69
Views
0
CrossRef citations to date
0
Altmetric
Adsorption

Aminated cellulose-GO-Doped manganese ferrite Nanosorbent with Enhanced adsorption properties of Diclofenac: Isotherm, kinetic, and Thermodynamic Study

&
Pages 2908-2931 | Received 10 Jul 2023, Accepted 30 Oct 2023, Published online: 16 Nov 2023

References

  • Amini, M. H.; Beyki, M. H. Enhanced E. Coli Capturing Efficacy Over Magnetic Dextrin–Cobalt Sulfide Nanohybrid as a Promising Water Disinfection System. J Inorg Organomet Polym Mater. 2021, 31(7), 2980–2989. DOI: 10.1007/s10904-021-01876-8.
  • Huang, J.; Huang, G.; An, C.; Xin, X.; Chen, X.; Zhao, Y.; Feng, R.; Xiong, W. Exploring the Use of Ceramic Disk Filter Coated with Ag/ZnO Nanocomposites as an Innovative Approach for Removing Escherichia coli from Household Drinking Water. Chemosphere. 2020, 245, 125545. DOI: 10.1016/j.chemosphere.2019.125545.
  • Hu, D.; Huang, H.; Jiang, R.; Wang, N.; Xu, H.; Wang, Y. G.; Ouyang, X. K. Adsorption of Diclofenac Sodium on Bilayer Amino-Functionalized Cellulose Nanocrystals/Chitosan Composite. J. Hazard. Mater. 2019, 369(September 2018), 483–493. DOI: 10.1016/j.jhazmat.2019.02.057.
  • Mitiku, A. A. Water Pollution: Causes and Prevention. Int. J. Pharm. Sci. Rev. Res. 2020, 60(2), 94–101.
  • Rosset, M.; Sfreddo, L. W.; Hidalgo, G. E. N.; Perez-Lopez, O. W.; Féris, L. A. Adsorbents Derived from Hydrotalcites for the Removal of Diclofenac in Wastewater. Appl. Clay Sci. 2019, 175(April), 150–158. DOI: 10.1016/j.clay.2019.04.014.
  • Fan, L.; Lu, Y.; Yang, L. Y.; Huang, F.; Ouyang, X. K. Fabrication of polyethylenimine-functionalized sodium alginate/cellulose nanocrystal/polyvinyl alcohol core-shell microspheres ((PVA/SA/CNC)@PEI) for diclofenac sodium adsorption. J. Colloid. Interface. Sci. 2019, 554, 48–58. DOI: 10.1016/j.jcis.2019.06.099.
  • Tran, T. V.; Nguyen, D. T. C.; Le, H. T. N.; Vo, D. N.; Nanda, S.; Nguyen, T. D. Optimization, Equilibrium, Adsorption Behavior and Role of Surface Functional Groups on Graphene Oxide-Based Nanocomposite Towards Diclofenac Drug. J. Environ. Sci. (China). 2020, 93(February), 137–150. DOI: 10.1016/j.jes.2020.02.007.
  • Dos Santos, J. M. N.; Pereira, C. R.; Foletto, E. L.; Dotto, G. L. Alternative Synthesis for ZnFe(2)o(4)/Chitosan Magnetic Particles to Remove Diclofenac from Water by Adsorption. Int. J. Biol. Macromol. 2019, 131, 301–308. DOI: 10.1016/j.ijbiomac.2019.03.079.
  • Cherik, D.; Louhab, K. A Kinetics, Isotherms, and Thermodynamic Study of Diclofenac Adsorption Using Activated Carbon Prepared from Olive Stones. J. Dispersion Sci. Technol. 2017, 39(6), 814–825. DOI: 10.1080/01932691.2017.1395346.
  • Hossein Beyki, M.; Mohammadirad, M.; Shemirani, F.; Saboury, A. A. Magnetic Cellulose Ionomer/Layered Double Hydroxide: An Efficient Anion Exchange Platform with Enhanced Diclofenac Adsorption Property. Carbohydr. Polym. 2017, 157, 438–446. DOI: 10.1016/j.carbpol.2016.10.017.
