38
Views
0
CrossRef citations to date
0
Altmetric
Extraction

ISFME extraction of As species from some real water samples using an imidazolium-based task-specific ionic liquid (TSIL): Synthesis and characterization

ORCID Icon, , &
Pages 580-591 | Received 18 Nov 2023, Accepted 05 Mar 2024, Published online: 17 Mar 2024

References

  • Ashouri, V.; Adib, K.; Fariman, G. A.; Ganjali, M. R.; Rahimi-Nasrabadi, M. Determination of Arsenic Species Using Functionalized Ionic Liquid by in situ Dispersive Liquid-Liquid Microextraction Followed by Atomic Absorption Spectrometry. Food Chem. 2021, 349, 129115. DOI: 10.1016/j.foodchem.2021.129115.
  • Hernandez-Zavala, A.; Valenzuela, O. L.; García-Vargas, G. G.; Thomas, D. J.; Del Razo, L. M.; St, M.; Thomas, D. J.; Del Razo, L. M.; Stýblo, M. Speciation of Arsenic in Exfoliated Urinary Bladder Epithelial Cells from Individuals Exposed to Arsenic in Drinking Water. Environ. Health Perspect. 2008, 116 (12), 1656–1660. DOI: 10.1289/ehp.11503.
  • Oviedo, M. N.; Fiorentini, E. F.; Lemos, A. A.; Botella, M. B.; Wuilloud, R. G. Two-Step Separation and Determination of Inorganic as Species in Water, Soil and Sediment Samples by Implementing Two Ionic Liquids in Dispersive Liquid-Liquid Microextraction with Electrothermal Atomic Absorption Spectrometry Detection. Microchem. J. 2020, 159, 105386. DOI: 10.1016/j.microc.2020.105386.
  • Levin, R.; Villanueva, C. M.; Beene, D.; Cradock, A. L.; Donat-Vargas, C.; Lewis, J.; Martinez-Morata, I.; Minovi, D.; Nigra, A. E.; Olson, E. R., et al. US Drinking Water Quality: Exposure Risk Profiles for Seven Legacy and Emerging Contaminants. J. Exposure Sci. Environ. Epidemiol. 2023, 33, 1–20. DOI: 10.1038/s41370-023-00597-z. 1.
  • Escudero, L. B.; Martinis, E. M.; Olsina, R. A.; Wuilloud, R. G. Arsenic Speciation Analysis in Mono-Varietal Wines by On-Line Ionic Liquid-Based Dispersive Liquid–Liquid Microextraction. Food Chem. 2013, 138 (1), 484–490. DOI: 10.1016/j.foodchem.2012.10.054.
  • Smirnova, S. V.; Ilin, D. V.; Pletnev, I. V. Extraction and ICP-OES Determination of Heavy Metals Using Tetrabutylammonium Bromide Aqueous Biphasic System and Oleophilic Collector. Talanta. 2021, 221, 121485. DOI: 10.1016/j.talanta.2020.121485.
  • Yang, R.; Zheng, R.; Song, J.; Liu, H.; Yu, S.; Liu, J. Speciation of Selenium Nanoparticles and Other Selenium Species in Soil: Simple Extraction Followed by Membrane Separation and ICP-MS Determination. Anal. Chem. 2024, 96 (1), 471–479. DOI: 10.1021/acs.analchem.3c04577.
  • Jiang, S.; Li, Z.; Yang, X.; Li, M.; Wang, C.; Wang, Z.; Wu, Q. Sustainable and Green Synthesis of Porous Organic Polymer for Solid-Phase Extraction of Four Chlorophenols in Water and Honey. Food Chem. 2023, 404, 134652. DOI: 10.1016/j.foodchem.2022.134652.
  • Abbas, N.; Ayoub-Khan, S.; Alam-Khan, T. Statistically Optimised Sequestration of Mefenamic Acid from Polluted Water by Acacia Gum Phthalate/Pectin Hydrogel: A Novel Multifunctional Adsorbent Material Synthesised via Microwave-Assisted Process. Chem. Eng. J. 2023, 466, 143296. DOI: 10.1016/j.cej.2023.143296.
