162
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Deep eutectic solvents for sustainable extraction of polyphenols and saponins from plant sources: assessment of the impact of influencing factors

Pages 151-192 | Received 22 Sep 2023, Accepted 09 Jan 2024, Published online: 22 Feb 2024

References

  • Markets & Markets. Plant Extracts Market by Product Type (Oleoresins, Essential Oils, Flavonoids, Alkaloids, Carotenoids), Application (Food & Beverages, Cosmetics, Pharmaceuticals, Dietary Supplements), Form, Source and Region-Global Forecast to 2027; 2023. https://www.marketsandmarkets.com/Market-Reports/plant-extracts-market-942.html.
  • Şahin, S. Tailor-Designed Deep Eutectic Liquids as a Sustainable Extraction Media: An Alternative to Ionic Liquids. J. Pharm. Biomed. Anal. 2019, 174, 324–329. DOI: 10.1016/j.jpba.2019.05.059.
  • Jessop, P. G. Searching for Green Solvents. Green Chem. 2011, 13 (6), 1391–1398. DOI: 10.1039/c0gc00797h.
  • Ruesgas-Ramón, M.; Figueroa-Espinoza, M. C.; Durand, E. Application of Deep Eutectic Solvents (DES) for Phenolic Compounds Extraction: Overview, Challenges, and Opportunities. J. Agric. Food. Chem. 2017, 65(18), 3591–3601. DOI: 10.1021/acs.jafc.7b01054.
  • Choi, Y. H.; Verpoorte, R. Green Solvents for the Extraction of Bioactive Compounds from Natural Products Using Ionic Liquids and Deep Eutectic Solvents. Curr. Opin. Food Sci. 2019, 26, 87–93. DOI: 10.1016/j.cofs.2019.04.003.
  • Murador, D. C.; De Souza Mesquita, L. M.; Vannuchi, N.; Braga, A. R. C.; De Rosso, V. V. Bioavailability and Biological Effects of Bioactive Compounds Extracted with Natural Deep Eutectic Solvents and Ionic Liquids: Advantages Over Conventional Organic Solvents. Curr. Opin. Food Sci. 2019, 26, 25–34. DOI: 10.1016/j.cofs.2019.03.002.
  • El Achkar, T.; Greige-Gerges, H.; Fourmentin, S. Basics and Properties of Deep Eutectic Solvents: A Review. Environ. Chem. Lett. 2021, 19(4), 3397–3408. DOI: 10.1007/s10311-021-01225-8.
  • Smith, E. L.; Abbott, A. P.; Ryder, K. S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114(21), 11060–11082. DOI: 10.1021/cr300162p.
  • Skarpalezos, D.; Detsi, A. Deep Eutectic Solvents as Extraction Media for Valuable Flavonoids from Natural Sources. Applied Sciences. 2019, 9(19), 4169. DOI: 10.3390/app9194169.
  • Chen, Y.; Mu, T. Revisiting Greenness of Ionic Liquids and Deep Eutectic Solvents. Green Chem. Eng. 2021, 2(2), 174–186. DOI: 10.1016/j.gce.2021.01.004.
  • Wazeer, I.; AlNashef, I. M.; Al-Zahrani, A. A.; Hadj-Kali, M. K. The Subtle but Substantial Distinction Between Ammonium- and Phosphonium-Based Deep Eutectic Solvents. J. Mol. Liq. 2021, 332, 115838. DOI: 10.1016/j.molliq.2021.115838.
  • Zhang, X.; Su, J.; Chu, X.; Wang, X. A Green Method of Extracting and Recovering Flavonoids from Acanthopanax Senticosus Using Deep Eutectic Solvents. Molecules. 2022, 27(3), 923. DOI: 10.3390/molecules27030923.
  • Du, G.; Hong, W.; Li, Z.; Liu, Y.; Wang, C. Process Optimization of Deep Eutectic Solvent-Based Microwave-Assisted Extraction of Flavonoids from Ziziphi Spinosae Semen Using Response Surface Methodology. Food Sci. Technol. 2023, 43, e122622. DOI: 10.1590/fst.122622.
  • Guan, S.; Li, Z.; Xu, B.; Wu, J.; Wang, N.; Zhang, J.; Han, J.; Guan, T.; Wang, J.; Li, K. Cyclodextrin-Based Deep Eutectic Solvents for Efficient Extractive and Oxidative Desulfurization Under Room Temperature. Chem. Eng. J. 2022, 441, 136022. DOI: 10.1016/j.cej.2022.136022.
  • Patil, S. S.; Rathod, V. K. Extraction and Purification of Curcuminoids from Curcuma Longa Using Microwave Assisted Deep Eutectic Solvent Based System and Cost Estimation. Process Biochem. 2023, 126, 61–71. DOI: 10.1016/j.procbio.2022.11.010.
  • Florindo, C.; Oliveira, F. S.; Rebelo, L. P. N.; Fernandes, A. M.; Marrucho, I. M. Insights into the Synthesis and Properties of Deep Eutectic Solvents Based on Cholinium Chloride and Carboxylic Acids. ACS Sustain. Chem. Eng. 2014, 2(10), 2416–2425. DOI: 10.1021/sc500439w.
  • Crawford, D. E.; Wright, L. A.; James, S. L.; Abbott, A. P. Efficient Continuous Synthesis of High Purity Deep Eutectic Solvents by Twin Screw Extrusion. Chem. Commun. 2016, 52(22), 4215–4218. DOI: 10.1039/C5CC09685E.
  • Shekaari, H.; Zafarani-Moattar, M. T.; Mokhtarpour, M. Effective Ultrasonic-Assisted Extraction and Solubilization of Curcuminoids from Turmeric by Using Natural Deep Eutectic Solvents and Imidazolium-Based Ionic Liquids. J. Mol. Liq. 2022, 360, 119351. DOI: 10.1016/j.molliq.2022.119351.
  • Gomez, F. J. V.; Espino, M.; Fernández, M. A.; Silva, M. F. A Greener Approach to Prepare Natural Deep Eutectic Solvents. ChemistrySelect. 2018, 3(22), 6122–6125. DOI: 10.1002/slct.201800713.
  • Farooq, M. Q.; Abbasi, N. M.; Anderson, J. L. Deep Eutectic Solvents in Separations: Methods of Preparation, Polarity, and Applications in Extractions and Capillary Electrochromatography. J. Chromatogr. A 2020, 1633, 461613. 10.1016/j.chroma.2020.461613.
  • Gutiérrez, M. C.; Ferrer, M. L.; Mateo, C. R.; Del Monte, F. Freeze-Drying of Aqueous Solutions of Deep Eutectic Solvents: A Suitable Approach to Deep Eutectic Suspensions of Self-Assembled Structures. Langmuir. 2009, 25(10), 5509–5515. DOI: 10.1021/la900552b.