  • Franca, D. B.; Trigueiro, P.; Silva Filho, E. C.; Fonseca, M. G.; Jaber, M. Monitoring Diclofenac Adsorption by Organophilic Alkylpyridinium Bentonites. Chemosphere. 2020, 242, 125109. DOI: 10.1016/j.chemosphere.2019.125109.
  • Shahnaz, T.; Vishnu Priyan, V.; Pandian, S.; Narayanasamy, S. Use of Nanocellulose Extracted from Grass for Adsorption Abatement of Ciprofloxacin and Diclofenac Removal with Phyto, and Fish Toxicity Studies. Environ. Pollut. 2021, 268(Pt B), 115494. DOI: 10.1016/j.envpol.2020.115494.
  • Xiong, T.; Yuan, X.; Wang, H.; Wu, Z.; Jiang, L.; Leng, L.; Xi, K.; Cao, X.; Zeng, G. Highly Efficient Removal of Diclofenac Sodium from Medical Wastewater by Mg/Al Layered Double Hydroxide-Poly(m-Phenylenediamine) Composite. Chem. Eng. J. 2019, 366(January), 83–91. DOI: 10.1016/j.cej.2019.02.069.
  • Li, S.; Wang, Z.; Xie, X.; Liang, G.; Cai, X.; Zhang, X.; Wang, Z. Fabrication of Vessel–Like Biochar–Based Heterojunction Photocatalyst Bi2S3/BiObr/BC for Diclofenac Removal Under Visible LED Light Irradiation: Mechanistic Investigation and Intermediates Analysis. J. Hazard. Mater. 2020, 391, 121407. DOI: 10.1016/j.jhazmat.2019.121407.
  • Ighalo, J. O.; Adeniyi, A. G. Mitigation of Diclofenac Pollution in Aqueous Media by Adsorption. Chem. Bio. Eng. Rev. 2020, 7(2), 50–64. DOI: 10.1002/cben.201900020.
  • Mi, X.; Zhou, S.; Zhou, Z.; Vakili, M.; Qi, Y.; Jia, Y.; Zhu, D.; Wang, W. Adsorptive removal of diclofenac sodium from aqueous solution by magnetic COF: Role of hydroxyl group on COF. Colloids Surf. A Physicochem. Eng. Aspects. 2020, 603(May), 125238. DOI: 10.1016/j.colsurfa.2020.125238.
  • Davarnejad, R.; Sabzehei, M. Sodium Diclofenac Removal from a Pharmaceutical Wastewater by Electro-Fenton Process. Sep. Sci. Technol. 2018, 54(14), 2294–2303. DOI: 10.1080/01496395.2018.1540639.
  • Lu, Y.; Wang, Z.; Ouyang, X. K.; Ji, C.; Liu, Y.; Huang, F.; Yang, L. Y. Fabrication of Cross-Linked Chitosan Beads Grafted by Polyethylenimine for Efficient Adsorption of Diclofenac Sodium from Water. Int. J. Biol. Macromol. 2020, 145, 1180–1188. DOI: 10.1016/j.ijbiomac.2019.10.044.
  • Shayesteh, H.; Nodehi, R.; Rahbar-Kelishami, A. Trimethylamine Functionalized Clay for Highly Efficient Removal of Diclofenac from Contaminated Water: Experiments and Theoretical Calculations. Surf. Interfaces. 2020, 20(July), 100615. DOI: 10.1016/j.surfin.2020.100615.
  • Li, X.; Ji, M.; Nghiem, L. D.; Zhao, Y.; Liu, D.; Yang, Y.; Wang, Q.; Trinh, Q. T.; Vo, D-V. N.; Pham, V. Q., Tran, N. H.A Novel Red Mud Adsorbent for Phosphorus and Diclofenac Removal from Wastewater. J. Mol. Liq. 2020, 303, 112286. DOI: 10.1016/j.molliq.2019.112286.
  • Al Ani, F.; Al-Kindi, G.; Al-Bidri, N. Diclofenac Removal from Wastewater by Iraqi Pillared Clay. Eng. Technol. J. 2019, 37(2C), 281–288. DOI: 10.30684/etj.37.2C.13.
  • Zhuang, S.; Liu, Y.; Wang, J. Mechanistic Insight into the Adsorption of Diclofenac by MIL-100: Experiments and Theoretical Calculations. Environ. Pollut. 2019, 253, 616–624. DOI: 10.1016/j.envpol.2019.07.069.
