121
Views
1
CrossRef citations to date
0
Altmetric
Adsorpton

Preparation of composite film-based montmorillonite clay for removal of lead from aqueous solution

ORCID Icon & ORCID Icon
Pages 2254-2269 | Received 12 Apr 2023, Accepted 01 Aug 2023, Published online: 08 Aug 2023

References

  • Yoshinaga, J. Lead in the Japanese Living Environment. Environ. Health Prev. Med. 2012, 17(6), 433–443. DOI: 10.1007/s12199-012-0280-z.
  • Rahman, M.; Rima, S. A.; Saha, S. K.; Saima, J.; Hossain, M. S.; Tanni, T. N.; Bakar, M. A.; Siddique, M. A. M. Pollution Evaluation and Health Risk Assessment of Heavy Metals in the Surface Water of a Remote Island Nijhum Dweep, Northern Bay of Bengal. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100706. DOI: 10.1016/j.enmm.2022.100706.
  • Ali, Z.; Ullah, R.; Tuzen, M.; Ullah, S.; Rahim, A.; Saleh, T. A. Colorimetric Sensing of Heavy Metals on Metal Doped Metal Oxide Nanocomposites: A Review. Trends Environ. Anal. Chem. 2023, 37, r00187. DOI: 10.1016/j.teac.2022.e00187.
  • Kumar, S.; Rahman, M. A.; Islam, M. R.; Hashem, M. A.; Rahman, M. M. Lead and Other Elements-Based Pollution in Soil, Crops and Water Near a Lead-Acid Battery Recycling Factory in Bangladesh. Chemosphere. 2022, 290, 133288. DOI: 10.1016/j.chemosphere.2021.133288.
  • Swaringen, B. F.; Gawlik, E.; Kamenov, G. D.; McTigue, N. E.; Cornwell, D. A.; Bonzongo, J. J.-C. Children’s Exposure to Environmental Lead: A Review of Potential Sources, Blood Level, and Methods Used to Reduce Exposure. Environ. Res. 2021, 204, 112025. DOI: 10.1016/j.envres.2021.112025.
  • Rind, I. K.; Sari, A.; Tuzen, M.; Lanjwani, M. F.; Karaman, I.; Saleh, T. A. Influential Biosorption of Lead from Aquatic Solution Using Escherichia coli/Carbon Nanofibers. Environ. Nanotechnol. Monit. Manag. 2023, 19, 100776. DOI: 10.1016/j.enmm.2022.100776.
  • Saleh, T. A.; Tuzen, M.; Sari, A. Effective Antimony Removal from Wastewaters Using Polymer Modified Sepiolite: Isotherm Kinetic and Thermodynamic Analysis. Chem. Eng. Res. Des. 2022, 184, 215–223. DOI: 10.1016/j.cherd.2022.05.045.
  • Altunay, N.; Hazer, B.; Tuzen, M.; Elik, A. A New Analytical Approach for Preconcentration, Separation and Determination of Pb(ii) and Cd(ii) in Real Samples Using a New Adsorbent: Synthesis, Characterization and Application. Food Chem. 2021, 359, 129923. DOI: 10.1016/j.foodchem.2021.129923.
  • Kryuchkova, M.; Batasheva, S.; Akhatova, F.; Babaev, V.; Buzyurova, D.; Vikulina, A.; Volodkin, D.; Fakhrullin, R.; Rozhina, E. Pharmaceuticals Removal by Adsorption with Montmorillonite Nanoclay. Int. J. Mol. Sci. 2021, 22(18), 9670. DOI: 10.3390/ijms22189670.
  • Parisi, F.; Lazzara, G.; Merli, M.; Milioto, S.; Princivalle, F.; Sciascia, L. Simultaneous Removal and Recovery of Metal Ions and Dyes from Wastewater Through Montmorillonite Clay Mineral. Nanomaterials. 2019, 9(12), 1699. DOI: 10.3390/nano9121699.
  • Zhu, R.; Chen, Q.; Zhou, Q.; Xi, Y.; Zhu, J.; He, H. Adsorbents Based on Montmorillonite for Contaminant Removal from Water: A Review. Appl. Clay Sci. 2016, 123, 239–258. DOI: 10.1016/j.clay.2015.12.024.
  • Brochard, L. Swelling of Montmorillonite from Molecular Simulations Hydration Diagram and Confined Water Properties. J. Phys. Chem. C. 2021, 125(28), 15527–15543. DOI: 10.1021/acs.jpcc.1c02659.
  • Kennedy Oubagaranadin, J. U.;, and Murthy, Z. V. P. Adsorption of Divalent Lead on a Montmorillonite-Illite Type of Clay. Ind. Eng. Chem. Res. 2009, 48(23), 10627–10636. DOI: 10.1021/ie9005047.