  • Zhang, M.; Tian, R.; Han, H.; Wu, K.; Wang, B.; Liu, Y.; Zhu, Y.; Lu, H.; Liang, B. Preparation Strategy and Stability of Deep Eutectic Solvents: A Case Study Based on Choline Chloride-Carboxylic Acid. J. Clean. Prod. 2022, 345, 131028. DOI: 10.1016/j.jclepro.2022.131028.
  • Ali, M. C.; Chen, J.; Zhang, H.; Li, Z.; Zhao, L.; Qiu, H. Effective Extraction of Flavonoids from Lycium Barbarum L. Fruits by Deep Eutectic Solvents-Based Ultrasound-Assisted Extraction. Talanta. 2019, 203, 16–22. DOI: 10.1016/j.talanta.2019.05.012.
  • Mansur, A. R.; Song, N.-E.; Jang, H. W.; Lim, T.-G.; Yoo, M.; Nam, T. G. Optimizing the Ultrasound-Assisted Deep Eutectic Solvent Extraction of Flavonoids in Common Buckwheat Sprouts. Food Chem. 2019, 293, 438–445. DOI: 10.1016/j.foodchem.2019.05.003.
  • Qi, X.-L.; Peng, X.; Huang, Y.-Y.; Li, L.; Wei, Z.-F.; Zu, Y.-G.; Fu, Y.-J. Green and Efficient Extraction of Bioactive Flavonoids from Equisetum Palustre L. by Deep Eutectic Solvents-Based Negative Pressure Cavitation Method Combined with Macroporous Resin Enrichment. Ind. Crops Prod. 2015, 70, 142–148. DOI: 10.1016/j.indcrop.2015.03.026.
  • Roohinejad, S.; Koubaa, M.; Barba, F. J.; Greiner, R.; Orlien, V.; Lebovka, N. I. Negative Pressure Cavitation Extraction: A Novel Method for Extraction of Food Bioactive Compounds from Plant Materials. Trends Food Sci. Technol. 2016, 52, 98–108. DOI: 10.1016/j.tifs.2016.04.005.
  • Zainal-Abidin, M. H.; Hayyan, M.; Hayyan, A.; Jayakumar, N. S. New Horizons in the Extraction of Bioactive Compounds Using Deep Eutectic Solvents: A Review. Analytica Chimica Acta. 979, 1–23. DOI:10.1016/j.aca.2017.05.012.
  • Wang, H.; Ma, X.; Cheng, Q.; Wang, L.; Zhang, L. Deep Eutectic Solvent-Based Ultrahigh Pressure Extraction of Baicalin from Scutellaria Baicalensis Georgi. Molecules. 2018, 23(12), 3233. DOI: 10.3390/molecules23123233.
  • Prentice, P.; Cuschieri, A.; Dholakia, K.; Prausnitz, M.; Campbell, P. Membrane Disruption by Optically Controlled Microbubble Cavitation. Nature Phys. 2005, 1(2), 107–110. DOI: 10.1038/nphys148.
  • Perera, C. O.; Alzahrani, M. A. J. Ultrasound as a Pre-Treatment for Extraction of Bioactive Compounds and Food Safety: A Review. LWT. 2021, 142, 111114. DOI: 10.1016/j.lwt.2021.111114.
  • Nam, M. W.; Zhao, J.; Lee, M. S.; Jeong, J. H.; Lee, J. Enhanced Extraction of Bioactive Natural Products Using Tailor-Made Deep Eutectic Solvents: Application to Flavonoid Extraction from Flos Sophorae. Green Chem. 2015, 17(3), 1718–1727. DOI: 10.1039/C4GC01556H.
  • Tang, W.; Li, G.; Chen, B.; Zhu, T.; Row, K. H. Evaluating Ternary Deep Eutectic Solvents as Novel Media for Extraction of Flavonoids from Ginkgo Biloba. Sep. Sci. Technol. 2017, 52(1), 91–99. DOI: 10.1080/01496395.2016.1247864.
  • Rosarina, D.; Narawangsa, D. R.; Chandra, N. S. R.; Sari, E.; Hermansyah, H. Optimization of Ultrasonic—Assisted Extraction (UAE) Method Using Natural Deep Eutectic Solvent (NADES) to Increase Curcuminoid Yield from Curcuma Longa L., Curcuma Xanthorrhiza, and Curcuma Mangga Val. Molecules. 2022, 27(18), 6080. DOI: 10.3390/molecules27186080.
  • Jeong, K. M.; Lee, M. S.; Nam, M. W.; Zhao, J.; Jin, Y.; Lee, D.-K.; Kwon, S. W.; Jeong, J. H.; Lee, J. Tailoring and Recycling of Deep Eutectic Solvents as Sustainable and Efficient Extraction Media. J. Chromatogr. A. 2015, 1424, 10–17. DOI: 10.1016/j.chroma.2015.10.083.
  • Li, L.; Liu, J.-Z.; Luo, M.; Wang, W.; Huang, Y.-Y.; Efferth, T.; Wang, H.-M.; Fu, Y.-J. Efficient Extraction and Preparative Separation of Four Main Isoflavonoids from Dalbergia Odorifera T. Chen Leaves by Deep Eutectic Solvents-Based Negative Pressure Cavitation Extraction Followed by Macroporous Resin Column Chromatography. J. Chromatogr. B. 2016, 1033-1034, 40–48. DOI: 10.1016/j.jchromb.2016.08.005.
  • Yang, G.-Y.; Song, J.-N.; Chang, Y.-Q.; Wang, L.; Zheng, Y.-G.; Zhang, D.; Guo, L. Natural Deep Eutectic Solvents for the Extraction of Bioactive Steroidal Saponins from Dioscoreae Nipponicae Rhizoma. Molecules. 2021, 26(7), 2079. DOI: 10.3390/molecules26072079.
  • Cao, J.; Wu, G.; Wang, L.; Cao, F.; Jiang, Y.; Zhao, L. Oriented Deep Eutectic Solvents as Efficient Approach for Selective Extraction of Bioactive Saponins from Husks of Xanthoceras Sorbifolia Bunge. Antioxidants. 2022, 11(4), 736. DOI: 10.3390/antiox11040736.
  • Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the 100 Richest Dietary Sources of Polyphenols: An Application of the Phenol-Explorer Database. Eur. J. Clin. Nutr. 2010, 64(S3), 112–120. DOI: 10.1038/ejcn.2010.221.
  • Sharma, K.; Kaur, R.; Kumar, S.; Saini, R. K.; Sharma, S.; Pawde, S. V.; Kumar, V. Saponins: A Concise Review on Food Related Aspects. Appl. & Heal Impl. Food Chem. Adv. 2023, 2, 100191. DOI: 10.1016/j.focha.2023.100191.
