66
Views
0
CrossRef citations to date
0
Altmetric
Filtration

A novel approach using a stacked layer filtration process to desalination from cotton fabric and conductive graphene sheets

&
Pages 821-836 | Received 28 Dec 2023, Accepted 01 Apr 2024, Published online: 20 Apr 2024

References

  • Tedros Adhanom Ghebreyesus, D.;, and Lake, A.Progress on drinking water, sanitation and hygiene: 2017 update and SDG baselines. JMP website. www.unwater.org/publications.
  • Wada, Y.; van Beek, L. P. H.; Wanders, N.; Bierkens, M. F. P. Human Water Consumption Intensifies Hydrological Drought Worldwide. Environ. Res. Lett. Sep 2013, 8(3), 034036. DOI: 10.1088/1748-9326/8/3/034036.
  • Flörke, M.; Schneider, C.; McDonald, R. I. Water Competition between Cities and Agriculture Driven by Climate Change and Urban Growth. Nat. Sustain. Jan 2018, 1(1), 51–58. doi:10.1038/s41893-017-0006-8.
  • Babel, M. S.;, and Wahid S. M. Freshwater Under Threat South Asia: Vulnerability Assessment of Freshwater Resources to Environmental Change: Ganges- Brahmaputra-Meghna River Basin; Helmand River Basin, Indus River Basin UNEP, 2009.
  • Haddeland, I.; Heinke, J.; Biemans, H.; Eisner, S.; Flörke, M.; Hanasaki, N.; Konzmann, M.; Ludwig, F.; Masaki, Y.; Schewe, J., et al. Global Water Resources Affected by Human Interventions and Climate Change. Proc. Natl. Acad. Sci. Mar 2014; 111 (9): 3251–3256. DOI: 10.1073/pnas.1222475110
  • Padrón, R. S.; Gudmundsson, L.; Decharme, B.; Ducharne, A.; Lawrence, D. M.; Mao, J.; Peano, D.; Krinner, G.; Kim, H.; Seneviratne, S. I., et al. Observed Changes in Dry-Season Water Availability Attributed to Human-Induced Climate Change. Nat. Geosci. Jul 2020; 13 (7): 477–481. DOI: 10.1038/s41561-020-0594-1
  • Yuan, X.; Wang, L.; Wu, P.; Ji, P.; Sheffield, J.; Zhang, M. Anthropogenic Shift Towards Higher Risk of Flash Drought Over China. Nat. Commun. Oct 2019, 10(1), 4661. DOI: 10.1038/s41467-019-12692-7.
  • Diffenbaugh, N. S.; Swain, D. L.; Touma, D.; Lubchenco, J. Anthropogenic Warming has Increased Drought Risk in California. Proc. Natl. Acad. Sci. U. S. A. 2015, 112(13), 3931–3936. DOI: 10.1073/pnas.1422385112.
  • Konapala, G.; Mishra, A. K.; Wada, Y.; Mann, M. E. Climate Change will Affect Global Water Availability Through Compounding Changes in Seasonal Precipitation and Evaporation. Nat. Commun. 2020, 11(1), 1–10. DOI: 10.1038/s41467-020-16757-w.
  • Eke, J.; Yusuf, A.; Giwa, A.; Sodiq, A. The Global Status of Desalination: An Assessment of Current Desalination Technologies, Plants and Capacity. Desalination. 2020, 495(March), 114633. DOI: 10.1016/j.desal.2020.114633.
  • National Academy of Engineering, Frontiers of Engineering; National Academies Press: US, 2017. DOI: 10.17226/23659.
  • Angelakis, A. N.; Valipour, M.; Choo, K.-H.; Ahmed, A. T.; Baba, A.; Kumar, R.; Toor, G. S.; Wang, Z. Desalination: From Ancient to Present and Future. Water (Switzerland). 2021, 13(16), 2222. DOI: 10.3390/w13162222.