  • Alghamdi, A. A.; Al-Odayni, A.; Saeed, W. S.; Al-Kahtani, A.; Alharthi, F. A.; Aouak, T. Efficient Adsorption of Lead(ii) from Aqueous Phase Solutions Using Polypyrrole-Based Activated Carbon. Material. 2020, 12(12), 1–16. DOI: 10.3390/ma12122020.
  • Jeyakumar, R. P. S.; Chandrasekaran, V. Adsorption of Lead(ii) Ions by Activated Carbons Prepared from Marine Green Algae: Equilibrium and Kinetics Studies. Int. J. Ind. Chem. 2014, 5(10). DOI: 10.1007/s40090-014-0010-z.
  • Kikuchi, Y.; Qian, Q.; Machida, M.; Tatsumoto, H. Effect of ZnO Loading to Activated Carbon on Pb(ii) Adsorption from Aqueous Solution. Carbon. 2006, 44, 195–202. DOI: 10.1016/j.carbon.2005.07.040.
  • Al-Jill, S. A. Characterization and Application of Bentonite Clay for Lead Ion Adsorption from Wastewater: Equilibrium and Kinetic Study. Res. J. Environ. Sci. 2015, 9, 1–15. DOI: 10.3923/rjes.2015.1.15.
  • Zhang, Y.; Liu, R.; Tan, L.; Yang, N.; Kerkula, A.; Wang, H. Adsorption of Pb(ii) by Montmorillonite Modified Biochars and Reduction Pb(ii)-Stress in Plants of Microcosms of Constructed Wetlands: Mechanism and Treatment Performances. Desalin. Water. Treat. 2021, 221, 152–162. DOI: 10.5004/dwt.2021.27019.
  • Parisi, F. Adsorption and Separation of Crystal Violet, Cerium (II) and Lead(ii) by Means of a Multi-Step Strategy Base on K10-Montmorillonite. Minerals. 2020, 10(5), 466. DOI: 10.3390/min10050466.
  • Wahab, N.; Saeed, M.; Ibrahim, M.; Munir, A.; Saleem, M.; Zahra, M.; Waseem, A. Synthesis, Characterization, and Applications of Silk/Bentonite Clay Composite for Heavy Metal Removal from Aqueous Solution. Front. Chem. 2019, 7, 654. Article DOI: 10.3389/fchem.2019.00654.
  • Chaiwarit, T.; Rachtanapun, P.; Kantrong, N.; Jantrawut, P. Preparation of Clindamycin Hydrochloride Loaded de-Esterified Low-Methoxyl Mango Peel Pectin Biofilm Used as a Topical Drug Delivery System. Polymers. 2020, 12(5), 1006. DOI: 10.3390/polym12051006.
  • Makaremi, M.; Yousefi, H.; Cavallaro, G.; Lazzara, G.; Goh, C. B. S.; Lee, S. M.; Solouk, A.; Pasbakhsh, P. Safely Dissolvable and Healable Active Packaging Biofilms Based on Alginate and Pectin. Polymers. 2019, 11, 1594. DOI: 10.3390/polym11101594.
  • Nogueira, G. F.; Oliveira, R. A.; Velasco, J. I.; Fakhouri, F. M. Methods of Incorporating Plant-Derived Bioactive Compounds into Biofilms Made with Agro-Based Polymers for Application as Food Packaging: A Brief Review. Polymers. 2020, 12, 2518. DOI: 10.3390/polym12112518.
  • Hastuti, B.; Hadi, S. Adsorption of Pb(ii) Ion Using Pectin Membrane. IOP Conf. Ser Mater. Sci. Eng. 2020, 858(1), 012014. DOI: 10.1088/1757-899X/858/1/012014.
  • Abd El-Rahman, S. A.; Hashem, N. A. A.; Bakr, A. A. Adsorption Studies on Lead(ii) Ions by Low; High Esterified Pectin and Pectin Extracted from Water Hyacinth Leaves. J. Soil. Sci. And Agric. Eng. Mansoura Univ. 2014, 5(5), 617–630. DOI: 10.21608/JSSAE.2014.49353.
  • Subroto, N.; Tarmidzi, F.; Wati, I.; Armans, V. Lead Ion Removal in Water Using Low Methoxy Pectin-Guar Gum Beads Hybrid Adsorbent. Indo. J. Chem. Res. 2022, 10, 53–57. DOI: 10.30598/ijcr.2022.10-nad.
  • Meng, Y.; Wang, S.; Guo, Z.; Cheng, M.; Li, J.; Li, D. Design and Preparation of Quaternized Pectin-Montmorillonite Hybrid Film for Sustained Drug Release. Int. J. Bol. Macromol. 2020, 154, 413–420. DOI: 10.1016/j.ijbiomac.2020.03.140.