  • Patil, S. S.; Pathak, A.; Rathod, V. K. Optimization and Kinetic Study of Ultrasound Assisted Deep Eutectic Solvent Based Extraction: A Greener Route for Extraction of Curcuminoids from Curcuma Longa. Ultrason Sonochem. 2021, 70, 105267. DOI: 10.1016/j.ultsonch.2020.105267.
  • Tu, Y.; Li, L.; Fan, W.; Liu, L.; Wang, Z.; Yang, L. Development of Green and Efficient Extraction of Bioactive Ginsenosides from Panax Ginseng with Deep Eutectic Solvents. Molecules. 2022, 27(14), 4339. DOI: 10.3390/molecules27144339.
  • Zhou, R.-R.; Huang, J.-H.; He, D.; Yi, Z.-Y.; Zhao, D.; Liu, Z.; Zhang, S.-H.; Huang, L.-Q. Green and Efficient Extraction of Polysaccharide and Ginsenoside from American Ginseng (Panax Quinquefolius L.) by Deep Eutectic Solvent Extraction and Aqueous Two-Phase System. Molecules. 2022, 27(10), 3132. DOI: 10.3390/molecules27103132.
  • Zhao, B.-Y.; Xu, P.; Yang, F.-X.; Wu, H.; Zong, M.-H.; Lou, W.-Y. Biocompatible Deep Eutectic Solvents Based on Choline Chloride: Characterization and Application to the Extraction of Rutin from Sophora Japonica. ACS Sustain. Chem. Eng. 2015, 3(11), 2746–2755. DOI: 10.1021/acssuschemeng.5b00619.
  • Chen, X.; Lei, Z.; Cao, J.; Zhang, W.; Wu, R.; Cao, F.; Guo, Q.; Wang, J. Traditional Uses, Phytochemistry, Pharmacology and Current Uses of Underutilized Xanthoceras Sorbifolium Bunge: A Review. J. Ethnopharmacol. 2022, 283, 114747. DOI: 10.1016/j.jep.2021.114747.
  • Feng, Z.; Yang, D.; Guo, J.; Bo, Y.; Zhao, L.; An, M. Optimization of Natural Deep Eutectic Solvents Extraction of Flavonoids from Xanthoceras Sorbifolia Bunge by Response Surface Methodology. Sustain. Chem. Pharm. 2023, 31, 100904. DOI: 10.1016/j.scp.2022.100904.
  • Suresh, P. S.; Singh, P. P.; Anmol; Kapoor, S.; Padwad, Y. S.; Sharma, U. Lactic Acid-Based Deep Eutectic Solvent: An Efficient Green Media for the Selective Extraction of Steroidal Saponins from Trillium Govanianum. Sep. Purif. Technol. 2022, 294, 121105. DOI: 10.1016/j.seppur.2022.121105.
  • Liu, J.-Z.; Lin, Z.-X.; Kong, W.-H.; Zhang, C.-C.; Yuan, Q.; Fu, Y.-J.; Cui, Q. Ultrasonic-Assisted Extraction-Synergistic Deep Eutectic Solvents for Green and Efficient Incremental Extraction of Paris Polyphylla Saponins. J. Mol. Liq. 2022, 368, 120644. DOI: 10.1016/j.molliq.2022.120644.
  • Jayaprakasha, G. K.; Jaganmohan Rao, L.; Sakariah, K. K. Antioxidant Activities of Curcumin, Demethoxycurcumin and Bisdemethoxycurcumin. Food Chem. 2006, 98(4), 720–724. DOI: 10.1016/j.foodchem.2005.06.037.
  • Sharifi-Rad, J.; Rayess, Y. E.; Rizk, A. A.; Sadaka, C.; Zgheib, R.; Zam, W.; Sestito, S.; Rapposelli, S.; Neffe-Skocińska, K.; Zielińska, D., et al. Turmeric and Its Major Compound Curcumin on Health: Bioactive Effects and Safety Profiles for Food. Pharm. Biotech & Medi App. Front. Pharmacol. 2020, 11, 01021. DOI: 10.3389/fphar.2020.01021.
  • Saffarionpour, S.; Diosady, L. L. Delivery of Curcumin Through Colloidal Systems and Its Applications in Functional Foods. Curr. Opin. Food Sci. 2022, 43, 155–162. DOI: 10.1016/j.cofs.2021.12.003.
  • Olivera, A.; Moore, T. W.; Hu, F.; Brown, A. P.; Sun, A.; Liotta, D. C.; Snyder, J. P.; Yoon, Y.; Shim, H.; Marcus, A. I., et al. Inhibition of the NF-Κb Signaling Pathway by the Curcumin Analog, 3,5-Bis(2-Pyridinylmethylidene)-4-Piperidone (EF31): Anti-Inflammatory and Anti-Cancer Properties. Int. Immunopharmacol. 2012, 12(2), 368–377. DOI: 10.1016/j.intimp.2011.12.009.
  • Nakagawa, Y.; Mukai, S.; Yamada, S.; Matsuoka, M.; Tarumi, E.; Hashimoto, T.; Tamura, C.; Imaizumi, A.; Nishihira, J.; Nakamura, T. Short-Term Effects of Highly-Bioavailable Curcumin for Treating Knee Osteoarthritis: A Randomized, Double-Blind, Placebo-Controlled Prospective Study. J. Orthop. Sci. 2014, 19(6), 933–939. DOI: 10.1007/s00776-014-0633-0.
  • Saffarionpour, S.; Diosady, L. L. Curcumin, a Potent Therapeutic Nutraceutical and Its Enhanced Delivery and Bioaccessibility by Pickering Emulsions. Drug Deli & Trans Res. 2022, 12(1), 124–157. DOI: 10.1007/s13346-021-00936-3.
  • Waman, A. A.; Bohra, P.; Sounderarajan, A. Propagule Size Affects Yield and Quality of Curcuma Mangga Val. et Zijp.: An Important Medicinal Spice. Ind. Crops Prod. 2018, 124, 36–43. DOI: 10.1016/j.indcrop.2018.07.011.
  • Awin, T.; Mediani, A.; Mohd Faudzi, S. M.; Maulidiani; Leong, S. W.; Shaari, K.; Abas, F. Identification of α-Glucosidase Inhibitory Compounds from Curcuma Mangga Fractions. Int. J. Food. Prop. 2020, 23(1), 154–166. DOI: 10.1080/10942912.2020.1716792.
  • Lee, H.-J.; Kang, S.-M.; Jeong, S.-H.; Chung, K.-H.; Kim, B.-I. Antibacterial Photodynamic Therapy with Curcumin and Curcuma Xanthorrhiza Extract against Streptococcus Mutans. Photodiagnosis. Photodyn. Ther. 2017, 20, 116–119. DOI: 10.1016/j.pdpdt.2017.09.003.
  • Lukitaningsih, E.; Rohman, A.; Rafi, M.; Windarsih, A. In Vivo Antioxidant Activities of Curcuma Longa and Curcuma Xanthorrhiza: A Review. Food Res. 2019, 4(1), 13–19. DOI: 10.26656/fr.2017.4(1).172.