  • Cai, Z.; Li, Z.; Wang, Q.; Wang, Z.; Wu, Q.; Wang, C. Synthesis of Cyano and Ionic Dual-Functional Hypercrosslinked Porous Polymer for Effective Adsorption and Detection of Endocrine Disrupting Chemicals in Milk Matrix. J. Hazard. Mater. 2024, 462, 132746. DOI: 10.1016/j.jhazmat.2023.132746.
  • Wang, Q.; Zhang, S.; Li, Z.; Wang, Z.; Wang, C.; Alshehri, S. M.; Bando, Y.; Yamauchi, Y.; Wu, Q. Design of Hyper-Cross-Linked Polymers with Tunable Polarity for Effective Preconcentration of Aflatoxins in Grain. Chem. Eng. J. 2023, 453, 139544. DOI: 10.1016/j.cej.2022.139544.
  • Wang, C.; Wang, Q.; Yu, J.; Wang, X.; Wang, L.; Zhao, B.; Hao, L.; Liu, W.; Wang, Z.; Chen, H., et al. Converting Waste Expanded Polystyrene into Higher-Value-Added Hyper-Crosslinked Porous Polymer for Rapid and High-Efficient Adsorption of Aflatoxins. J. Cleaner Prod. 2023, 408, 137102. DOI: 10.1016/j.jclepro.2023.137102.
  • Xu, M.; Zhou, Z.; Hao, L.; Li, Z.; Li, J.; Wang, Q.; Liu, W.; Wang, C.; Wang, Z.; Wu, Q. Phenyl-Imidazole Based and Nitrogen Rich Hyper-Crosslinked Polymer for Sensitive Determination of Aflatoxins. Food Chem. 2023, 405, 134847. DOI: 10.1016/j.foodchem.2022.134847.
  • Grijalba, A. C.; Fiorentini, E. F.; Martinez, L. D.; Wuilloud, R. G. A Comparative Evaluation of Different Ionic Liquids for Arsenic Species Separation and Determination in Wine Varietals by Liquid Chromatography-Hydride Generation Atomic Fluorescence Spectrometry. J. Chromatogr. A. 2016 1462, 44–54. DOI: 10.1016/j.chroma.2016.07.069.
  • Grijalba, A. C.; Escudero, L. B.; Wuilloud, R. G. Capabilities of Several Phosphonium Ionic Liquids For Arsenic Species Determination in Water by Liquid–Liquid Microextraction and Electrothermal Atomic Absorption Spectrometry. Anal. Methods. 2015, 7 (2), 490–499. DOI: 10.1039/C4AY02324B.
  • Hosseini, M.; Dalali, N.; Mohammad-Nejad, S. Preconcentration of Trace Amounts of Copper(ii) on Octadecyl Silica Membrane Disks Modified with Indane-1,2,3-Trione-1,2 dioxime Prior to Its Determination by Flame Atomic Absorption Spectrometry. Int. J. Ind. Chem. 2012, 3 (1), 1–6. DOI: 10.1186/2228-5547-3-7.
  • Pochivalov, A.; Cherkashina, K.; Sudarkin, A.; Osmolowsky, M.; Osmolovskaya, O.; Krekhova, F.; Nugbienyo, L.; Bulatov, A. Liquid-Liquid Microextraction with Hydrophobic Deep Eutectic Solvent Followed by Magnetic Phase Separation for Preconcentration of Antibiotics. Talanta. 2023, 252, 123868. DOI: 10.1016/j.talanta.2022.123868.
  • Zhang, X.; Li, Z.; Wang, Y.; Zhang, S.; Zang, X.; Wang, C.; Wang, Z. Preparation of Black Phosphorus Nanosheets/Zeolitic Imidazolate Framework Nanocomposite for High-Performance Solid-Phase Microextraction of Organophosphorus Pesticides. J. Chromatogr. A. 2023, 1708, 464339. DOI: 10.1016/j.chroma.2023.464339.
  • Liu, H.; He, X.; Hu, X.; Pan, B.; Huang, Z.; Shen, J. Hollow Fiber-Solid Phase Microextraction of Fatty Acid Methyl Esters from Wastewater Coupled with Micro Sample Collector Assisted Injection Technique. J. Chromatogr. A. 2023, 1710, 464415. DOI: 10.1016/j.chroma.2023.464415.