  • Baker, R. W. Membrane Technology and Applications. 2003. DOI: 10.1016/B978-185617389-6/50003-5.
  • Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater. Mar 2007, 6(3), 183–191. doi:10.1038/nmat1849.
  • Zhu, Y.; Murali, S; Cai, W; Li, X; Suk, J. W; Potts, J. R & Ruoff, R. S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010, 22(35), 3906–3924.
  • Novoselov, K. S., et al. Electric Field Effect in Atomically Thin Carbon Films. Science. Oct 2004, 306(5696), 666–669. DOI: 10.1126/science.1102896.
  • Balandin, A. A. Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; & Lau, C. N Superior Thermal Conductivity of Single-Layer Graphene. Nano. Lett. 2008, 8(3), 902–907.
  • Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A Roadmap for Graphene. Nature. 2012, 490(7419), 192–200. DOI: 10.1038/nature11458.
  • Aristov, V. Y.; Urbanik, G.; Kummer, K.; Vyalikh, D. V.; Molodtsova, O. V.; Preobrajenski, A. B.; Zakharov, A. A.; Hess, C.; Hänke, T.; Büchner, B., et al. Graphene Synthesis on Cubic SiC/Si Wafers. Perspectives for Mass Production of Graphene-Based Electronic Devices. Nano. Lett. 2010, 10(3), 992–995.
  • Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I., et al. Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes. Nat. Nanotechnol. 2010, 5(8), 574–578.
  • Garaj, S.; Hubbard, W.; Golovchenko, J. A. Graphene Synthesis by Ion Implantation. Appl. Phys. Lett. 2010, 97(18). DOI: 10.1063/1.3507287.
  • Lotya, M.; King, P. J.; Khan, U.; De, S.; Coleman, J. N. High-Concentration, Surfactant-Stabilized Graphene Dispersions. ACS Nano. 2010, 4(6), 3155–3162. DOI: 10.1021/nn1005304.
  • Randviir, E. P.; Brownson, D. A. C.; Banks, C. E. A Decade of Graphene Research: Production, Applications and Outlook. Mater. Today. 2014, 17(9), 426–432. DOI: 10.1016/j.mattod.2014.06.001.
  • Liao, L.; Lin, Y.-C.; Bao, M.; Cheng, R.; Bai, J.; Liu, Y.; Qu, Y.; Wang, K. L.; Huang, Y.; Duan, X., et al. High-Speed Graphene Transistors with a Self-Aligned Nanowire Gate. Nature. Sep 2010; 467 (7313): 305–308. DOI: 10.1038/nature09405
  • Zhuang, X. D.; Chen, Y.; Liu, G.; Li, P.-P.; Zhu, C.-X.; Kang, E.-T.; Noeh, K.-G.; Zhang, B.; Zhu, J.-H.; Li, Y.-X., et al. Conjugated-Polymer-Functionalized Graphene Oxide: Synthesis and Nonvolatile Rewritable Memory Effect. Adv. Mater. 2010, 22(15), 1731–1735.
  • Wu, J., et al. Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes. ACS. Nano. Jan 2010; 4 (1): 43–48. DOI: 10.1021/nn900728d
  • Kim, H.; Park, K. Y.; Hong, J.; Kang, K. All-Graphene-Battery: Bridging the Gap between Supercapacitors and Lithium Ion Batteries. Sci. Rep. 2014, 4(5278), 1–8. DOI: 10.1038/srep05278.
  • Yin, Z., et al. Graphene-Based Materials for Solar Cell Applications. Adv. Energy Mater. 2014, 4(1), 1–19.
  • Chung, M. G.; Kim, D. H.; Lee, H. M.; Kim, T.; Choi, J. H.; Seo, D. K.; Yoo, J.-B.; Hong, S.-H.; Kang, T. J.; Kim, Y. H. Highly Sensitive NO2 Gas Sensor based on Ozone Treated Graphene. Sens. Actuators B Chem. 2012, 166–167(2), 172–176. DOI: 10.1016/j.snb.2012.02.036.