  • El Naga AO, A.; El Saied, M.; Shaban, S. A.; El Kady, F. Y. Fast Removal of Diclofenac Sodium from Aqueous Solution Using Sugar Cane Bagasse-Derived Activated Carbon. J. Mol. Liq. 2019, 285, 9–19. DOI: 10.1016/j.molliq.2019.04.062.
  • Avcu, T.; Üner, O.; Geçgel, Ü Adsorptive Removal of Diclofenac Sodium from Aqueous Solution Onto Sycamore Ball Activated Carbon - Isotherms, Kinetics, and Thermodynamic Study. Surf. Interfaces. 2021, 24(October 2020), 101097. DOI: 10.1016/j.surfin.2021.101097.
  • Salomao, G. R.; Americo-Pinheiro, J. H. P.; Isique, W. D.; Torres, N. H.; Cruz, I. A.; Ferreira, L. F. R. Diclofenac Removal in Water Supply by Adsorption on Composite Low-Cost Material. Environ. Technol. 2021, 42(13), 2095–2111. DOI: 10.1080/09593330.2019.1692078.
  • Younes, H. A.; Khaled, R.; Mahmoud, H. M.; Nassar, H. F.; Abdelrahman, M. M.; Abo El-Ela, F. I.; Taha, M. Computational and Experimental Studies on the Efficient Removal of Diclofenac from Water Using ZnFe-Layered Double Hydroxide as an Environmentally Benign Absorbent. J. Taiwan Inst. Chem. Eng. 2019, 102, 297–311. DOI: 10.1016/j.jtice.2019.06.018.
  • de Souza dos Santos GE; Ide, A. H.; Duarte, J. L. S.; McKay, G.; Silva, A. O. S.; Meili, L.; Adsorption of Anti-Inflammatory Drug Diclofenac by MgAl/Layered Double Hydroxide Supported on Syagrus Coronata Biochar. Powder Technol. 2020, 364, 229–240. DOI: 10.1016/j.powtec.2020.01.083.
  • Zhang, H.; Tu, Y-J; Duan, Y-P; Liu, J.; Zhi, W.; Tang, Y.; Xiao, L.S.; Meng, L. Production of biochar from waste sludge/leaf for fast and efficient removal of diclofenac J. Mol. Liq. 2020, 299, 112193. DOI: 10.1016/j.molliq.2019.112193.
  • Liang, X. X., XX; Omer, A. M.; Hu, Z. H.; Wang, Y. G.; Yu, D.; Ouyang, X. K. Efficient Adsorption of Diclofenac Sodium from Aqueous Solutions Using Magnetic Amine-Functionalized Chitosan. Chemosphere. 2019, 217, 270–278. DOI: 10.1016/j.chemosphere.2018.11.023.
  • Mao, N.; Huang, L.; Shuai, Q. Facile Synthesis of Porous Carbon for the Removal of Diclofenac Sodium from Water. ACS Omega. 2019, 4(12), 15051–15060. DOI: 10.1021/acsomega.9b01838.
  • Gil, A.; Santamaría, L.; Korili, S. A. Removal of Caffeine and Diclofenac from Aqueous Solution by Adsorption on Multiwalled Carbon Nanotubes. Colloid Interface Sci. Commun. 2018, 22(November 2017), 25–28. DOI: 10.1016/j.colcom.2017.11.007.
  • Guerra, A. C. S.; de Andrade, M. B.; Tonial Dos Santos, T. R.; Bergamasco, R. Adsorption of Sodium Diclofenac in Aqueous Medium Using Graphene Oxide Nanosheets. Environ. Technol. 2021, 42(16), 2599–2609. DOI: 10.1080/09593330.2019.1707882.
  • Hiew, B. Y. Z.; Lee, L. Y.; Lee, X. J.; Gan, S.; Thangalazhy-Gopakumar, S.; Lim, S. S.; Pan, G-T.; Yang, T. C-K. Adsorptive Removal of Diclofenac by Graphene Oxide: Optimization, Equilibrium, Kinetic and Thermodynamic Studies. J. Taiwan Inst. Chem. Eng. 2019, 98, 150–162. DOI: 10.1016/j.jtice.2018.07.034.