  • Valverde-Som, L.; Herrero, A.; Reguera, C.; Sarabia, L. A.; Ortiz, M. C. A New Multi-Factor Multi-Objective Strategy Based on a Factorial Presence-Absence Design to Determine Polymer Additive Residues by Means of Head Space-Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry. Talanta. 2023, 253, 124021. DOI: 10.1016/j.talanta.2022.124021.
  • Haq, H. U.; Wali, A.; Safi, F.; Arain, M. B.; Kong, L.; Boczkaj, G. Natural Deep Eutectic Solvent Based Ultrasound Assisted Liquid-Liquid Microextraction Method for Methyl Violet Dye Determination in Contaminated River Water. Water Resour. Ind. 2023, 29, 100210. DOI: 10.1016/j.wri.2023.100210.
  • Abdi, K.; Ezoddin, M.; Pirooznia, N. Temperature-Controlled Liquid–Liquid Microextraction Using a Biocompatible Hydrophobic Deep Eutectic Solvent for Microextraction of Palladium from Catalytic Converter and Road Dust Samples Prior to ETAAS Determination. Microchem. J. 2020, 157, 104999. DOI: 10.1016/j.microc.2020.104999.
  • Ozalp, O.; Kaya, O.; Soylak, M. Cloud Point Microextraction of Sudan IV from Food and Cosmetics with Determination by Spectrophotometry. Anal. Lett. 2023, 56, 464–475. DOI: 10.1080/00032719.2022.2047998.
  • Mortada, W. I.; Azooz, E. A.; Hassanien, M. M. In-Syringe Low-Density Solvent Dispersive Liquid–Liquid Microextraction of Pd(ii) from Acidic Solutions Resulting from Hydrometallurgical Treatments and Quantification by ICP-OES. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 305, 123462. DOI: 10.1016/j.saa.2023.123462.
  • Jalbani, N.; Soylak, M. Ligandless Ultrasonic-Assisted and Ionic Liquid-Based Dispersive Liquid–Liquid Microextraction of Copper, Nickel and Lead in Different Food Samples. Food Chem. 2015, 167, 433–437. DOI: 10.1016/j.foodchem.2014.07.015.
  • Snigur, D.; Azooz, E. A.; Zhukovetska, O.; Guzenko, O.; Mortada, W. Low-Density Solvent-based Liquid-liquid Microextraction for Separation of Trace Concentrations of Different Analytes. TrAc Trends Anal. Chem. 2023, 167, 117260. DOI: 10.1016/j.trac.2023.117260.
  • Wardani, N. I.; Alahmad, W.; Tabani, H.; Varanusupakul, P. Emulsification Liquid-Liquid Microextraction Coupled with Droplet Digital Image Colorimetric Detection for Determination of Rhodamine B in Food and Beverage Samples. Adv. Sample Prep. 2023, 8, 100091. DOI: 10.1016/j.sampre.2023.100091.
  • Martín, A.; Santigosa, E.; Ramos-Payán, M. Green Strategies using Solvent-Free Biodegradable Membranes in Microfluidic Devices. Liquid Phase Microextraction and Electromembrane Extraction. Analytica Chimica. Acta. 2023, 1274, 341572. DOI: 10.1016/j.aca.2023.341572.
  • Yıldırım, S.; Sellitepe, H. E. Vortex Assisted Liquid-Liquid Microextraction Based on in situ Formation of a Natural Deep Eutectic Solvent by Microwave Irradiation for the Determination of Beta-Blockers in Water Samples. J. Chromatogr. A. 2021, 1642, 462007. DOI: 10.1016/j.chroma.2021.462007.
  • Jouyban, A.; Farajzadeh, M. A.; Khoubnasabjafari, M.; Jouyban-Gharamaleki, V.; Afshar Mogaddam, M. R. Derivatization and Deep Eutectic Solvent-Based Air-Assisted Liquid-Liquid Microextraction of Salbutamol in Exhaled Breath Condensate Samples Followed by Gas Chromatography-Mass Spectrometry. J. Pharm. Biomed. Anal. 2020, 191, 113572. DOI: 10.1016/j.jpba.2020.113572.