  • Ang, E. Y. M.; Toh, W.; Yeo, J.; Lin, R.; Liu, Z.; Geethalakshmi, K. R.; Ng, T. Y. A Review on Low Dimensional Carbon Desalination and Gas Separation Membrane Designs. J. Memb. Sci. 2020, 598(January 2020). DOI: 10.1016/j.memsci.2019.117785.
  • Dharupaneedi, S. P.; Anjanapura, R. V.; Han, J. M.; Aminabhavi, T. M. Functionalized Graphene Sheets Embedded in Chitosan Nanocomposite Membranes for Ethanol and Isopropanol Dehydration via Pervaporation. Ind. Eng. Chem. Res. 2014, 53(37), 14474–14484. DOI: 10.1021/ie502751h.
  • Suhas, D. P.; Aminabhavi, T. M.; Jeong, H. M.; Raghu, A. V. Hydrogen Peroxide Treated Graphene as an Effective Nanosheet Filler for Separation Application. R.S.C. Adv. 2015, 5(122), 100984–100995. DOI: 10.1039/C5RA19918B.
  • Suhas, D. P.; Raghu, A. V.; Jeong, H. M.; Aminabhavi, T. M. Graphene-Loaded Sodium Alginate Nanocomposite Membranes with Enhanced Isopropanol Dehydration Performance via a Pervaporation Technique. R.S.C. Adv. 2013, 3(38), 17120. DOI: 10.1039/c3ra42062k.
  • Cohen-Tanugi, D.; Grossman, J. C. Water Desalination Across Nanoporous Graphene. Nano Lett. 2012, 12(7), 3602–3608. DOI: 10.1021/nl3012853.
  • Surwade, S. P.; Smirnov, Sergei N.; Vlassiouk, Ivan V.; Unocic, Raymond R. Water Desalination Using Nanoporous Single-Layer Graphene. Nat. Nanotechnol. 2015, 10(5), 459–464. DOI: 10.1038/NNANO.2015.37.
  • Ang, E. Y. M.; Ng, T. Y.; Yeo, J.; Liu, Z.; Geethalakshmi, K. R. Free-Standing Graphene Slit Membrane for Enhanced Desalination. Carbon. 2016, 110, 350–355. DOI: 10.1016/j.carbon.2016.09.043.
  • Ang, E. Y. M.; Ng, T. Y.; Yeo, J.; Lin, R.; Liu, Z.; Geethalakshmi, K. R. Investigations on Different Two-Dimensional Materials as Slit Membranes for Enhanced Desalination. J. Memb. Sci. 2020, 598, 117653. DOI: 10.1016/j.memsci.2019.117653.
  • Soleimani, E.; Foroutan, M. Multilayer Graphene with a Rippled Structure for Water Desalination. J. Mol. Liq. 2018, 265, 208–215. DOI: 10.1016/j.molliq.2018.04.155.
  • Seo, D. H.; Pineda, S.; Woo, Y. C.; Xie, M.; Murdock, A. T.; Ang, E. Y. M.; Jiao, Y.; Park, M. J.; Lim, S. I.; Lawn, M., et al. Anti-Fouling Graphene-Based Membranes for Effective Water Desalination. Nat. Commun. 2018, 9(1), 1–12.
  • Nair, R. R.; Wu, H. A.; Jayaram, P. N.; Grigorieva, I. V.; Geim, A. K. Unimpeded Permeation of Water Through Helium-Leak-Tight Graphene-Based Membranes. Science (80). 2012, 335(6067), 442–444. DOI: 10.1126/science.1211694.
  • Kim H. W.; Yoon, H. W.; Yoon, S. M.; Min Yoo, B.; Ahn, B. K.; Park, H. B.; Choi, J. Y. Selective Gas Transport through Few-Layered Graphene and Graphene Oxide Membranes.Science.2013, 342(6154): 91–95. DOI: 10.1126/science.1236098.