  • Thakur, K.; Kandasubramanian, B. Graphene and Graphene Oxide-Based Composites for Removal of Organic Pollutants: A Review. J. Chem. Eng, Data. 2019, 64(3), 833–867. DOI: 10.1021/acs.jced.8b01057.
  • Balasubramani, K.; Sivarajasekar, N.; Muthusaravanan, S.; Ram, K.; Naushad, M.; Ahamad, T.; Sharma, G. Efficient Removal of Antidepressant Flupentixol Using Graphene Oxide/Cellulose Nanogel Composite: Particle Swarm Algorithm Based Artificial Neural Network Modelling and Optimization. J. Mol. Liq. 2020, 319, 114371. DOI: 10.1016/j.molliq.2020.114371.
  • Jauris, I. M.; Matos, C. F.; Saucier, C.; Lima, E. C.; Zarbin, A. J.; Fagan, S. B.; Machado, F. M.; Zanella, I. Adsorption of Sodium Diclofenac on Graphene: A Combined Experimental and Theoretical Study. Phys. Chem. Chem. Phys. 2016, 18(3), 1526–1536. DOI: 10.1039/C5CP05940B.
  • Yousefi, N.; Wong, K. K. W.; Hosseinidoust, Z.; Sorensen, H. O.; Bruns, S.; Zheng, Y.; Tufenkji, N. Hierarchically Porous, Ultra-Strong Reduced Graphene Oxide-Cellulose Nanocrystal Sponges for Exceptional Adsorption of Water Contaminants. Nanoscale. 2018, 10(15), 7171–7184. DOI: 10.1039/C7NR09037D.
  • Mahmoodi, H.; Fattahi, M.; Motevassel, M. Graphene Oxide-Chitosan Hydrogel for Adsorptive Removal of Diclofenac from Aqueous Solution: Preparation, Characterization, Kinetic and Thermodynamic Modelling. RSC Adv. 2021, 11(57), 36289–36304. DOI: 10.1039/D1RA06069D.
  • Ghani, M.; Ghoreishi, S. M.; Azamati, M. Magnesium-Aluminum-Layered Double Hydroxide-Graphene Oxide Composite Mixed-Matrix Membrane for the Thin-Film Microextraction of Diclofenac in Biological Fluids. J. Chromatogr. A. 2018, 1575, 11–17. DOI: 10.1016/j.chroma.2018.09.024.
  • Arabkhani, P.; Javadian, H.; Asfaram, A.; Ateia, M. Decorating Graphene Oxide with Zeolitic Imidazolate Framework (ZIF-8) and Pseudo-Boehmite Offers Ultra-High Adsorption Capacity of Diclofenac in Hospital Effluents. Chemosphere. 2021, 271, 129610. DOI: 10.1016/j.chemosphere.2021.129610.
  • Zhu, X.; Tong, J.; Lan, H.; Pan, D. Fabrication of Polyethyleneimine-Functionalized Magnetic Cellulose Nanocrystals for the Adsorption of Diclofenac Sodium from Aqueous Solutions. Polymers (Basel). 2022, 14(4), 720. DOI: 10.3390/polym14040720.
  • Ye, X.; Li, Y.; Lin, H.; Chen, Y.; Liu, M. Lignin-Based Magnetic Nanoparticle Adsorbent for Diclofenac Sodium Removal: Adsorption Behavior and Mechanisms. J. Polym. Environ. 2021, 29(10), 3401–3411. DOI: 10.1007/s10924-021-02127-0.
  • Mohammadi, Z.; Kelishami, A. R.; Ashrafi, A. Application of Ni(0.5)zn(0.5)fe(2)o(4) Magnetic Nanoparticles for Diclofenac Adsorption: Isotherm, Kinetic and Thermodynamic Investigation. Water Sci. Technol. 2021, 83(6), 1265–1277. DOI: 10.2166/wst.2021.049.
  • Lv, Y.; Liang, Z.; Li, Y.; Chen, Y.; Liu, K.; Yang, G.; Liu, Y.; Lin, C.; Ye, X.; Shi, Y.; Liu, M. Efficient Adsorption of Diclofenac Sodium in Water by a Novel Functionalized Cellulose Aerogel. Environ. Res. 2021, 194(October 2020), 110652.