  • Hosseini, M. Simultaneous Concentration and Determination of Cadmium and Lead Ions Using in situ Solvent Formation Microextraction Method Based on Functionalized Ionic Liquid. 2021, J. Anal. Chem. 76 (10), 1189–1197. DOI: 10.1134/S1061934821100075. 2021.
  • Hosseini, M.; Naderi, A.; Rezaei, A.; Ghasemi, M. Application of an in-Situ Solvent Formation Microextraction Technique Using the Functionalized Ionic Liquids (FILs) As a Green Extractant for Cadmium Determination at Trace Levels in Real and Saline Samples. Anal. Bioanal. Chem. Res. 2022, 9, 3–44. DOI: 10.22036/ABCR.2021.275028.1603.
  • Hosseini, M.; Naderi, A.; Fazli, Z. Application of a Task-Specific Functionalized Ionic Liquid to Simultaneous Preconcentration of Cd and Pb As Toxic Pollutant in Real Water and Saline Samples by in-Situ Solvent Formation Microextraction Technique. Iran. J. Anal. Chem. 2020, 7, 1–11. DOI: 10.30473/ijac.2020.52928.1170.
  • Baghdadi, M.; Shemirani, F. In situ Solvent Formation Microextraction Based on Ionic Liquids: A Novel Sample Preparation Technique for Determination of Inorganic Species in Saline Solutions. Analytica. Chimica. Acta. 2009, 634 (2), 186–191. DOI: 10.1016/j.aca.2008.12.017.
  • Hosseini, M. Sensitive Determination Trace Amount of Cadmium(ii) As Toxic Pollutant in Real and Saline Samples After Concentration by in situ Solvent Formation Microextraction Technique and Using Eco-Friendly Materials. Iran. J. Anal. Chem. 2020, 7, 41–49. DOI: 10.30473/ijac.2020.50060.1161.
  • Shahbazi, M.; Tavakoli, A.; Hosseini, M.; Khanian, M. 2-Hydroxyethylammonium Bisulfate (2-HEAS) as a Brønsted Acidic Ionic Liquid Catalyst for Esterification. Ind. Eng. Chem. Res. 2022, 61 (23), 7874–7880. DOI: 10.1021/acs.iecr.2c01362.
  • Uzcan, F.; Jagirani, M. S.; Soylak, M. Assessment of Environmental Pollutants at Trace Levels using Ionic Liquids-based Liquid phase Microextraction. Turk. J. Chem. 2022, 46 (6), 1755–1775. DOI: 10.55730/1300-0527.3479.
  • Hosseini, M.; Dalali, N.; Mohammad Nejad, S. A New Mode of Homogeneous Liquid–Liquid Microextraction (HLLME) Based on Ionic Liquids: In Situ Solvent Formation Microextraction (ISFME) for Determination of Lead. J. Chin. Chem. Soc. 2012, 59 (7), 872–878. DOI: 10.1002/jccs.201100526.
  • Hosseini, M. Application of a New Synthesized Ionic Liquid Based on Pyrrolidinium for Microextraction of Trace Amounts of Cr(vi) Ions in Real Water and Wastewater Samples. J. Water Chem. Technol. 2023, 45 (3), 256–269. DOI: 10.3103/S1063455X23030049.
  • Llaver, M.; Fiorentini, E. F.; Quintas, P. Y.; Oviedo, M. N.; Arenas, M. B. B.; Wuilloud, R. G. Task-Specific Ionic Liquids: Applications in Sample Preparation and the Chemistry Behind Their Selectivity. Adv. Sample Prep. 2022, 1, 100004. DOI: 10.1016/j.sampre.2022.100004.
  • Rabieh, S.; Bagheri, M.; Planer-Friedrich, B. Speciation of Arsenite and Arsenate by Electrothermal AAS Following Ionic Liquid Dispersive Liquid-Liquid Microextraction. Microchim. Acta. 2013, 180, 415–421. DOI: 10.1007/s00604-013-0946-2.