  • Li H.; Song, Z.; Zhang, X.; Yi, H.; Li, S.; Mao, Y.; Yu, M. Ultrathin, Molecular-Sieving Graphene Oxide Membranes for Selective Hydrogen Separation. Science (80). 2013, 342(6154): 95–98. DOI: 10.1126/science.1236686.
  • Hu, M.; Mi, B. Enabling Graphene Oxide Nanosheets as Water Separation Membranes. Environ. Sci. Technol. 2013, 47(8), 3715–3723. DOI: 10.1021/es400571g.
  • Gao, W.; Wu, G.; Janicke, M. T.; Cullen, D. A.; Mukundan, R.; Baldwin, J. K.; Brosha, E. L.; Galande, C.; Ajayan, P. M.; More, K. L., et al. Ozonated Graphene Oxide Film as a Proton-Exchange Membrane. Angew. Chem. Int. Ed. 2014, 53(14), 3588–3593.
  • Musico, Y. L. F.; Santos, C. M.; Dalida, M. L. P.; Rodrigues, D. F. Surface Modification of Membrane Filters Using Graphene and Graphene Oxide-Based Nanomaterials for Bacterial Inactivation and Removal. ACS Sustain. Chem. Eng. 2014, 2(7), 1559–1565. DOI: 10.1021/sc500044p.
  • Nicolaï, A.; Sumpter, B. G.; Meunier, V. Tunable Water Desalination Across Graphene Oxide Framework Membranes. Phys. Chem. Chem. Phys. 2014, 16(18), 8646–8654. DOI: 10.1039/c4cp01051e.
  • Lai, G. S.; Lau, W. J.; Goh, P. S.; Ismail, A. F.; Yusof, N.; Tan, Y. H. Graphene Oxide Incorporated Thin Film Nanocomposite Nanofiltration Membrane for Enhanced Salt Removal Performance. Desalination. 2016, 387, 14–24. DOI: 10.1016/j.desal.2016.03.007.
  • Ni, G.; Zandavi, S. H.; Javid, S. M.; Boriskina, S. V.; Cooper, T. A.; Chen, G. A Salt-Rejecting Floating Solar Still for Low-Cost Desalination. Energy Environ. Sci. 2018, 11(6), 1510–1519. DOI: 10.1039/c8ee00220g.
  • Fang, Q.; Li, T.; Lin, H.; Jiang, R.; Liu, F. Highly Efficient Solar Steam Generation from Activated Carbon Fiber Cloth with Matching Water Supply and Durable Fouling Resistance. ACS Appl. Energy Mater. 2019, 2(6), 4354–4361. DOI: 10.1021/acsaem.9b00562.
  • He, S.; Chen, C.; Kuang, Y.; Mi, R.; Liu, Y.; Pei, Y.; Kong, W.; Gan, W.; Xie, H.; Hitz, E., et al. Nature-Inspired Salt Resistant Bimodal Porous Solar Evaporator for Efficient and Stable Water Desalination. Energy Environ. Sci. 2019, 12(5), 1558–1567.
  • Liu, Y., et al. A High-Absorption and Self-Driven Salt-Resistant Black Gold Nanoparticle-Deposited Sponge for Highly Efficient, Salt-Free, and Long-Term Durable Solar Desalination. J. Mater. Chem. A. 2019, 7(6), 2581–2588.
  • Wang, C.; Wang, J.; Li, Z.; Xu, K.; Lei, T.; Wang, W. Superhydrophilic Porous Carbon Foam as a Self-Desalting Monolithic Solar Steam Generation Device with High Energy Efficiency. J. Mater. Chem. A. 2020, 8(19), 9528–9535. DOI: 10.1039/d0ta01439g.
  • Zhu, M.; Li, Y.; Chen, G.; Jiang, F.; Yang, Z.; Luo, X.; Wang, Y.; Lacey, S. D.; Dai, J.; Wang, C., et al. Tree-Inspired Design for High-Efficiency Water Extraction. Adv. Mater. 2017, 29(44), 1–9.