  • Neyestani, M. R.; Shemirani, F.; Mozaffari, S.; Alvand, M. A Magnetized Graphene Oxide Modified with 2-Mercaptobenzothiazole as a Selective Nanosorbent for Magnetic Solid Phase Extraction of Gold(iii), Palladium(ii) and Silver(i). Microchim. Acta. 2017, 184(8), 2871–2879. DOI: 10.1007/s00604-017-2299-8.
  • Beyki, M. H.; Bayat, M.; Shemirani, F. Fabrication of core-shell structured magnetic nanocellulose base polymeric ionic liquid for effective biosorption of Congo red dye. Bioresour. Technol. 2016, 218, 326–334. DOI: 10.1016/j.biortech.2016.06.069.
  • Bayat, M.; Beyki, M. H.; Shemirani, F. One-Step and Biogenic Synthesis of Magnetic Fe 3 O 4 –Fir Sawdust Composite: Application for Selective Preconcentration and Determination of Gold Ions. J. Ind. Eng. Chem. 2015, 21, 912–919. DOI: 10.1016/j.jiec.2014.04.032.
  • Khani, R.; Sobhani, S.; Beyki, M. H.; Miri, S. Application of Magnetic Ionomer for Development of Very Fast and Highly Efficient Uptake of Triazo Dye Direct Blue 71 Form Different Water Samples. Ecotoxicol. Environ. Saf. 2018, 150(August 2017), 54–61. DOI: 10.1016/j.ecoenv.2017.12.018.
  • Ghanbarian, M.; Nabizadeh, R.; Nasseri, S.; Shemirani, F.; Mahvi, A. H.; Beyki, M. H.; Mesdaghinia, A. Potential of Amino-Riched Nano-Structured MnFe(2)o(4)@cellulose for Biosorption of Toxic Cr (VI): Modeling, Kinetic, Equilibrium and Comparing Studies. Int. J. Biol. Macromol. 2017, 104(Pt A), 465–480. DOI: 10.1016/j.ijbiomac.2017.06.060.
  • Iqbal, M.; Iqbal, N.; Bhatti, I. A.; Ahmad, N.; Zahid, M. Response Surface Methodology Application in Optimization of Cadmium Adsorption by Shoe Waste: A Good Option of Waste Mitigation by Waste. Ecol. Eng. 2016, 88, 265–275. DOI: 10.1016/j.ecoleng.2015.12.041.
  • Beyki, M. H.; Shemirani, F. Facile Hydrothermally Synthesized Nanofibrous polyresorcinol@γ-Fe2O3 for Dispersive Ferrofluid Adsorption of Cd(ii): Modeling and Isotherm Study. Desalinat. Water Treat. 2008, 102, 184–196. DOI: 10.5004/dwt.2018.21780.
  • dos Reis G. S.; Bin Mahbub, M. K.; Wilhelm, M.; Lima, E. C.; Sampaio, C. H.; Saucier, C.; dos Reis, G. S.; Pereira Dias, S. L. Activated Carbon from Sewage Sludge for Removal of Sodium Diclofenac and Nimesulide from Aqueous Solutions. Korean J. Chem. Eng. 2016, 33(11), 3149–3161. DOI: 10.1007/s11814-016-0194-3.
  • Vijayaraghavan, K.; Padmesh, T. V.; Palanivelu, K.; Velan, M. Biosorption of Nickel(ii) Ions Onto Sargassum Wightii: Application of Two-Parameter and Three-Parameter Isotherm Models. J. Hazard. Mater. 2006, 133(1–3), 304–308. DOI: 10.1016/j.jhazmat.2005.10.016.
  • Wahab, O. A. Kinetic and Isotherm Studies of Copper (II) Removal from Wastewater Using Various Adsorbents. Egypt. J. Aquat. Res. 2007, 33(1), 125–142.
  • Foo, K. Y.; Hameed, B. H. Insights into the Modeling of Adsorption Isotherm Systems. Chem. Eng. J. 2010, 156(1), 2–10. DOI: 10.1016/j.cej.2009.09.013.
  • Wang, J. S.; Peng, R. T.; Yang, J. H.; Liu, Y. C.; Hu, X. J. Preparation of Ethylenediamine-Modified Magnetic Chitosan Complex for Adsorption of Uranyl Ions. Carbohydr. Polym. 2011, 84(3), 1169–1175. DOI: 10.1016/j.carbpol.2011.01.007.