  • Liu, J.-L.; Li, L.-Y.; He, G.-H. Optimization of Microwave-Assisted Extraction Conditions for Five Major Bioactive Compounds from Flos Sophorae Immaturus (Cultivars of Sophora Japonica L.) Using Response Surface Methodology. Molecules. 2016, 21(3), 296. DOI: 10.3390/molecules21030296.
  • Dos Santos, J. S.; Suzan, A. J.; Bonafé, G. A.; Fernandes, A. M. A. D. P.; Longato, G. B.; Antônio, M. A.; Carvalho, P. D. O.; Ortega, M. M. Kaempferol and Biomodified Kaempferol from Sophora Japonica Extract as Potential Sources of Anti-Cancer Polyphenolics Against High Grade Glioma Cell Lines. IJMS. 2023, 24(13), 10716. DOI: 10.3390/ijms241310716.
  • Zang, E.; Qiu, B.; Chen, N.; Li, C.; Liu, Q.; Zhang, M.; Liu, Y.; Li, M. Xanthoceras Sorbifolium Bunge: A Review on Botany, Phytochemistry, Pharmacology, and Applications. Front. Pharmacol. 2021, 12, 708549. DOI: 10.3389/fphar.2021.708549.
  • Zheng, Y.; Zhou, S.; Zhang, H.; Lu, Z.; Deng, R.; Feng, Y.; Liu, P.; Regmi, B. Comparative Study of the Flavonoid Content in Radix Scutellaria from Different Cultivation Areas in China. Int. J. Anal. Chem. 2023, 1–13. DOI: 10.1155/2023/3754549.
  • Liu, X.; Peng, X.; Cen, S.; Yang, C.; Ma, Z.; Shi, X. Wogonin Induces Ferroptosis in Pancreatic Cancer Cells by Inhibiting the Nrf2/GPX4 Axis. Front. Pharmacol. 2023, 14, 1129662. DOI: 10.3389/fphar.2023.1129662.
  • Morshed, A. K. M. H.; Paul, S.; Hossain, A.; Basak, T.; Hossain Md, S.; Hasan Md, M.; Hasibuzzaman Md, A.; Rahaman, T.; Mia Md, A. R.; Shing, P., et al. Baicalein as Promising Anticancer Agent: A Comprehensive Analysis on Molecular Mechanisms and Therapeutic Perspectives. Cancers. 2023, 15(7), 2128. DOI: 10.3390/cancers15072128.
  • Shin, B.-K.; Kwon, S. W.; Park, J. H. Chemical Diversity of Ginseng Saponins from Panax Ginseng. J. Ginseng Res. 2015, 39(4), 287–298. DOI: 10.1016/j.jgr.2014.12.005.
  • Kim, J.-H. Pharmacological and Medical Applications of Panax Ginseng and Ginsenosides: A Review for Use in Cardiovascular Diseases. J. Ginseng Res. 2018, 42(3), 264–269. DOI: 10.1016/j.jgr.2017.10.004.
  • Rawat, J. M.; Pandey, S.; Rawat, B.; Rai, N.; Preeti, P.; Thakur, A.; Butola, J. S.; Bachheti, R. K.; Wang, C.-H. Traditional Uses, Active Ingredients, and Biological Activities of Paris Polyphylla Smith: A Comprehensive Review of an Important Himalayan Medicinal Plant. J. Chem. 2023, 1–18. DOI: 10.1155/2023/7947224.
  • Bai, Y.; Zhang, X.-F.; Wang, Z.; Zheng, T.; Yao, J. Deep Eutectic Solvent with Bifunctional Brønsted-Lewis Acids for Highly Efficient Lignocellulose Fractionation. Bioresources Technol. 2022, 347, 126723. DOI: 10.1016/j.biortech.2022.126723.
  • Yu, L.; Bulone, V. De-Glycosylation and Enhanced Bioactivity of Flavonoids from Apple Pomace During Extraction with Deep Eutectic Solvents. Green Chem. 2021, 23(18), 7199–7209. DOI: 10.1039/D1GC01928G.
  • Li, G.; Jiang, Y.; Liu, X.; Deng, D. New Levulinic Acid-Based Deep Eutectic Solvents: Synthesis and Physicochemical Property Determination. J. Mol. Liq. 2016, 222, 201–207. DOI: 10.1016/j.molliq.2016.07.039.
  • Tzani, A.; Kalafateli, S.; Tatsis, G.; Bairaktari, M.; Kostopoulou, I.; Pontillo, A. R. N.; Detsi, A. Natural Deep Eutectic Solvents (NaDess) as Alternative Green Extraction Media for Ginger (Zingiber Officinale Roscoe). Sustain. Chem. 2021, 2(4), 576–598. DOI: 10.3390/suschem2040032.
  • Like, B. D.; Uhlenbrock, C. E.; Panzer, M. J. A Quantitative Thermodynamic Metric for Identifying Deep Eutectic Solvents. Phys. Chem. Chem. Phys. 2023, 25(11), 7946–7950. DOI: 10.1039/D3CP00555K.
  • Kollau, L. J. B. M.; Vis, M.; Van Den Bruinhorst, A.; Esteves, A. C. C.; Tuinier, R. Quantification of the Liquid Window of Deep Eutectic Solvents. Chem. Commun. 2018, 54(95), 13351–13354. DOI: 10.1039/C8CC05815F.
  • González De Castilla, A.; Bittner, J. P.; Müller, S.; Jakobtorweihen, S.; Smirnova, I. Thermodynamic and Transport Properties Modeling of Deep Eutectic Solvents: A Review on G e -Models, Equations of State, and Molecular Dynamics. J. Chem. Eng, Data. 2020, 65(3), 943–967. DOI: 10.1021/acs.jced.9b00548.
  • Van Den Bruinhorst, A.; Costa Gomes, M. Is There Depth to Eutectic Solvents? Curr. Opin. Green Sustain. Chem. 2022, 37, 100659. DOI: 10.1016/j.cogsc.2022.100659.
  • Kalhor, P.; Ghandi, K. Deep Eutectic Solvents for Pretreatment, Extraction, and Catalysis of Biomass and Food Waste. Molecules. 24(22), 4012. DOI: 10.3390/molecules24224012.
  • Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R. L.; Duarte, A. R. C. Natural Deep Eutectic Solvents – Solvents for the 21st Century. ACS Sustain. Chem. Eng. 2014, 2(5), 1063–1071. DOI: 10.1021/sc500096j.
  • Abbott, A. P.; Ahmed, E. I.; Prasad, K.; Qader, I. B.; Ryder, K. S. Liquid Pharmaceuticals Formulation by Eutectic Formation. Fluid Ph. Equilibria. 2017, 448, 2–8. DOI: 10.1016/j.fluid.2017.05.009.