  • Chen, J.; Yin, J. L.; Li, B.; Ye, Z.; Liu, D.; Ding, D.; Qian, F.; Myung, N. V.; Zhang, Q.; Yin, Y., et al. Janus Evaporators with Self-Recovering Hydrophobicity for Salt-Rejecting Interfacial Solar Desalination. ACS Nano. 2020, 14(12), 17419–17427.
  • Zhang, Y; Zhang, H.; Ting , X.; Hao , Q.; Justin Koh, J.; Dilip Krishna, N.; Wang, J.; Swee Ching, T. Manipulating Unidirectional Fluid Transportation to Drive Sustainable Solar Water Extraction and Brine-Drenching Induced Energy Generation. Energy Environ. Sci. 2020, 13(12), 4891–4902. DOI: 10.1039/d0ee01572e.
  • Niu, R. Bio‐Inspired Sandwich‐Structured All‐Day‐Round Solar Evaporator for Synergistic Clean Water and Electricity Generation. Adv. Energy Mater. Dec 2023, 13, (45). DOI:10.1002/aenm.202302451
  • Bai, H.; Liu, N; Hao, L; He, P; Ma, C; Niu, R; & Tang, T. Self‐Floating Efficient Solar Steam Generators Constructed Using Super‐Hydrophilic N,O Dual‐Doped Carbon Foams from Waste Polyester. Energy Environ. Mater. Oct 2022; 5 (4): 1204–1213. DOI: 10.1002/eem2.12235
  • Hao, L.; Liu, N.; Bai, H.; He, P.; Niu, R.; Gong, J. High-Performance Solar-Driven Interfacial Evaporation Through Molecular Design of Antibacterial, Biomass-Derived Hydrogels. J. Colloid. Interface. Sci. Feb 2022, 608(1), 840–852. doi:10.1016/j.jcis.2021.10.035.
  • Lake Products Company LLC, ASTM D1141-98 Technical Bulletin, 2021.
  • Ma, Y.; Wang, Z.; Wang, D. A Formula for Hydrostatic Pressure Calculation in High-Pressure Railway Tunnels. Alexandria Eng. J. 2023, 85(July), 236–244. DOI: 10.1016/j.aej.2023.11.039.
  • Lyman, J. Redefinition of Salinity and Chlorinity. Limnol. Oceanogr. Nov 1969, 14(6), 928–929. doi:10.4319/lo.1969.14.6.0928.
  • Kang, J. S.; Sung, S. C.; Lee, J. J.; Kim, H. S. Application of Ceramic Membrane for Seawater Desalination Pretreatment. Desalin. Water. Treat. 2016, 57(55), 26700–26705. DOI: 10.1080/19443994.2016.1189702.
  • Kester, D. R.; Duedall, I. W.; Connors, D. N.; Pytkowicz, R. M. Preparation of Artificial Seawater. Limnol. Oceanogr. 1967, 12(1), 176–179. DOI: 10.4319/lo.1967.12.1.0176.
  • Saravanan, A.; Murugan, M. Performance Evaluation of Square Pyramid Solar Still with Various Vertical Wick Materials – an Experimental Approach. Therm. Sci. Eng. Prog. 2020, 19(March), 100581. DOI: 10.1016/j.tsep.2020.100581.
  • Laxman, K.; Myint, M. T. Z; Al Abri, M; Sathe, P; Dobretsov, S; & Dutta, J. Desalination and Disinfection of Inland Brackish Ground Water in a Capacitive Deionization Cell Using Nanoporous Activated Carbon Cloth Electrodes. Desalination. 2015, 362, 126–132. DOI: 10.1016/j.desal.2015.02.010.
  • Li, F.; Chen, Z; Dong, H; Shi, C; Wang, B; Yang, L; & Ling, Z. Promotion Effect of Graphite on Cyclopentane Hydrate based Desalination, 2020. Desalination. 2018, 445(March), 197–203.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.