  • Naiya, T. K.; Bhattacharya, A. K.; Das, S. K. Clarified Sludge (Basic Oxygen Furnace Sludge)–An Adsorbent for Removal of Pb(ii) from Aqueous Solutions–Kinetics, Thermodynamics and Desorption Studies. J. Hazard. Mater. 2009, 170(1), 252–262. DOI: 10.1016/j.jhazmat.2009.04.103.
  • Ozdemir, G.; Yapar, S. Adsorption and Desorption Behavior of Copper Ions on Na-Montmorillonite: Effect of Rhamnolipids and pH. J. Hazard. Mater. 2009, 166(2–3), 1307–1313. DOI: 10.1016/j.jhazmat.2008.12.059.
  • Beyki, M. H.; Shemirani, F. Dual Application of Facilely Synthesized Fe3O4 Nanoparticles: Fast Reduction of Nitro Compound and Preparation of Magnetic Polyphenylthiourea Nanocomposite for Efficient Adsorption of Lead Ions. Rsc. Adv. 2015, 5(28), 22224–22233. DOI: 10.1039/C4RA12549E.
  • Suriyanon, N.; Punyapalakul, P.; Ngamcharussrivichai, C. Mechanistic Study of Diclofenac and Carbamazepine Adsorption on Functionalized Silica-Based Porous Materials. Chem. Eng. J. 2013, 214, 208–218. DOI: 10.1016/j.cej.2012.10.052.
  • Viotti, P. V.; Moreira, W. M.; Santos, O. A. A. d.; Bergamasco, R.; Vieira, A. M. S.; Vieira, M. F. Diclofenac Removal from Water by Adsorption on Moringa Oleifera Pods and Activated Carbon: Mechanism, Kinetic and Equilibrium Study. J. Clean. Prod. 2019, 219, 809–817. DOI: 10.1016/j.jclepro.2019.02.129.
  • Inglezakis, V. J.; Zorpas, A. A. Heat of Adsorption, Adsorption Energy and Activation Energy in Adsorption and Ion Exchange Systems. Desalinat. Water Treat. 2012, 39, 149–157. DOI: 10.5004/dwt.2012.3000.
  • Cantu, Y.; Remes, A.; Reyna, A.; Martinez, D.; Villarreal, J.; Ramos, H.; Trevino, S.; Tamez, C.; Martinez, A.; Eubanks, T., Parsons, J. G. Thermodynamics, Kinetics, and Activation Energy Studies of the Sorption of Chromium(iii) and Chromium(vi) to a Mn(3)o(4) Nanomaterial. Chem. Eng. J. 2014, 254, 374–383. DOI: 10.1016/j.cej.2014.05.110.
  • Rincón-Silva, N. G.; Moreno-Piraján, J. C.; Giraldo, L. G. Thermodynamic Study of Adsorption of Phenol, 4-Chlorophenol, and 4-Nitrophenol on Activated Carbon Obtained from Eucalyptus Seed. J. Chem. 2015, 2015, 1–12. DOI: 10.1155/2015/569403.
  • Hossein Beyki, M.; Fazli, Y. Polyhydroxyquinoline-Carbon Nanotube Chelating Resin for Selective Adsorption of Lead Ions: Multivariate Optimization, Isothermic, and Thermodynamic Study. Res. Chem. Intermed. 2016, 43(2), 737–754. DOI: 10.1007/s11164-016-2650-4.
  • Roshanfekr R., L.; Irani, M.; Barzegar, R. Adsorptive Removal of Acetaminophen and Diclofenac Using NaX Nanozeolites Synthesized by Microwave Method. Korean J. Chem. Eng. 2015, 32(8), 1606–1612. DOI: 10.1007/s11814-014-0373-z.
  • Huang, H. H.; De Silva, K. K. H.; Kumara, G. R. A.; Yoshimura, M. Structural Evolution of Hydrothermally Derived Reduced Graphene Oxide. Sci. Rep. 2018, 8(1), 6849. DOI: 10.1038/s41598-018-25194-1.
