71
Views
0
CrossRef citations to date
0
Altmetric
Flotation

Improving xanthate flotation of fine pyrite using SPAM and the mechanism

, , , & ORCID Icon
Pages 2208-2216 | Received 06 Apr 2023, Accepted 29 Jun 2023, Published online: 09 Jul 2023

References

  • Bao, T.; Ni, P.; Li, S. N.; Xiang, H. L.; GWang, G.; Chi, Z.; Li, W. S.; Ding, J. Y.; Dai, B. Z. Geological, Fluid Inclusion, and H–O–C–S–Pb Isotopic Constraints on the Genesis of the Shuangqishan Gold Deposit. Fujian, China, J. Geochem. Explor. 2020, 214, 106544. DOI: 10.1016/j.gexplo.2020.106544.
  • Vajihinejad, V.; Gumfekar, S. P.; Bazoubandi, B.; Rostami Najafabadi, Z.; Soares, J. B. Water Soluble Polymer Flocculants: Synthesis, Characterization, and Performance Assessment, Macromol. Mater. Eng. 2009, 304(2), 1800526. DOI: 10.1002/mame.201800526.
  • Katrivesis, F. K.; Karela, A. D.; Papadakis, V. G.; Paraskeva, C. A. Revisiting of Coagulation-Flocculation Processes in the Production of Potable Water. J. Water. Process. Eng. 2019, 27, 193–204. DOI: 10.1016/j.jwpe.2018.12.007.
  • Barani, K.; Kalantari, M. Recovery of Kaolinite from Tailings of Zonouz Kaolin-Washing Plant by Flotation-Flocculation Method. J. Mater. Res. Technol. 2018, 7(2), 142–148. DOI: 10.1016/j.jmrt.2017.05.010.
  • Qin, J.; Wang, H.; Qin, C.; Meng, H.; Qu, W.; Qian, H. The Role of Sodium Carbonate in PAM Coagulation-Flocculation for Oil Acidized Wastewater Treatment. Water Sci. Technol. 2018, 77(11), 2677–2686. DOI: 10.2166/wst.2018.224.
  • Zheng, J.; Tang, X.; Zhang, S.; Huang, T.; Zheng, H.; Sun, B. Relationship Between the Structure of Chitosan-Based Flocculants and Their Performances in the Treatment of Model Azo Dyeing Wastewater. Chemosphere. 2020, 247, 125920. DOI: 10.1016/j.chemosphere.2020.125920.
  • Al-Risheq, D. I.; Shaikh, S. M.; Nasser, M. S.; Almomani, F.; Hussein, I. A.; Hassan, M. K. Enhancing the Flocculation of Stable Bentonite Suspension Using Hybrid System of Polyelectrolytes and NADES, Colloid. Surf. A. 2022, 638, 128305. DOI: 10.1016/j.colsurfa.2022.128305.
  • Boulton, A.; Fornasiero, D.; Ralston, J. Selective Depression of Pyrite with Polyacrylamide Polymers. Inter. J. Miner. Process. 2001, 61(1), 13–22. DOI: 10.1016/S0301-7516(00)00024-7.
  • Wang, Z.; Zou, D.; Zhao, K.; Safarov, S.; Xu, Y. Adsorption of Yeast Dextran on Clinochlore Surface and the Implications for Pyrite/Clinochlore Separation. Physicochem. Probl. Miner. Process. 2022, 58(4), 151635. DOI: 10.37190/ppmp/151635.
  • Liu, W.; Zhang, S.; Wang, W.; Zhang, J.; Yan, W.; Deng, J.; Feng, Q. M.; Huang, Y. The Effects of Ca (II) and Mg (II) Ions on the Flotation of Spodumene Using NaOl. Miner.Eng. 2015, 79, 40–46. DOI: 10.1016/j.mineng.2015.05.008.
  • Fu, K. B.; Tang, P. C.; Qin, T. B.; Xu, X.; Peng, T. F. Flotation technology of fine-disseminated secondary copper sulfide ore, Min. Metall. Engin. 2018, 38(6), 48–50. In Chinese.
  • Liu, C.; Zhang, W.; Song, S.; Li, H. A novel method to improve carboxymethyl cellulose performance in the flotation of talc, Miner. Engin. 2019, 131, 23–27. DOI: 10.1016/j.mineng.2018.11.003.
  • Peng, Y.; Xiao, J.; Deng, B.; Wang, Z.; Liu, N.; Yang, D.; Ding, W.; Chen, T.; Wu, Q. Study on separation of fine-particle ilmenite and mechanism using flocculation flotation with sodium oleate and polyacrylamide. Physicochem. Probl. Miner. Process. 2020, 56(1), 161–172.
  • Ruiz-Cabello, F. M.; Bermúdez-Romero, S.; Ibanez-Ibanez, P. F.; Cabrerizo-Vílchez, M. A.; Rodríguez-Valverde, M. A. Freezing delay of sessile drops: Probing the impact of contact angle, surface roughness and thermal conductivity, Appl. Surf. Sci. 2021, 537, 147964. DOI: 10.1016/j.apsusc.2020.147964.
  • Dong, L.; Qiao, L.; Zheng, Q.; Shen, P.; Qin, W.; Jiao, F.; Liu, D. Enhanced adsorption of citric acid at the calcite surface by adding copper ions: Flotation separation of scheelite from calcite. Colloids Surf. A Physicochem. Eng. Aspects. 2023, 663, 131036.
  • Niu, X.; Ruan, R.; Xia, L.; Li, L.; Sun, H.; Jia, Y.; Tan, Q. Correlation of surface adsorption and oxidation with a floatability difference of galena and pyrite in high-alkaline lime systems. Langmuir. 2018, 34(8), 2716–2724. DOI: 10.1021/acs.langmuir.7b04189.
