86
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Magnetically Recoverable CMC/Fe3O4 Nanocomposite for Efficient Removal of Hg(II) and Cd(II) ions from the Aqueous Solution

ORCID Icon & ORCID Icon
Pages 2692-2703 | Received 24 Mar 2023, Accepted 09 Jun 2023, Published online: 15 Jun 2023

References

  • Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 2019, 1–14. DOI: 10.1155/2019/6730305.
  • Cocarţa, D.; Neamţu, S.; Deac, A. R. Carcinogenic Risk Evaluation for Human Health Risk Assessment from Soils Contaminated with Heavy Metals. Int. J. Environ. Sci. Technol. 2016, 13(8), 2025–2036. DOI: 10.1007/s13762-016-1031-2.
  • Wang, J.; Deng, B.; Chen, H.; Wang, X.; Zheng, J. Removal of Aqueous Hg(ii) by Polyaniline: Sorption Characteristics and Mechanisms. Environ. Sci. Technol. 2009, 43(14), 5223–5228. DOI: 10.1021/es803710k.
  • Masoudi, R.; Moghimi, H.; Azin, E.; Taheri, R. A. Adsorption of Cadmium from Aqueous Solutions by Novel Fe 3 O 4 - Newly Isolated Actinomucor Sp. Bio-Nanoadsorbent: Functional Group Study. Artif. Cells Nanomed. Biotechnol. 2018, 46(sup3), 1092–1101. DOI: 10.1080/21691401.2018.1533841.
  • Younes, A. A.; Abdulhady, Y. A. M.; Shahat, N. S.; El-Din El-Dars, F. M. S. Removal of Cadmium Ions from Wastewaters Using Corn Cobs Supporting Nano-Zero Valent Iron. Sep. Sci. Technol. 2021, 56(1), 1–13. DOI: 10.1080/01496395.2019.1708109.
  • Organization, W. H. Health Risks of Heavy Metals from Long-Range Transboundary Air Pollution. World Health Organ. 2007, 1–144.
  • Singh, A.; Sharma, A.; Verma, R. K.; Chopade, R. L.; Pandit, P. P.; Nagar, V.; Aseri, V.; Choudhary, S. K.; Awasthi, G.; Awasthi, K. K., et al. Heavy Metal Contamination of Water and Their Toxic Effect on Living Organisms. In The Toxicity of Environmental Pollutants; Dorta, D. Oliveira, D. P. D., Eds.; IntechOpen, 2022.
  • Damiri, F.; Andra, S.; Kommineni, N.; Balu, S. K.; Bulusu, R.; Boseila, A. A.; Akamo, D. O.; Ahmad, Z.; Khan, F. S.; Rahman, M. H., et al. Recent Advances in Adsorptive Nanocomposite Membranes for Heavy Metals Ion Removal from Contaminated Water: A Comprehensive Review. Mate. 2022, 15(15), 5392. DOI: 10.3390/ma15155392.
  • Qasem, N. A. A.; Mohammed, R. H.; Lawal, D. U. Removal of Heavy Metal Ions from Wastewater: A Comprehensive and Critical Review. Clean. Water4. 2021, 4(1). DOI: 10.1038/s41545-021-00127-0.
  • Zhang, M.; Song, W.; Chen, Q.; Miao, B.; He, W. One-Pot Synthesis of Magnetic Ni@mg(oh) 2 Core–Shell Nanocomposites as a Recyclable Removal Agent for Heavy Metals. ACS Appl. Mater. Interfaces. 2015, 7(3), 1533–1540. DOI: 10.1021/am506643b.
  • Mohammadi, M. K.; Gabris, M. A.; Rashidi Nodeh, H.; Esmaeili Bidhendi, M. Efficient Removal of Arsenic(iii) from Aqueous Media Using Magnetic Polyaniline-Doped Strontium–Titanium Nanocomposite. Environ. Sci. Pollut. Res. 2018, 25(17), 16864–16874. DOI: 10.1007/s11356-018-1870-0.