  • Beyki, M. H.; Bayat, M.; Miri, S.; Shemirani, F.; Alijani, H. Synthesis, Characterization, and Silver Adsorption Property of Magnetic Cellulose Xanthate from Acidic Solution: Prepared by One Step and Biogenic Approach. Ind. Eng. Chem. Res. 2014, 53(39), 14904–14912. DOI: 10.1021/ie501989q.
  • Shirkhodaie, M.; Hossein Beyki, M.; Shemirani, F. Simple Route Synthesis of MnFe2o4 @ Alunite Composite for Preconcentration of Trace Level of Copper and Lead from Food and Water Samples. Desalinat. Water Treat. 2016, 57(47), 22480–22492. DOI: 10.1080/19443994.2015.1130657.
  • Scimeca, M.; Bischetti, S.; Lamsira, H. K.; Bonfiglio, R.; Bonanno, E. Energy Dispersive X-Ray (EDX) Microanalysis: A Powerful Tool in Biomedical Research and Diagnosis. Eur. J. Histochem. 2018, 62(1), 2841. DOI: 10.4081/ejh.2018.2841.
  • Verma, S.; Dutta, R. K. A Facile Method of Synthesizing Ammonia Modified Graphene Oxide for Efficient Removal of Uranyl Ions from Aqueous Medium. Rsc. Adv. 2015, 5(94), 77192–77203. DOI: 10.1039/C5RA10555B.
  • Tobilko, V.; Spasonova, L.; Kovalchuk, I.; Kornilovych, B.; Kholodko, Y. Adsorption of Uranium (VI) from Aqueous Solutions by Amino-Functionalized Clay Minerals. Colloids Interfaces. 2019, 3(1), 1–11. DOI: 10.3390/colloids3010041.
  • Li, J.; Yuan, H.; Li, G.; Liu, Y.; Leng, J. Cation Distribution Dependence of Magnetic Properties of Sol-Gel Prepared MnFe2o4 Spinel Ferrite Nanoparticles. J. Magn. Magn. Mater. 2010, 322(21), 3396–3400. DOI: 10.1016/j.jmmm.2010.06.035.
  • Khafagy, R. M. Synthesis, Characterization, Magnetic and Electrical Properties of the Novel Conductive and Magnetic Polyaniline/MgFe2o4 Nanocomposite Having the Core-Shell Structure. J. Alloys Compd. 2011, 509(41), 9849–9857. DOI: 10.1016/j.jallcom.2011.07.008.
  • Hossein Beyki, M.; Shemirani, F. Magnetic ZnFe2O4 @polyhydroxybenzoic acid nanostructure for efficient B.subtilis capturing. Nannomed. Res. J. 2017, 2(3), 165–170. DOI: 10.22034/NMRJ.2017.03.004.
  • Huang, H.; Wang, Y.; Zhang, Y.; Niu, Z.; Li, X. Amino-Functionalized Graphene Oxide for Cr(VI), Cu(II), Pb(II) and Cd(II) Removal from Industrial Wastewater. Open Chem. 2020, 18(1), 97–107. DOI: 10.1515/chem-2020-0009.
  • Medronho, B.; Lindman, B. Brief Overview on Cellulose Dissolution/Regeneration Interactions and Mechanisms. Adv. Colloid Interface Sci. 2015, 222, 502–508. DOI: 10.1016/j.cis.2014.05.004.
  • Dunne, R. P. Synergy or Antagonism—Interactions Between Stressors on Coral Reefs. Coral Reefs. 2009, 29(1), 145–152. DOI: 10.1007/s00338-009-0569-6.
  • Khani, R.; Sobhani, S.; Beyki, M. H. Highly Selective and Efficient Removal of Lead with Magnetic Nano-Adsorbent: Multivariate Optimization, Isotherm and Thermodynamic Studies. J. Colloid. Interface. Sci. 2016, 466, 198–205. DOI: 10.1016/j.jcis.2015.12.027.
  • Pan, B.; Xing, B. Adsorption Mechanisms of Organic Chemicals on Carbon Nanotubes. Environ. Sci. Technol. 2008, 42(24), 9005–9013. DOI: 10.1021/es801777n.
  • Lara-Pérez, C.; Leyva, E.; Zermeño, B.; Osorio, I.; Montalvo, C.; Moctezuma, E. Photocatalytic Degradation of Diclofenac Sodium Salt: Adsorption and Reaction Kinetic Studies. Environ. Earth Sci. 2020, 79(11). DOI: 10.1007/s12665-020-09017-z.