  • Rahman, M. S.; Roy, R.; Jadhav, B.; Hossain, M. N.; Halim, M. A.; Raynie, D. E. F. Structure, and Applications of Therapeutic and Amino Acid-Based Deep Eutectic Solvents: An Overview. J. Mol. Liq. 2021, 321, 114745. DOI: 10.1016/j.molliq.2020.114745.
  • Mecerreyes, D.; Porcarelli, L. 8 - Green Electrolyte-Based Organic Electronic Devices. In Sustainable Strategies in Organic Electronics; Marrocchi A., Ed. Woodhead Publishing Series: India, 2022; pp 281–295.
  • Pedro, S. N.; Freire, M. G.; Freire, C. S. R.; Silvestre, A. J. D. Deep Eutectic Solvents Comprising Active Pharmaceutical Ingredients in the Development of Drug Delivery Systems. Expert Opin. Drug Deliv. 2019, 16(5), 497–506. DOI: 10.1080/17425247.2019.1604680.
  • Li, D. Natural Deep Eutectic Solvents in Phytonutrient Extraction and Other Applications. Front Plant Sci. 2022, 13, 1004332. DOI: 10.3389/fpls.2022.1004332.
  • Dai, Y.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y. H. Tailoring Properties of Natural Deep Eutectic Solvents with Water to Facilitate Their Applications. Food Chem. 2015, 187, 14–19. DOI: 10.1016/j.foodchem.2015.03.123.
  • Le, N. T.; Hoang, N. T.; Van, V. T. T.; Nguyen, T. P. D.; Chau, N. H. T.; Le, N. T. N.; Le, H. B. T.; Phung, H. T.; Nguyen, H. T.; Nguyen, H. M. Extraction of Curcumin from Turmeric Residue (Curcuma Longa L.) Using Deep Eutectic Solvents and Surfactant Solvents. Anal. Methods. 2022, 14(8), 850–858. DOI: 10.1039/D1AY02152D.
  • Hsieh, Y.-H.; Li, Y.; Pan, Z.; Chen, Z.; Lu, J.; Yuan, J.; Zhu, Z.; Zhang, J. Ultrasonication-Assisted Synthesis of Alcohol-Based Deep Eutectic Solvents for Extraction of Active Compounds from Ginger. Ultrason Sonochem. 2020, 63, 104915. DOI: 10.1016/j.ultsonch.2019.104915.
  • Katryniok, B.; Paul, S.; Bellière-Baca, V.; Rey, P.; Dumeignil, F. Glycerol Dehydration to Acrolein in the Context of New Uses of Glycerol. Green Chem. 2010, 12(12), 2079–2098. DOI: 10.1039/c0gc00307g.
  • Isci, A.; Kaltschmitt, M. Recovery and Recycling of Deep Eutectic Solvents in Biomass Conversions: A Review. Biomass Conv. Bioref. 2022, 12(S1), 197–226. DOI: 10.1007/s13399-021-01860-9.
  • Xu, M.; Ran, L.; Chen, N.; Fan, X.; Ren, D.; Yi, L. Polarity-Dependent Extraction of Flavonoids from Citrus Peel Waste Using a Tailor-Made Deep Eutectic Solvent. Food Chem. 2019, 297, 124970. DOI: 10.1016/j.foodchem.2019.124970.
  • Della Posta, S.; Gallo, V.; Gentili, A.; Fanali, C. Strategies for the Recovery of Bioactive Molecules from Deep Eutectic Solvents Extracts. TrAc Trends Anal. Chem. 2022, 157, 116798. DOI: 10.1016/j.trac.2022.116798.
  • Doldolova, K.; Bener, M.; Lalikoğlu, M.; Aşçı, Y. S.; Arat, R.; Apak, R. Optimization and Modeling of Microwave-Assisted Extraction of Curcumin and Antioxidant Compounds from Turmeric by Using Natural Deep Eutectic Solvents. Food Chem. 2021, 353, 129337. DOI: 10.1016/j.foodchem.2021.129337.
  • Liu, G.; Feng, S.; Sui, M.; Chen, B.; Sun, P. Extraction and Identification of Steroidal Saponins from Polygonatum Cyrtonema Hua Using Natural Deep Eutectic Solvent‐Synergistic Quartz Sand‐Assisted Extraction Method. J. Sep. Sci. 2023, 46(7), 2200823. DOI: 10.1002/jssc.202200823.
  • Saffarionpour, S.; Sevillano, D. M.; Van Der Wielen, L. A. M.; Noordman, T. R.; Brouwer, E.; Ottens, M. Selective Adsorption of Flavor-Active Components on Hydrophobic Resins. J. Chromatogr. A. 2016, 1476, 25–34. DOI: 10.1016/j.chroma.2016.10.053.
  • Xia, G.-H.; Li, X.-H.; Jiang, Y. Deep Eutectic Solvents as Green Media for Flavonoids Extraction from the Rhizomes of Polygonatum Odoratum. Alex. Eng. J. 2021, 60(2), 1991–2000. DOI: 10.1016/j.aej.2020.12.008.
  • Ren, J.; Zheng, Y.; Lin, Z.; Han, X.; Liao, W. Macroporous Resin Purification and Characterization of Flavonoids from Platycladus Orientalis (L.) Franco and Their Effects on Macrophage Inflammatory Response. Food Funct. 2017, 8(1), 86–95. DOI: 10.1039/C6FO01474G.
  • Wang, X.; Su, J.; Chu, X.; Zhang, X.; Kan, Q.; Liu, R.; Fu, X. Adsorption and Desorption Characteristics of Total Flavonoids from Acanthopanax Senticosus on Macroporous Adsorption Resins. Molecules. 2021, 26(14), 4162. DOI: 10.3390/molecules26144162.
  • Liu, Y.; Zhang, Y.; Zhou, Y.; Feng, X. Anthocyanins in Different Food Matrices: Recent Updates on Extraction, Purification and Analysis Techniques. Crit. Rev. Anal. Chem. 2022, 1–32. DOI: 10.1080/10408347.2022.2116556.
  • Zhong, J.-L.; Muhammad, N.; Gu, Y.-C.; Yan, W.-D. A Simple and Efficient Method for Enrichment of Cocoa Polyphenols from Cocoa Bean Husks with Macroporous Resins Following a Scale-Up Separation. J. Food Eng. 2019, 243, 82–88. DOI: 10.1016/j.jfoodeng.2018.08.023.
  • Saffarionpour, S.; Ottens, M. Recent Advances in Techniques for Flavor Recovery in Liquid Food Processing. Food Eng. Rev. 2018, 10(2), 81–94. DOI: 10.1007/s12393-017-9172-8.
