Hadoudi, N.; Amhamdi, H.; Ahari, M. H. 2021. Sorption of Bisphenol a from Aqueous Solutions Using Natural Adsorbents: Isotherm, Kinetic and Effect of Temperature. In E3S Web of Conferences (314) 07003
  • Ahmad, A. L.; Ismail, S.; Bhatia, S. Optimization of Coagulation−flocculation Process for Palm Oil Mill Effluent Using Response Surface Methodology. Environ. Sci. Technol. 2005, 39(8), 2828–2834. DOI: 10.1021/es0498080.
  • Ehteshami, M.; Maghsoodi, S.; Yaghoobnia, E. Optimum Turbidity Removal by Coagulation/Flocculation Methods from Wastewaters of Natural Stone Processing. Desalinat. Water Treat. 2016, 57(44), 20749–20757.
  • Aboulhassan, M. A.; Souabi, S.; Yaacoubi, A.; Baudu, M. Coagulation Efficacy of a Tannin Coagulant Agent Compared to Metal Salts for Paint Manufacturing Wastewater Treatment. Desalinat. Water Treat. 2016, 57(41), 19199–19205. DOI: 10.1080/19443994.2015.1101016.
  • Bottero, J. Y.; Poirier, J. E.; Fiessinger, F. Study of Partially Neutralized Aqueous Aluminium Chloride Solutions: Identification of Aluminium Species and Relation Between the Composition of the Solutions and Their Efficiency as a Coagulant. Water Pollution Res. Development. 1981, 13, 601–612.
  • Muthuraman, G.; Sasikala, S.; Prakash, N. Proteins from Natural Coagulant for Potential Application of Turbidity Removal in Water. Proteins. 2008, 3(1), 2277–3754.
  • Anteneh, W.; Sahu, O. P. Natural Coagulant for the Treatment of Food Industry Wastewater. Int. Lett. Nat. Sci. 2014, 9(4), 27–35. DOI: 10.56431/p-44oq44.
  • Wang, M.; Muhammed, M. Novel Synthesis of Al13-Cluster Based Alumina Materials. Nanostruct. Mater. 1999, 11(8), 1219–1229. DOI: 10.1016/S0965-9773(99)00412-2.
  • Kim, S. H.; Moon, B. H.; Lee, H. I. Effects of pH and Dosage on Pollutant Removal and Floc Structure During Coagulation. Microchem. J. 2001, 68(2–3), 197–203. DOI: 10.1016/S0026-265X(00)00146-6.
  • Yang, R.; Li, H.; Huang, M.; Yang, H.; Li, A. A Review on Chitosan-Based Flocculants and Their Applications in Water Treatment. Water. Res. 2016, 95(2016), 59–89. DOI: 10.1016/j.watres.2016.02.068.
  • Mhaisalkar, V. A.; Paramasivam, R.; Bhole, A. G. Optimizing Physical Parameters of Rapid Mix Design for Coagulation-Flocculation of Turbid Waters. Water. Res. 1991, 25(1), 43–52. DOI: 10.1016/0043-1354(91)90097-A.
  • Gone, D. L.; Lanciné, G. D.; Bamory, K.; Raymond, L.; Jean-Luc, S.; Christelle, B.; Jean, B. Coagulation-Flocculation Treatment of a Tropical Surface Water with Alum for Dissolved Organic Matter (DOM) Removal: Influence of Alum Dose and pH Adjustment MED-SGD-Submarine Groundwater Discharge: A Hidden Source of Chemical Compounds at the Land-Ocean. J. Int Environ Appl. Sci. 2008, 3(4), 247–257.
  • Park, S. M.; Jun, H. B.; Jung, M. S.; Koo, H. M. Effects of Velocity Gradient and Mixing Time on Particle Growth in a Rapid Mixing Tank. Water Sci. Technol. 2006, 53(7), 95–102. DOI: 10.2166/wst.2006.212.
  • Amirtharajah, A.; Mills, K. M. Rapid-Mix Design for Mechanisms of Alum Coagulation. J.c American Water Works Assoc. 1982, 74(4), 210–216. DOI: 10.1002/j.1551-8833.1982.tb04890.x.