  • Aldegs, Y.; Elbarghouthi, M.; Elsheikh, A.; Walker, G. Effect of Solution pH, Ionic Strength, and Temperature on Adsorption Behavior of Reactive Dyes on Activated Carbon. Dyes Pigm. 2008, 77(1), 16–23. DOI: 10.1016/j.dyepig.2007.03.001.
  • Alijani, H.; Beyki, M. H.; Mirzababaei, S. N. Adsorption of UO2 2+ Ions from Aqueous Solution Using Amine Functionalized MWCNT: Kinetic, Thermodynamic and Isotherm Study. J. Radioanal. Nucl. Chem. 2015, 306(1), 165–173. DOI: 10.1007/s10967-015-4078-5.
  • Wang, J.; Guo, X. Rethinking of the Intraparticle Diffusion Adsorption Kinetics Model: Interpretation, Solving Methods and Applications. Chemosphere. 2022, 309(Pt 2), 136732. DOI: 10.1016/j.chemosphere.2022.136732.
  • Oyelude, E. O.; Awudza, J. A. M.; Twumasi, S. K. Equilibrium, Kinetic and Thermodynamic Study of Removal of Eosin Yellow from Aqueous Solution Using Teak Leaf Litter Powder. Sci. Rep. 2017, 7(1), 12198. DOI: 10.1038/s41598-017-12424-1.
  • Pholosi, A.; Naidoo, E. B.; Ofomaja, A. E. Intraparticle Diffusion of Cr(vi) Through Biomass and Magnetite Coated Biomass: A Comparative Kinetic and Diffusion Study. S. Afr. J. Chem. Eng. 2020, 32, 39–55. DOI: 10.1016/j.sajce.2020.01.005.
  • Umpuch, C.; Sakaew, S. Removal of Methyl Orange from Aqueous Solutions by Adsorption Using Chitosan Intercalated Montmorillonite. Songklanakarin J. Sci. Technol. 2013, 35(4), 451–459.
  • Potgieter, J. H.; Pardesi, C.; Pearson, S. A Kinetic and Thermodynamic Investigation into the Removal of Methyl Orange from Wastewater Utilizing Fly Ash in Different Process Configurations. Environ. Geochem. Health. 2021, 43(7), 2539–2550. DOI: 10.1007/s10653-020-00567-6.
  • Hossein Beyki, M.; Shemirani, F.; Shirkhodaie, M. Aqueous Co(ii) Adsorption Using 8-Hydroxyquinoline Anchored Gamma-Fe2O3@chitosan with Co(ii) as Imprinted Ions. Int. J. Biol. Macromol. 2016, 87, 375–384. DOI: 10.1016/j.ijbiomac.2016.02.077.
  • Yadava, K. P.; Tyagi, B. S.; Singh, V. N. Effect of Temperature on the Removal of Lead(ii) by Adsorption on China Clay and Wollastonite. J. Chem. Technol. Biotechnol. 2007, 51(1), 47–60. DOI: 10.1002/jctb.280510105.
  • Chowdhury, S.; Mishra, R.; Saha, P.; Kushwaha, P. Adsorption Thermodynamics, Kinetics and Isosteric Heat of Adsorption of Malachite Green Onto Chemically Modified Rice Husk. Desalination. 2011, 265(1–3), 159–168. DOI: 10.1016/j.desal.2010.07.047.
  • Srivastava, V. C.; Mall, I. D.; Mishra, I. M. Adsorption Thermodynamics and Isosteric Heat of Adsorption of Toxic Metal Ions Onto Bagasse Fly Ash (BFA) and Rice Husk Ash (RHA). Chem. Eng. J. 2007, 132(1–3), 267–278. DOI: 10.1016/j.cej.2007.01.007.
  • Leone, V. O.; Pereira, M. C.; Aquino, S. F.; Oliveira, L. C. A.; Correa, S.; Ramalho, T. C.; Gurgel, L. V. A.; Silva, A. C. Adsorption of Diclofenac on a Magnetic Adsorbent Based on Maghemite: Experimental and Theoretical Studies. New. J. Chem. 2018, 42(1), 437–449. DOI: 10.1039/C7NJ03214E.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.