  • Quinteros, A.; Farre, R.; Lagarda, M. J. Optimization of Iron Speciation (Soluble, Ferrous and Ferric) in Beans, Chickpeas and Lentils. Food Chem. 2001, 75, 365–370. DOI: 10.1016/S0308-8146(01)00214-X.
  • Hosseini, M.; Dalali, N. Use of Ionic Liquids for Trace Analysis of Methyl Tert-Butyl Ether in Water Samples using In Situ Solvent Formation Microextraction Technique and Determination by GC/FID. Sep. Sci. Technol. 2014, 49, 1889–1894. DOI: 10.1080/01496395.2014.894524.
  • Abbasi-Daronjoughi, F.; Tamaddon, A.; Ahmad Panahi, H. In situ Solvent Formation Microextraction Based on a New Ionic Liquid for Green Preconcentration of Trace Amount of Cu (II) Ions in Water Samples. Sep. Sci. Technol. 2018, 53 (15), 2401–2408. DOI: 10.1080/01496395.2018.1448416.
  • Hosseini, M.; Rezaei, A.; Khoshfetrat, S. M. Mechanism Evaluation and Extraction Ability of Lithium Ion by in-Situ Solvent Formation Microextraction Method (ISFME) Using Ionic Liquids in Magnesium-Rich Real Aqueous Media. Chem. Res. 2022, 4, 119–129. DOI: 10.22036/CR.2022.285830.1143.
  • Hosseini, M.; Dalali, N.; Moghaddasifar, S. Ionic Liquid for Homogeneous Liquid-liquid Microextraction Separation/preconcentration and Determination of Cobalt in Saline Samples. J. Anal. Chem. 2014, 69, 1141–1146. DOI: 10.1134/S1061934814120090. 12
  • Rahimi-Nasrabadi, M.; Zahedi, M. M.; Pourmortazavi, S. M.; Heydari, R.; Rai, H.; Jazayeri, J.; Javidan, A. Simultaneous Determination of Carbazole-Based Explosives in Environmental Waters by Dispersive Liquid—Liquid Microextraction Coupled to HPLC With UV-Vis Detection. Microchim. Acta. 2012, 177, 145–152. DOI: 10.1007/s00604-012-0762-0.
  • Nario, N. A.; Vidal, E.; Grünhut, M.; Domini, C. E. 3D-Printed Device for the Kinetic Determination of As(iii) in Groundwater Samples by Digital Movie Analysis. Talanta. 2023, 261, 124625. DOI: 10.1016/j.talanta.2023.124625.
  • Saçmacı, S.; Saçmacı, M. Determination of Arsenic(iii) and Total Arsenic at Trace Levels in Baby Food Samples via a New Functionalized Magnetic Graphane Oxide Nanocomposite. Biol. Trace Elem. Res. 2021, 199 (12), 4856–4866. DOI: 10.1007/s12011-021-02754-7.
  • Uluozlu, O. D.; Tuzen, M.; Mendil, D.; Soylak, M. Determination of As(iii) and As(v) Species in Some Natural Water and Food Samples by Solid-Phase Extraction on Streptococcus Pyogenes Immobilized on Sepabeads SP 70 and Hydride Generation Atomic Absorption Spectrometry. Food Chem. Toxic. 2010, 48, 1393–1398. DOI: 10.1016/j.fct.2010.03.007.
  • Zounr, R. A.; Tuzen, M.; Khuhawar, M. Y. Ultrasound Assisted Deep Eutectic Solvent Based on Dispersive Liquid-Liquid Microextraction of Arsenic Speciation in Water and Environmental Samples by Electrothermal Atomic Absorption Spectrometry. J. Mol. Liq. 2017, 242, 441–446. DOI: 10.1016/j.molliq.2017.07.053.
  • Rivas, R. E.; Lopez-García, I.; Hernández-Córdoba, M. Speciation of Very Low Amounts of Arsenic and Antimony in Waters Using Dispersive Liquid–Liquid Microextraction and Electrothermal Atomic Absorption Spectrometry. Spectrochim. Acta Part B. 2009, 64 (4), 329–333. DOI: 10.1016/j.sab.2009.03.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.