  • Khan, A. S.; Ibrahim, T. H.; Jabbar, N. A.; Khamis, M. I.; Nancarrow, P.; Mjalli, F. S. Ionic Liquids and Deep Eutectic Solvents for the Recovery of Phenolic Compounds: Effect of Ionic Liquids Structure and Process Parameters. R.S.C. Adv. 2021, 11(20), 12398–12422. DOI: 10.1039/D0RA10560K.
  • Prasada Rao, T.; Biju, V. M. SPECTROPHOTOMETRY | Organic Compounds. In Encyclopedia of Analytical Science; Elsevier: 2005; pp. 358–366. doi:10.1016/B0-12-369397-7/00721-4
  • Melwanki, M. B.; Fuh, M.-R. Dispersive Liquid–Liquid Microextraction Combined with Semi-Automated In-Syringe Back Extraction as a New Approach for the Sample Preparation of Ionizable Organic Compounds Prior to Liquid Chromatography. J. Chromatogr. A. 2008, 1198-1199, 1–6. DOI: 10.1016/j.chroma.2008.05.007.
  • Jafari, Z.; Hadjmohammadi, M. R. Development of Magnetic Solid Phase Extraction Based on Magnetic Chitosan–Graphene Oxide Nanoparticles and Deep Eutectic Solvents for the Determination of Flavonoids by High Performance Liquid Chromatography. Anal. Methods. 2021, 13(48), 5821–5829. DOI: 10.1039/D1AY01530C.
  • Abu Hatab, F.; Ibrahim, O. A. Z.; Warrag, S. E. E.; Darwish, A. S.; Lemaoui, T.; Alam, M. M.; Alsufyani, T.; Jevtovic, V.; Jeon, B.-H.; Banat, F., et al. Solvent Regeneration Methods for Combined Dearomatization, Desulfurization, and Denitrogenation of Fuels Using Deep Eutectic Solvents. ACS Omega. 2023, 8(1), 626–635. DOI: 10.1021/acsomega.2c05776.
  • Galanakis, C. M. Recovery of High Added-Value Components from Food Wastes: Conventional, Emerging Technologies and Commercialized Applications. Trends Food Sci. Technol. 2012, 26(2), 68–87. DOI: 10.1016/j.tifs.2012.03.003.
  • Plaza, A.; Tapia, X.; Yañez, C.; Vilches, F.; Candia, O.; Cabezas, R.; Romero, J. Obtaining Hydroxytyrosol from Olive Mill Waste Using Deep Eutectic Solvents and Then Supercritical CO2. Waste Biomass. Valor. 2020, 11(11), 6273–6284. DOI: 10.1007/s12649-019-00836-1.
  • Chen, Y.; Mu, T. Application of Deep Eutectic Solvents in Biomass Pretreatment and Conversion. Green Energy. Environ. 2019, 4(2), 95–115. DOI: 10.1016/j.gee.2019.01.012.
  • Pochivalov, A.; Cherkashina, K.; Sudarkin, A.; Osmolowsky, M.; Osmolovskaya, O.; Krekhova, F.; Nugbienyo, L.; Bulatov, A. Liquid-Liquid Microextraction with Hydrophobic Deep Eutectic Solvent Followed by Magnetic Phase Separation for Preconcentration of Antibiotics. Talanta. 2023, 252, 123868. DOI: 10.1016/j.talanta.2022.123868.
  • Wang, N.; Li, Q. Study on Extraction and Antioxidant Activity of Polysaccharides from Radix Bupleuri by Natural Deep Eutectic Solvents Combined with Ultrasound-Assisted Enzymolysis. Sustain. Chem. Pharm. 2022, 30, 100877. DOI: 10.1016/j.scp.2022.100877.
  • Mackowiak, A.; Galek, P.; Fic, K. Deep Eutectic Solvents for High‐Temperature Electrochemical Capacitors. Chem. Electrochem. 2021, 8(21), 4028–4037. DOI: 10.1002/celc.202100711.
  • Sui, M.; Feng, S.; Liu, G.; Chen, B.; Li, Z.; Shao, P. Deep Eutectic Solvent on Extraction of Flavonoid Glycosides from Dendrobium Officinale and Rapid Identification with UPLC-Triple-TOF/MS. Food Chem. 2023, 401, 134054. DOI: 10.1016/j.foodchem.2022.134054.
  • Hao, C.; Chen, L.; Dong, H.; Xing, W.; Xue, F.; Cheng, Y. Extraction of Flavonoids from Scutellariae Radix Using Ultrasound-Assisted Deep Eutectic Solvents and Evaluation of Their Anti-Inflammatory Activities. ACS Omega. 2020, 5(36), 23140–23147. DOI: https://doi.org/10.1021/acsomega.0c02898.
  • Nazir, F.; Nazir, A.; Javed, S.; Abid, H. A. Synthesis and Characterization of Natural Deep Eutectic Solvents as Green Extractants for Isolation of Bioactive Flavonoids from Amaranthus Viridis. Sustain. Chem. Pharm. 2023, 33, 101058. DOI: 10.1016/j.scp.2023.101058.
  • Bajkacz, S.; Adamek, J. Development of a Method Based on Natural Deep Eutectic Solvents for Extraction of Flavonoids from Food Samples. Food Anal. Methods 2018. Food Anal. Methods. 2018, 11(5), 1330–1344. DOI: https://doi.org/10.1007/s12161-017-1118-5.
  • Yu, Q.; Wang, F.; Jian, Y.; Chernyshev, V. M.; Zhang, Y.; Wang, Z.; Yuan, Z.; Chen, X. Extraction of Flavonoids from Glycyrrhiza Residues Using Deep Eutectic Solvents and Its Molecular Mechanism. J. Mol. Liq. 2022, 363, 119848. DOI: 10.1016/j.molliq.2022.119848.
  • Lin, S.; Meng, X.; Tan, C.; Tong, Y.; Wan, M.; Wang, M.; Zhao, Y.; Deng, H.; Kong, Y.; Ma, Y. Composition and Antioxidant Activity of Anthocyanins from Aronia Melanocarpa Extracted Using an Ultrasonic-Microwave-Assisted Natural Deep Eutectic Solvent Extraction Method. Ultrason Sonochem. 2022, 89, 106102. DOI: 10.1016/j.ultsonch.2022.106102.
  • Sang, J.; Liu, K.; Ma, Q.; Li, B.; Li, C. Combination of a Deep Eutectic Solvent and Macroporous Resin for Green Recovery of Anthocyanins from Nitraria Tangutorun Bobr. Fruit. Sep. Sci. Technol. 2019, 54(18), 3082–3090. DOI: 10.1080/01496395.2018.1559190.
  • Sang, J.; Li, B.; Huang, Y.; Ma, Q.; Liu, K.; Li, C. Deep Eutectic Solvent-Based Extraction Coupled with Green Two-Dimensional HPLC-DAD-ESI-MS/MS for the Determination of Anthocyanins from Lycium Ruthenicum Murr. Fruit. Anal. Methods. 2018, 10(10), 1247–1257. DOI: 10.1039/C8AY00101D.