  • Bratby, J. R. Interpreting Laboratory Results for the Design of Rapid Mixing and Flocculation Systems. J. American Water Works Association. 1981, 73(6), 318–325. DOI: 10.1002/j.1551-8833.1981.tb04721.x.
  • Aboulhassan, M. A.; Ait Benichou, S. Industrial Wastewater Turbidity Removal Using Coagulation Flocculation Process. Appl. J. Environ Eng Sci. 2017, 3(1), 3–1.
  • Kastali, M. Reducing Pollution of Stabilized Landfill Leachate by Mixing of Coagulants and Flocculants: A Comparative Study. Environ. Management-Polluti Habitat, Ecology, And Sustainability. IntechOpen. 2022, 4, 20–25.
  • Sher, F.; Malik, A.; Liu, H. Industrial Polymer Effluent Treatment by Chemical Coagulation and Flocculation. J. Environ. Chem. Eng. 2013, 1(4), 684–689. DOI: 10.1016/j.jece.2013.07.003.
  • Syafalni, S.; Abustan, I.; Zakaria, S. N. F.; Zawawi, M. H.; Rahim, R. A. Raw Water Treatment Using Bentonite-Chitosan as a Coagulant. Water Sci. Technol. 2012, 12(4), 480–488. DOI: 10.2166/ws.2012.016.
  • Fosso-Kankeu, E.; Ntwampe, O.; Waanders, F.; Webster, A. 2015. The Performance of Polyaluminium Chloride and Bentonite Clay Coagulant in the Removal of Cationic and Anionic Dyes. In 7th International Conference on Latest Trends in Engineering and Technology.
  • Onen, V.; Gocer, M. The Effect of Single and Combined Coagulation/Flocculation Methods on the Sedimentation Behavior and Conductivity of Bentonite Suspensions with Different Swelling Potentials. Part. Sci. Technol. 2019, 37(7), 827–834. DOI: 10.1080/02726351.2018.1454993.
  • Khwaja, A. R.; Singh, R.; Tandon, S. N. Treatment of Leather Board Effluents by a Coagulation/Flocculation Process. Environ. Technol. 1998, 19(8), 857–860. DOI: 10.1080/09593330.1998.9618701.
  • Ratsimba, M. H.; Ratarazo, L. N. R.; Rakotosaona, R. Traitement des Eaux Usées d’Eextraction Minière par Coagulation-Floculation avec le Sulfate d’Alumine et l’Opuntia Ficus Indica. Int J Progressive Sci. Technol. 2022, 34(1), 100. DOI: 10.52155/ijpsat.v34.1.4552.
  • Hecini, L.; Achour. Effet de sels calciques et magnesiques sur l’elimination des composes phenoliques par coagulation- floculation. Communication Sci. Technol. 2012, 1, 5.
  • Golob, V.; Vinder, A.; Simonič, M. Efficiency of the Coagulation/Flocculation Method for the Treatment of Dyebath Effluents. Dyes. Pigm. 2005, 67(2), 93–97. DOI: 10.1016/j.dyepig.2004.11.003.
  • Freitas, T. K. F. S.; Oliveira, V. M.; De Souza, M. T. F.; Geraldino, H. C. L.; Almeida, V. C.; Fávaro, S. L.; Garcia, J. C. Optimization of Coagulation-Flocculation Process for Treatment of Industrial Textile Wastewater Using Okra (A. Esculentus) Mucilage as Natural Coagulant. Ind. Crops Prod. 2015, 76, 538–544. DOI: 10.1016/j.indcrop.2015.06.027.
  • Rasool, M. A.; Tavakoli, B.; Chaibakhsh, N.; Pendashteh, A. R.; Mirroshandel, A. S. Use of a Plant-Based Coagulant in Coagulation-Ozonation Combined Treatment of Leachate from a Waste Dumping Site. Ecol. Eng. 2016, 90, 431–437. DOI: 10.1016/j.ecoleng.2016.01.057.