  • Namvar-Mahboub, M.; Khodeir, E.; Bahadori, M.; Mahdizadeh, S. M. Preparation of Magnetic MgO/Fe3O4 via the Green Method for Competitive Removal of Pb and Cd from Aqueous Solution. Colloids Surf. A Physicochem. Eng. Aspects. 2020, 589, 124419. DOI: 10.1016/j.colsurfa.2020.124419.
  • Maity, J.; Ray, S. K. Chitosan Based Nano Composite Adsorbent—Synthesis,characterization and Application for Adsorption of Binary Mixtures of Pb(ii) and Cd(ii) from Water. Carbohydr. Polym. 2018, 182, 159–171. DOI: 10.1016/j.carbpol.2017.10.086.
  • Asadi, S.; Eris, S.; Azizian, S. Alginate-Based Hydrogel Beads as a Biocompatible and Efficient Adsorbent for Dye Removal from Aqueous Solutions. ACS. Omega. 2018, 3(11), 15140–15148. DOI: 10.1021/acsomega.8b02498.
  • Nasser, A. H.; Mathew, A. P. Cellulose-Based Materials for Water Remediation: Adsorption, Catalysis, and Antifouling. Front. Chem. Eng. 2021, 3. DOI: 10.3389/fceng.2021.790314.
  • Capanema, N. S. V.; Mansur, A. A. P.; Mansur, H. S.; de Jesus, A. C.; Carvalho, S. M.; Chagas, P; de Oliveira, L. C. Eco-Friendly and Biocompatible Cross-Linked Carboxymethylcellulose Hydrogels as Adsorbents for the Removal of Organic Dye Pollutants for Environmental Applications. Environ. Technol. 2018, 39(22), 2856–2872. DOI: 10.1080/09593330.2017.1367845.
  • Chen, Y.; Cui, J.; Liang, Y.; Chen, X.; Li, Y. Synthesis of Magnetic Carboxymethyl Cellulose/Graphene Oxide Nanocomposites for Adsorption of Copper from Aqueous Solution. Int. J. Energy Res. 2020, 45(3), 3988–3998. DOI: 10.1002/er.6054.
  • Kaur, R.; Hasan, A.; Iqbal, N.; Alam, S.; Saini, M. K.; Raza, S. K. Synthesis and Surface Engineering of Magnetic Nanoparticles for Environmental Cleanup and Pesticide Residue Analysis: A Review. J. Sep. Sci. 2014, 37(14), 1805–1825. DOI: 10.1002/jssc.201400256.
  • Nugraha, A. D.; Wulandari, I. O.; Hutami Rahayu, L. B.; Rivai, I.; Santojo, D. J.; Sabarudin, A. One-Pot Synthesis and Surface Modification of Fe3O4 Nanoparticles Using Polyvinyl Alcohol by Coprecipitation and Ultrasonication Methods. Mater. Sci. Eng. 2018, 299, 012066. DOI: 10.1088/1757-899X/299/1/012066.
  • Dehghania, N.; Babamoradia, M.; Hajizadehb, Z.; Maleki, A. Improvement of Magnetic Property of CMC/Fe3O4 Nanocomposite by Applying External Magnetic Field During Synthesis. Chem. Methodol. 2020, 4, 2–99.
  • Janicijevic, A.; Pavlovic, V. P.; Kovacevic, D.; Peric, M.; Vlahovic, B.; Pavlovic, V. B.; Filipovic, S. Structural Characterization of Nanocellulose/Fe3O4 Hybrid Nanomaterials. Struct. Charact. Nanocell/Fe3O4 Hybrid Nanomate, Poly. 2022, 14(9), 1819. DOI: 10.3390/polym14091819.
  • Azizi, A. Green Synthesis of Fe3O4 Nanoparticles and Its Application in Preparation of Fe3O4/Cellulose Magnetic Nanocomposite: A Suitable Proposal for Drug Delivery Systems. J. Inorg. Organomet. Polym. Mater. 2020, 30(9), 3552–3561. DOI: 10.1007/s10904-020-01500-1.