  • Kongpol, K.; Sermkaew, N.; Makkliang, F.; Khongphan, S.; Chuaboon, L.; Sakdamas, A.; Sakamoto, S.; Putalun, W.; Yusakul, G. Extraction of Curcuminoids and Ar-Turmerone from Turmeric (Curcuma Longa L.) Using Hydrophobic Deep Eutectic Solvents (HDESs) and Application as HDES-Based Microemulsions. Food Chem. 2022, 396, 133728. DOI: 10.1016/j.foodchem.2022.133728.
  • Alioui, O.; Sobhi, W.; Tiecco, M.; Alnashef, I. M.; Attoui, A.; Boudechicha, A.; Kumar Yadav, K.; Fallatah, A. M.; Elboughdiri, N.; Jeon, B.-H., et al. Theoretical and Experimental Evidence for the Use of Natural Deep Eutectic Solvents to Increase the Solubility and Extractability of Curcumin. J. Mol. Liq. 2022, 359, 119149. DOI: 10.1016/j.molliq.2022.119149.
  • Huber, V.; Hioe, J.; Touraud, D.; Kunz, W. Uncovering the Curcumin Solubilization Ability of Selected Natural Deep Eutectic Solvents Based on Quaternary Ammonium Compounds. J. Mol. Liq. 2022, 361, 119661. DOI: 10.1016/j.molliq.2022.119661.
  • Dias Ribeiro, B.; Zarur Coelho, M. A.; Marrucho, I. M. Extraction of Saponins from Sisal (Agave Sisalana) and Juá (Ziziphus Joazeiro) with Cholinium-Based Ionic Liquids and Deep Eutectic Solvents. Eur. Food Res. Technol. 2013, 237(6), 965–975. DOI: 10.1007/s00217-013-2068-9.
  • Tang, Y.; He, X.; Sun, J.; Liu, G.; Li, C.; Li, L.; Sheng, J.; Zhou, Z.; Xin, M.; Ling, D., et al. Comprehensive Evaluation on Tailor-Made Deep Eutectic Solvents (DESs) in Extracting Tea Saponins from Seed Pomace of Camellia Oleifera Abel. Food Chem. 2021, 342, 128243. DOI: 10.1016/j.foodchem.2020.128243.
  • Petrochenko, A. A.; Orlova, A.; Frolova, N.; Serebryakov, E. B.; Soboleva, A.; Flisyuk, E. V.; Frolov, A.; Shikov, A. N. Natural Deep Eutectic Solvents for the Extraction of Triterpene Saponins from Aralia Elata Var. Mandshurica (Rupr. & Maxim.) J. Wen. Molecules. 2023, 28(8), 3614. DOI: 10.3390/molecules28083614.
  • Xu, W.; Chu, K.; Li, H.; Zhang, Y.; Zheng, H.; Chen, R.; Chen, L. Ionic Liquid-Based Microwave-Assisted Extraction of Flavonoids from Bauhinia Championii (Benth.) Benth. Molecules. 2012, 17(12), 14323–14335. DOI: 10.3390/molecules171214323.
  • Chen, Y.; Yu, D.; Chen, W.; Fu, L.; Mu, T. Water Absorption by Deep Eutectic Solvents. Phys. Chem. Chem. Phys. 2019, 21(5), 2601–2610. DOI: 10.1039/C8CP07383J.
  • Kivelä, H.; Salomäki, M.; Vainikka, P.; Mäkilä, E.; Poletti, F.; Ruggeri, S.; Terzi, F.; Lukkari, J. Effect of Water on a Hydrophobic Deep Eutectic Solvent. J. Phys. Chem B. 2022, 126(2), 513–527. DOI: 10.1021/acs.jpcb.1c08170.
  • Deep Eutectic Solvents for Medicine, Gas Solubilization and Extraction of Natural Substances. In Environmental Chemistry for a Sustainable World; Fourmentin, S., Costa Gomes, M., Lichtfouse, E., Eds.; Springer International Publishing: Cham, 2021; Vol. 56. DOI: 10.1007/978-3-030-53069-3.
  • Gabriele, F.; Chiarini, M.; Germani, R.; Tiecco, M.; Spreti, N. Effect of Water Addition on Choline Chloride/Glycol Deep Eutectic Solvents: Characterization of Their Structural and Physicochemical Properties. J. Mol. Liq. 2019, 291, 111301. DOI: 10.1016/j.molliq.2019.111301.
  • Omar, K. A.; Sadeghi, R. Physicochemical Properties of Deep Eutectic Solvents: A Review. J. Mol. Liq. 2022, 360, 119524. DOI: 10.1016/j.molliq.2022.119524.
  • Taco, V.; Savarino, P.; Benali, S.; Villacrés, E.; Raquez, J.-M.; Gerbaux, P.; Duez, P.; Nachtergael, A. Deep Eutectic Solvents for the Extraction and Stabilization of Ecuadorian Quinoa (Chenopodium Quinoa Willd.) Saponins. J. Clean. Prod. 2022, 363, 132609. DOI: 10.1016/j.jclepro.2022.132609.
  • Lee, J. W.; Park, H. Y.; Park, J. Enhanced Extraction Efficiency of Flavonoids from Pyrus Ussuriensis Leaves with Deep Eutectic Solvents. Molecules. 2022, 27(9), 2798. DOI: 10.3390/molecules27092798.
  • Cunha, S. C.; Fernandes, J. O. Extraction Techniques with Deep Eutectic Solvents. TrAc Trends Anal. Chem. 2018, 105, 225–239. DOI: 10.1016/j.trac.2018.05.001.
  • Mansinhos, I.; Gonçalves, S.; Rodríguez-Solana, R.; Ordóñez-Díaz, J. L.; Moreno-Rojas, J. M.; Romano, A. Ultrasonic-Assisted Extraction and Natural Deep Eutectic Solvents Combination: A Green Strategy to Improve the Recovery of Phenolic Compounds from Lavandula Pedunculata Subsp. Lusitanica (Chaytor) Franco. Antioxidants. 2021, 10(4), 582. DOI: 10.3390/antiox10040582.
  • Tiwari, B. K. Ultrasound: A Clean, Green Extraction Technology. TrAc Trends Anal. Chem. 2015, 71, 100–109. DOI: 10.1016/j.trac.2015.04.013.
  • Kumar, K.; Srivastav, S.; Sharanagat, V. S. Ultrasound Assisted Extraction (UAE) of Bioactive Compounds from Fruit and Vegetable Processing By-Products: A Review. Ultrason. Sonochem. 2021, 70, 105325. DOI: 10.1016/j.ultsonch.2020.105325.
  • Panda, D.; Manickam, S. Cavitation Technology—The Future of Greener Extraction Method: A Review on the Extraction of Natural Products and Process Intensification Mechanism and Perspectives. Appl. Sci. 2019, 9(4), 766. DOI: 10.3390/app9040766.