  • Shahbazi, B.; Rezai, B.; Koleini, S. J. Bubble–particle collision and attachment probability on fine particles flotation. Chem. Eng. Process. 2010, 49(6), 622–627. DOI: 10.1016/j.cep.2010.04.009.
  • da Rosa, J. J.; Rubio, J. The FF (flocculation–flotation) process, Miner. Eng. 2005, 18(7), 701–707. DOI: 10.1016/j.mineng.2004.10.010.
  • Sun, Q. Y.; Yin, W. Z.; Li, D.; Fu, Y. F.; Xue, J. W.; Yao, J. Improving the sulfidation− flotation of fine cuprite by hydrophobic flocculation pretreatment. Inter. J. Miner. Metall. Mater. 2018, 25(11), 1256–1262. DOI: 10.1007/s12613-018-1678-4.
  • Costine, A.; Cox, J.; Travaglini, S.; Lubansky, A.; Fawell, P.; Misslitz, H. Variations in the molecular weight response of anionic polyacrylamides under different flocculation conditions. Chem. Eng. Sci. 2018, 176, 127–138. DOI: 10.1016/j.ces.2017.10.031.
  • Cheng, P. Y.; Schachman, H. K. Studies on the validity of the Einstein viscosity law and Stokes’ law of sedimentation. J. Polym. Sci. 1995, 16(81), 19–30. DOI: 10.1002/pol.1955.120168102.
  • Espiritu, E. R. L.; Da Silva, G. R.; Azizi, D.; Larachi, F.; Waters, K. E. The effect of dissolved mineral species on bastnäsite, monazite and dolomite flotation using benzohydroxamate collector, Colloid. Surf. A. 2018, 539, 319–334. DOI: 10.1016/j.colsurfa.2017.12.038.
  • Yang, S.; Xie, B.; Lu, Y.; Li, C. Role of magnesium-bearing silicates in the flotation of pyrite in the presence of serpentine slimes. Powder. Technol. 2018, 332, 1–7. DOI: 10.1016/j.powtec.2018.03.049.
  • Chandraprabha, M. N.; Natarajan, K. A.; Modak, J. M. Selective separation of pyrite and chalcopyrite by biomodulation, Colloid. Surf. B. 2004, 37(3–4), 93–100. DOI: 10.1016/j.colsurfb.2004.06.011.
  • Zhang, Q.; Xu, Z.; Bozkurt, V.; Finch, J. A. Pyrite flotation in the presence of metal ions and sphalerite, Inter. J.Miner. Process. 1997, 52(2–3), 187–201. DOI: 10.1016/S0301-7516(97)00064-1.
  • Tao, D. Role of bubble size in flotation of coarse and fine particles—a review, Sep. Sci. Technol. 2005, 39(4), 741–760. DOI: 10.1081/SS-120028444.
  • Yi, G.; Macha, E.; Van Dyke, J.; Macha, R. E.; McKay, T.; Free, M. L. Recent progress on research of molybdenite flotation: A review. Adv. Colloid Interf. Sci. 2001, 295, 102466. DOI: 10.1016/j.cis.2021.102466.
  • Mackay, I.; Videla, A. R.; Brito-Parada, P. R. The link between particle size and froth stability-Implications for reprocessing of flotation tailings. J. Clean. Prod. 2020, 242, 118436. DOI: 10.1016/j.jclepro.2019.118436.
  • Li, Y.; Li, J.; Chen, P.; Chen, J.; Shen, L.; Zhu, X.; Cheng, G. The effect of ultra-fine coal on the flotation behavior of silica in subbituminous coal reverse flotation. Powder. Technol. 2019, 342, 457–463. DOI: 10.1016/j.powtec.2018.10.014.
  • Zhou, H.; Zhang, Z.; Ou, L.; Mai, Q. Flotation separation of chalcopyrite from talc using a new depressant carrageenan, Colloid. Surf. A. 2020, 603, 125274. DOI: 10.1016/j.colsurfa.2020.125274.
  • Sadeghalvaad, M.; Sabbaghi, S. The effect of the TiO2/polyacrylamide nanocomposite on water-based drilling fluid properties. Powder. Technol. 2015, 272, 113–119. DOI: 10.1016/j.powtec.2014.11.032.
  • Cai, J.; Su, C.; Ma, Y.; Yu, X.; Peng, R.; Li, J.; Zhang, X.; Fang, J.; Shen, P.; Liu, D. Role of ammonium sulfate in sulfurization flotation of azurite: Inhibiting the formation of copper sulfide colloid and its mechanism. Inter. J. Min. Sci. Technol. 2022, 32(3), 575–584. DOI: 10.1016/j.ijmst.2022.01.007.
  • Lu, D.; Hu, Y.; Li, Q.; Yu, S.; Jiang, T.; Sun, W.; Wang, Y. Improving the recovery of fine auriferous pyrite using iso-amylxanthate and its isomeride, Miner. Engin. 2016, 92, 57–62. DOI: 10.1016/j.mineng.2016.03.001.
  • Chen, Y.; Chen, J.; Lan, L.; Yang, M. The influence of the impurities on the flotation behaviors of synthetic ZnS, Miner. Eng. 2012, 27-28, 65–71. DOI: 10.1016/j.mineng.2012.01.001.
  • Chang, Z.; Chen, X.; Peng, Y. The interaction between diesel and surfactant Triton X-100 and their adsorption on coal surfaces with different degrees of oxidation. Powder. Technol. 2019, 342, 840–847. DOI: 10.1016/j.powtec.2018.10.047.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.