  • Wang, F.; Jin, L.; Guo, C.; Min, L.; Zhang, P.; Sun, H.; Zhu, H.; Zhang, C. Enhanced Heavy Metals Sorption by Modified Biochars Derived from Pig Manure. Sci. Total Environ. 2021, 786, 147595. DOI: 10.1016/j.scitotenv.2021.147595.
  • Rusmirovic, J. D.; Ivanovic, J. Z.; Pavlovic, V. B.; Rakic, V. M.; Rancic, M. P.; Djokic, V.; Marinkovic, A. D. Novel Modified Nanocellulose Applicable as Reinforcement in High-Performance Nanocomposites. Carbohydr. Polym. 2017, 164(2017), 64–74. DOI: 10.1016/j.carbpol.2017.01.086.
  • Zirpe, M.; Bagla, H.; Thakur, J. Rapid Removal of 152+154Eu(III) Using Polyaniline/Ceria Nanocomposite from Low Level Waste. J. Inorg. Organomet. Polym. Mater. 2020, 30(12), 5053–5062. DOI: 10.1007/s10904-020-01606-6.
  • Hou, F.; Wang, D.; Ma, X.; Fan, L.; Ding, T.; Ye, X.; Liu, D. Enhanced Adsorption of Congo Red Using Chitin Suspension After Sonoenzymolysis. Ultrason. Sonochem. 2021, 70, 105327. DOI: 10.1016/j.ultsonch.2020.105327.
  • Zirpe, M.; Thakur, J. Sono-Assisted Synthesis of AgFeO2 Nanoparticles for Efficient Removal of Basic Green-4 Dye from Aqueous Solution. J. Nanopart. Res. 2022, 24(12), 240. DOI: 10.1007/s11051-022-05620-2.
  • Zirpe, M.; Bagla, H.; Thakur, J. Adsorptive Removal of Fluoride Using Polymer-Modified Ceria Nanoparticles: Determination of Equilibrium, Kinetic and Thermodynamic Parameters. Sep. Sci. Technol. 2020, 55(16), 2933–2947. DOI: 10.1080/01496395.2019.1660674.
  • Rahmani, A.; Zavvar Mousavi, H.; Fazli, M. Effect of Nanostructure Alumina on Adsorption of Heavy Metals. Desalination. 2010, 253(1–3), 94–100. DOI: 10.1016/j.desal.2009.11.027.
  • Chowdhury, N.; Solaiman, S.; Roy, C. K.; Firoz, S. H.; Foyez, T.; Imran, A. B. Role of Ionic Moieties in Hydrogel Networks to Remove Heavy Metal Ions from Water.Acs Omega. ACS. Omega. 2021, 6(1), 836–844. DOI: 10.1021/acsomega.0c05411.
  • Baimenov, A.; Berillo, D.; Azat, S.; Nurgozhin, T.; Inglezakis, V. Removal of Cd2+ from Water by Use of Super-Macroporous Cryogels and Comparison to Commercial Adsorbents. Poly. 2020, 12(10), 2405. DOI: 10.3390/polym12102405.
  • Langmuir, I. The Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids. J. Am. Chem. Soc. 1916, 38(11), 2221–2295. DOI: 10.1021/ja02268a002.
  • Freundlich, H. M. F. Über die Adsorption in Lösungen. J. Phys. Chem. 1906, 57(1), 385–470. DOI: 10.1515/zpch-1907-5723.
  • Ayawei, A.; Ebelegi, A. N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 11. DOI: 10.1155/2017/3039817.
  • Langergen, S. About the Theory of So-Called Adsorption of Soluble Substances. Kungliga. Svenska Vetenskapsakademiens Handlingar. 1898, 24, 1–39.
  • Ho, Y. S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process. Biochem. 1999, 34(5), 451–465. DOI: 10.1016/S0032-9592(98)00112-5.
  • Sobhanardakani, S.; Zandipak, R. Synthesis and Application of TiO2/SiO2/Fe3O4 Nanoparticles as Novel Adsorbent for Removal of Cd(ii), Hg(ii) and Ni(ii) Ions from Water Samples. Clean Technol. Environ. Policy. 2017, 19(7), 1913–1925. DOI: 10.1007/s10098-017-1374-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.