  • Zauro, S. A.; Vishalakshi, B. Pectin Graft Copolymer-Montmorillonite Composite: Synthesis, Swelling and Divalent Metal Ion Adsorption. Sep. Sci. And Techonol. 2018, 53(14), 2170–2185. DOI: 10.1080/01496395.2018.1446987.
  • Umpuch, C.; Nuansang, P.; Slungsanket, P.; Rattana, P.; Rattanapongleka, K.; Puchongkawarin, C. Adsorption of Rhodamine B Dye on Composite Pellets Obtained from Pectin and Montmorillonite Clay. Suranaree J. Sci. Technol. 2022, 29(6), 1–10. https://ird.sut.ac.th/journal/sjst/#/los/manuscript/25328.
  • Liew, S. Q.; Chin, N. L.; Yusof, Y. A. Extraction and Characterization of Pectin from Passion Fruit Peels. Agric. Agric. Sci. Procedia. 2014, 2, 231–236. DOI: 10.1016/j.aaspro.2014.11.033.
  • Lizeth, L. E. C.; Carvajal-Millan, E.; Balandran-Quintana, R. R.; Lopez-Franco, Y. L.; Rascón-Chu, A. Pectin and Pectin-Based Composite Materials: Beyond Food Texture. Molecules. 2018, 23, 942. DOI: 10.3390/molecules23040942.
  • Bakatula, E. N.; Richard, D.; Neculita, C. M.; Zagury, G. J. Determination of Point of Zero Charge of Natural Organic Materials. Environ. Sci. Pollut. Res. 2018, 25, 7823–7833. DOI: 10.1007/s11356-017-1115-7.
  • Umpuch, C.; Sakaew, S. Adsorption Characteristics of Reactive Black 5 Onto Chitosan-Intercalated Montmorillonite. Desalin. Water. Treat. 2015, 53(11), 2962–2969. DOI: 10.1080/19443994.2013.867541.
  • Caccamo, M. T.; Mavilia, G.; Mavilia, L.; Lombardo, D.; Magazu, S. Self-Assembly Process in Hydrated Montmorillonite by FTIR Investigations. Mater. (Basel). 2020, 13(5), 1100. DOI: 10.3390/ma13051100.
  • Wathoni, N.; Shan, C. Y.; Shan, W. Y.; Rostinawati, T.; Indradi, R. B.; Pratiwi, R.; Muchtaridi, M. Characterization and Antioxidant Activity of Pectin Form Indonesian Mangosteen (Garcinia Nagnostana L.) Rind. Heliyon. 2019, 5, e02299. DOI: 10.1016/j.heliyon.2019.e02299.
  • Esmaeili, A.; Eslami, H. Adsorption of Pb(ii) and Zn(ii) Ions from Aqueous Solutions by Red Earth. Meth. X. 2020, 7, 100804. DOI: 10.1016/j.mex.2020.100804.
  • Gonzalez-Santamaria, D. E.; Justel, A.; Fernandez, R.; Ruiz, A. I.; Stavropoulou, A.; Rodriguez-Blanco, J. D.; Cuevas, J. SEM-EDX Study of Bentonite Alteration Under the Influence of Cement Alkaline Solutions. Appli. Clay Sci. 2021, 212, 106223. DOI: 10.1016/j.clay.2021.106223.
  • Talgatov, E. T.; Auezkhanova, A. S.; Kapysheva, U. N.; Bakhtiyrova, S. K.; Zharmagambetova, A. K. Synthesis and Detoxifying Properties of Pectin-Montmorillonite Composite. J. Inorg. Organomont. Polym. 2016, 26, 1387–1397. DOI: 10.1007/s10904-016-0422-7.
  • Zhang, M.; Yin, Q.; Ji, X.; Wang, F.; Gao, X.; Zhao, M. High and Fast Adsorption of Cd(ii) and Pb(ii) Ions from Aqueous Solutions by a Waste Biomass Based Hydrogel. Sci. Rep. 2020, 10, 3285. DOI: 10.1038/s41598-020-60160-w.
  • Chatterjee, A.; Abraham, J. Desorption of Heavy Metals from Metal Loaded Sorbents and E-Wastes: A Review. Biotechnol. Let. 2019, 41, 319–333. DOI: 10.1007/s10529-019-02650-0.
  • Wang, R.; Liang, R.; Dai, T.; Chen, J.; Shuai, X.; Liu, C. Pectin-Based Adsorbents for Heavy Metal Ions: A Review. Trends Food Sci. Technol. 2019, 91, 319–329. DOI: 10.1016/j.tifs.2019.07.033.