  • Huzir, N. M.; Aziz, M. M. A.; Ismail, S. B.; Mahmood, N. A. N.; Umor, N. A.; Faua’ad Syed Muhammad, S. A. Optimization of Coagulation-Flocculation Process for the Palm Oil Mill Effluent Treatment by Using Rice Husk Ash. Ind. Crops Prod. 2019, 139, 111482. DOI: 10.1016/j.indcrop.2019.111482.
  • Tatsi, A. A.; Zouboulis, A. I.; Matis, K. A.; Samaras, P. Coagulation-Flocculation Pretreatment of Sanitary Landfill Leachates. Chemosphere. 2003, 53(7), 737–744. DOI: 10.1016/S0045-6535(03)00513-7.
  • Amuda, O. S.; Amoo, I. A. Coagulation/Flocculation Process and Sludge Conditioning in Beverage Industrial Wastewater Treatment. J. Hazard. Mater. 2007, 141(3), 778–783. DOI: 10.1016/j.jhazmat.2006.07.044.
  • Amuda, O. S.; Alade, A. Coagulation/Flocculation Process in the Treatment of Abattoir Wastewater. Desalination. 2006, 196(1–3), 22–31. DOI: 10.1016/j.desal.2005.10.039.
  • Laridi, R.; Auclair, J. C.; Benmoussa, H. Laboratory and Pilot-Scale Phosphate and Ammonium Removal by Controlled Struvite Precipitation Following Coagulation and Flocculation of Swine Wastewater. Environ. Technol. 2005, 26(5), 525–536. DOI: 10.1080/09593332608618533.
  • Aguilar, M. I. Nutrient Removal and Sludge Production in the Coagulation–Flocculation Process. Water. Res. 2002, 36(11), 2910–2919. DOI: 10.1016/S0043-1354(01)00508-5.
  • Wang, S.; Li, E.; Li, J.; Du, Z.; Cheng, F. Preparation and Coagulation-Flocculation Performance of Covalently Bound Organic Hybrid Coagulant with Excellent Stability. Colloids Surf. A Physicochem. Eng. Aspects. 2020, 600, 124966. DOI: 10.1016/j.colsurfa.2020.124966.
  • Carvalho Bongiovani, M.; Camacho, F. P.; Nishi, L.; Ferri Coldebella, P.; Cardoso Valverde, K.; Vieira, A. M. S.; Bergamasco, R. Improvement of the Coagulation/Flocculation Process Using a Combination of Moringa Oleifera Lam with Anionic Polymer in Water Treatment. Environ. Technol. 2014, 35(17), 2227–2236. DOI: 10.1080/09593330.2014.899398.
  • Ahari, M.; Ddahim, H.; Ramadane, R. Performance of Bentonite Clay as a Coagulation Aid on Water Quality. Desalinat. Water Treat. 2019, 143(2019), 229–234. DOI: 10.5004/dwt.2019.23552.
  • Trinh, T. K.; Kang, L. S. Response Surface Methodological Approach to Optimize the Coagulation-Flocculation Process in Drinking Water Treatment. Chem. Eng. Res. Des. 2011, 89(7), 1126–1135. DOI: 10.1016/j.cherd.2010.12.004.
  • Hu, C.; Chen, Q.; Chen, G.; Liu, H.; Qu, J. Removal of Se(iv) and Se(vi) from Drinking Water by Coagulation. Sep. Purif. Techn. 2015, 142, 65–70. DOI: 10.1016/j.seppur.2014.12.028.
  • Vieno, N.; Tuhkanen, T.; Kronberg, L. Removal of Pharmaceuticals in Drinking Water Treatment: Effect of Chemical Coagulation. Environ. Technol. 2006, 27(2), 183–192. DOI: 10.1080/09593332708618632.
  • Volk, C. Impact of Enhanced and Optimized Coagulation on Removal of Organic Matter and Its Biodegradable Fraction in Drinking Water. Water. Res. 2000, 34(12), 3247–3257. DOI: 10.1016/S0043-1354(00)00033-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.