  • Boateng, I. D. Recent Processing of Fruits and Vegetables Using Emerging Thermal and Non-Thermal Technologies. A Critical Review of Their Potentialities and Limitations on Bioactives, Structure, and Drying Performance. Critical Reviews In Food Sci. & Nutrit. 2022, 1–35. DOI: 10.1080/10408398.2022.2140121.
  • Rojas, R.; Castro-López, C.; Sánchez-Alejo, E. J.; Niño-Medina, G.; Martínez-Ávila, G. C. G. Phenolic Compound Recovery from Grape Fruit and By- Products: An Overview of Extraction Methods. In Grape and Wine Biotechnology; Morata, A. Loira, I., Eds.; InTech, 2016. DOI: 10.5772/64821.
  • Xi, J. Ultrahigh Pressure Extraction of Bioactive Compounds from Plants—A Review. Crit. Rev. Food Sci. Nutr. 2017, 57(6), 1097–1106. DOI: 10.1080/10408398.2013.874327.
  • Routray, W.; Orsat, V. Microwave-Assisted Extraction of Flavonoids: A Review. Food Bioprocess. Technol. 2012, 5(2), 409–424. DOI: 10.1007/s11947-011-0573-z.
  • Ekezie, F.-G. C.; Sun, D.-W.; Cheng, J.-H. Acceleration of Microwave-Assisted Extraction Processes of Food Components by Integrating Technologies and Applying Emerging Solvents: A Review of Latest Developments. Trends Food Sci. Technol. 2017, 67, 160–172. DOI: 10.1016/j.tifs.2017.06.006.
  • Chan, C.-H.; Yusoff, R.; Ngoh, G.-C.; Kung, F. W.-L. Microwave-Assisted Extractions of Active Ingredients from Plants. J. Chromatogr. A. 2011, 1218(37), 6213–6225. DOI: 10.1016/j.chroma.2011.07.040.
  • Liu, W.; Fu, Y.; Zu, Y.; Kong, Y.; Zhang, L.; Zu, B.; Efferth, T. Negative-Pressure Cavitation Extraction for the Determination of Flavonoids in Pigeon Pea Leaves by Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. A. 2009, 1216(18), 3841–3850. DOI: 10.1016/j.chroma.2009.02.073.
  • Cui, Q.; Liu, J.-Z.; Yu, L.; Gao, M.-Z.; Wang, L.-T.; Wang, W.; Zhao, X.-H.; Fu, Y.-J.; Jiang, J.-C. Experimental and Simulative Studies on the Implications of Natural and Green Surfactant for Extracting Flavonoids. J. Clean. Prod. 2020, 274, 122652. DOI: 10.1016/j.jclepro.2020.122652.
  • Huang, H.-W.; Hsu, C.-P.; Yang, B. B.; Wang, C.-Y. Advances in the Extraction of Natural Ingredients by High Pressure Extraction Technology. Trends Food Sci. Technol. 2013, 33(1), 54–62. DOI: 10.1016/j.tifs.2013.07.001.
  • Jun, X.; Deji, S.; Ye, L.; Rui, Z. Micromechanism of Ultrahigh Pressure Extraction of Active Ingredients from Green Tea Leaves. Food Control. 2011, 22(8), 1473–1476. DOI: 10.1016/j.foodcont.2011.03.008.
  • Chen, R.; Meng, F.; Zhang, S.; Liu, Z. Effects of Ultrahigh Pressure Extraction Conditions on Yields and Antioxidant Activity of Ginsenoside from Ginseng. Sep. Purif. Technol. 2009, 66(2), 340–346. DOI: 10.1016/j.seppur.2008.12.026.
  • Sammani, M. S.; Clavijo, S.; Cerdà, V. R. Recent, Advanced Sample Pretreatments and Analytical Methods for Flavonoids Determination in Different Samples. TrAc Trends Anal. Chem. 2021, 138, 116220. DOI: 10.1016/j.trac.2021.116220.
  • Xie, Z.; Sun, Y.; Lam, S.; Zhao, M.; Liang, Z.; Yu, X.; Yang, D.; Xu, X. Extraction and Isolation of Flavonoid Glycosides from Flos Sophorae Immaturus Using Ultrasonic-Assisted Extraction Followed by High-Speed Countercurrent Chromatography: Liquid Chromatography. J. Sep. Sci. 2014, 37(8), 957–965. DOI: 10.1002/jssc.201301340.
  • Zhang, H.; Xie, G.; Tian, M.; Pu, Q.; Qin, M. Optimization of the Ultrasonic-Assisted Extraction of Bioactive Flavonoids from Ampelopsis Grossedentata and Subsequent Separation and Purification of Two Flavonoid Aglycones by High-Speed Counter-Current Chromatography. Molecules 2016, 21 (8), 1096. 10.3390/molecules21081096.
  • Xiao, X.; Si, X.; Tong, X.; Li, G. Preparation of Flavonoids and Diarylheptanoid from Alpinia Katsumadai Hayata by Microwave-Assisted Extraction and High-Speed Counter-Current Chromatography. Sep. Purif. Technol. 2011, 81(3), 265–269. DOI: 10.1016/j.seppur.2011.07.013.
  • Huang, L.; Cao, Y.; Chen, G. Purification of Quercetin in Anoectochilu Roxburghii (Wall) Lindl Using UMAE by High-Speed Counter-Current Chromatography and Subsequent Structure Identification. Sep. Purif. Technol. 2008, 64(1), 101–107. DOI: 10.1016/j.seppur.2008.07.021.
  • Zhang, Y.; Wang, B.; Jia, Z.; Scarlett, C. J.; Sheng, Z. Adsorption/Desorption Characteristics and Enrichment of Quercetin, Luteolin and Apigenin from Flos Populi Using Macroporous Resin. Rev. Bras. Farmacogn. 2019, 29(1), 69–76. DOI: 10.1016/j.bjp.2018.09.002.
  • Luo, H.; Liu, H.; Cao, Y.; Xu, D.; Mao, Z.; Mou, Y.; Meng, J.; Lai, D.; Liu, Y.; Zhou, L. Enhanced Production of Botrallin and TMC-264 with in situ Macroporous Resin Adsorption in Mycelial Liquid Culture of the Endophytic Fungus Hyalodendriella Sp. Ponipodef12. Molecules. 2014, 19(9), 14221–14234. DOI: 10.3390/molecules190914221.
  • Gong, L.; Wu, Y.; Qiu, X.; Xin, X.; An, F.; Guo, M. Adsorption Characteristics and Enrichment of Emodin from Marine-Derived Aspergillus Flavipes HN4-13 Extract by Macroporous Resin XAD-16. Mar. Drugs. 2022, 20(4), 231. DOI: 10.3390/md20040231.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.