  • Cruz-Lopes, L. P.; Macena, M.; Esteves, B.; Guine, P. F. Ideal pH for the Adsorption of Metal Ions Cr6+, Ni2+, Pb2+ in Aqueous Solution with Different Adsorbent Materials. Open. Agric. 2021, 6(1), 115–123. DOI: 10.1515/opag-2021-0225.
  • Sasidharan, R.; Kumar, A. Magnetic Adsorbent Developed with Alkali-Thermal Pretreated Biogas Slurry Solids for the Removal of Heavy Metals: Optimization, Kinetic, and Equilibrium Study. Environ. Sci. Pollut. Res. 2022, 29, 30217–30223. DOI: 10.1007/s11356-021-18485-0.
  • Clever, H. L.; Johnston, F. J. The Solubility of Some Sparingly Soluble Lead Salts: An Evaluation of the Solubility in Water and Aqueous Electrolyte Solution. J. Phys. Chem. Ref. Data. 1980, 9(3), 752–784. https://web.archive.org/web/20140211021914/https://www.nist.gov/data/PDFfiles/jpcrd166.pdf.
  • Alghamdi, A. A.; Al-Odayni, A.-B.; Saeed, W. S.; Al-Kahtani, A.; Alharthi, F. A.; Aouak, T. Efficient Adsorption of Lead (II) from Aqueous Solutions Using Polypyrrole-Based Activated Carbon. Materials. 2020, 12(12), MID 31238508. DOI: 10.3390/ma12122020.
  • Langmuir, I. The Constitution and Fundamental Properties of Solids and Liquids. Part I Solids. J. Am. Chem. Soc. 1916, 38(11), 2221–2295. DOI: 10.1021/ja02268a002.
  • Freundlich, H. Über die Adsorption in Lösungen. Zeitschrift für Physikalische Chemie – Stöchiometrie und Verwandschaftslehre. 1906, 57(4), 385–470. DOI: 10.1515/zpch-1907-5723.
  • Huda, B. N.; Wahyuni, E. T.; Kamiya, Y.; Mudasir, M. Kinetic and Thermodynamic Study on Adsorption of Lead (II) Ions in Water Over Dithizone-Immobilized Coal Bottom Ash. Mater. Chem. Phys. 2022, 282, 126005. DOI: 10.1016/j.matchemphys.2022.126005.
  • Sasidharan, R.; Kumar, A. Response Surface Methodology for Optimization of Heavy Metal Removal by Magnetic Biosorbent Made from Anaerobic Sludge. J. Indian Chem. Soc. 2022, 99(9), 100638. DOI: 10.1016/j.jics.2022.100638.
  • Balakrishnan, A.; Appunni, S.; Chinthala, M.; Jacob, M. M.; Vo, D.-V. N.; Reddy, S. S.; Kunnel, E. S. Chitosan-Based Beads as Sustainable Adsorbents for Wastewater Remediation: A Review. Environ. Chem. Lett. 2023, 21, 1881–1905. DOI: 10.1007/s10311-023-01563-9.
  • Ibarra-Rodriguez, D.; Lizardi-Mendoza, J.; Lopez-Maldonado, E. A.; Oropeza-Guzman, M. T. Capacity of ‘Nopal’ Pectin as a Dual Coagulant-Flocculant Agent for Heavy Metals Removal. Chem. Eng. J. 2017, 323, 19–28. DOI: 10.1016/j.cej.2017.04.087.
  • Jakobik-Kolon, A.; Milewski, A. K.; Mitko, K.; Lis, A. Preparation of Pectin-Based Biosorbents for Cadmium and Lead Ions Removal. Sep. Sci. Technol. 2014, 49(11), 1679–1688. DOI: 10.1080/01496395.2014.906469.
  • Abubakar Zauro, S.; Vishalakshi, B. Pectin Graft Copolymer-Montmorillonite Composite: Synthesis, Swelling and Divalent Metal Ion Adsorption. Sep. Sci. Technol. 2018, 53(14), 1–16. DOI: 10.1080/01496395.2018.1446987.
  • Alghamdi, A. A.; Al-Odayni, A.-B.; Saeed, W. S.; Al-Kahtani, A.; Alharthi, F. A.; Aouak, T. Efficient Adsorption of Lead (II) from Aqueous Phase Solutions Using Polypyrrole-Based Activated Carbon. Mater. (Basel). 2019. 12(12), 2020. PMID: 31238508. DOI: 10.3390/ma12122020.
  • Mata, Y.; Blazquez, M.; Ballester, A.; Gonzalez, F.; Munoz, J. Sugar-Beet Pulp Pectin Gels as Biosorbent for Heavy Metals: Preparation and Determination of Biosorption and Desorption Characteristics. Chem. Eng. J. 2009, 150(2–3), 289–301. DOI: 10.1016/j.cej.2009.01.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.