74
Views
0
CrossRef citations to date
0
Altmetric
Adsorption

Toward rational design of Zr-MOF for CO2/CH4 mixture separation

, , , , &
Pages 940-953 | Received 09 Jun 2023, Accepted 03 May 2024, Published online: 17 May 2024

References

  • Verdolini, E.; Vona, F.; Popp, D. Bridging the Gap: Do Fast-Reacting Fossil Technologies Facilitate Renewable Energy Diffusion? Energy Policy. 2018, 116, 242–256. DOI: 10.1016/j.enpol.2018.01.058.
  • Mikkelsen, M.; Jørgensen, M.; Krebs, F. C. The Teraton Challenge. A Review of Fixation and Transformation of Carbon Dioxide. Energy & Environ. 2010, 3(1), 43–81. DOI: 10.1039/B912904A.
  • Figueroa, J. D.; Fout, T.; Plasynski, S.; McIlvried, H.; Srivastava, R. D. Advances in CO2 Capture Technology–The US Department of Energy’s Carbon Sequestration Program. Int. J. Greenhouse Gas Con. 2008, 2(1), 9–20. DOI: 10.1016/S1750-5836(07)00094-1.
  • Taheri Najafabadi, A. CO2 Chemical Conversion to Useful Products: An Engineering Insight to the Latest Advances Toward Sustainability. Int. J. Energy Res. 2013, 37(6), 485–499. DOI: 10.1002/er.3021.
  • Nguyen, T. V.; Wu, J. C. Photoreduction of CO2 to Fuels Under Sunlight Using Optical-Fiber Reactor. Sol. Energy Mater. And Sol. Cells. 2008, 92(8), 864–872. DOI: 10.1016/j.solmat.2008.02.010.
  • Wang, Y.; Zhao, L.; Otto, A.; Robinius, M.; Stolten, D. A Review of Post-Combustion CO2 Capture Technologies from Coal- Fired Power Plants. Energy Procedia 2017; 114: 650–665. 13th International Conference on Greenhouse Gas Control Technologies, GHGT-13, 14–18 November 2016, Lausanne, Switzerland DOI: 10.1016/j.egypro.2017.03.1209.
  • Li, D.; Zhang, L.; Yang, J.; Lu, M.; Ding, J.; Liu, M. Effect of H2S Concentration on the Corrosion Behavior of Pipeline Steel Under the Coexistence of H2S and CO2. Int. J. Miner. Metall. Mater. 2014, 21(4), 388–394. DOI: 10.1007/s12613-014-0920-y.
  • Basu, S.; Khan, A. L.; Cano-Odena, A.; Liu, C.; Vankelecom, I. F. J. Membrane-Based Technologies for Biogas Separations. Chem. Soc. Rev. 2010, 39(2), 750–768. DOI: 10.1039/B817050A.
  • Zhang, Y.; Sunarso, J.; Liu, S.; Wang, R. Current Status and Development of Membranes for CO2/CH4 Separation: A Review. Int. J. Greenhouse Gas Con. 2013, 12, 84–107. DOI: 10.1016/j.ijggc.2012.10.009.
  • Li, S.; Wang, Z.; Yu, X.; Wang, J.; Wang, S. High-Performance Membranes with Multi-Permselectivity for CO2 Separation. Adv.Mate. 2012, 24(24), 3196–3200. DOI: 10.1002/adma.201200638.
  • Bae, Y. S.; Snurr, R. Q. Development and Evaluation of Porous Materials for Carbon Dioxide Separation and Capture. Angew. Chem. Int. Ed. 2011, 50(49), 11586–11596. DOI: 10.1002/anie.201101891.
  • Lu, X.; Xiao, H. A Review on CO2 Sorbents. Rev. Adv. Mater. Sci. 2015, 42(1), 50–57.
  • Kim, J.; Abouelnasr, M.; Lin, L. C.; Smit, B. Large-Scale Screening of Zeolite Structures for CO2 Membrane Separations. J. Am. Chem. Soc. 2013, 135(20), 7545–7552. PMID: 23654217. DOI: 10.1021/ja400267g.
  • García, E. J.; Pérez-Pellitero, J.; Pirngruber, G. D.; Jallut, C.; Palomino, M.; Rey, F.; Valencia, S. Tuning the Adsorption Properties of Zeolites As Adsorbents for CO2 Separation: Best Compromise Between the Working Capacity and Selectivity. Ind. Eng. Chem. Res. 2014, 53(23), 9860–9874. DOI: 10.1021/ie500207s.
  • Kosinov, N.; Auffret, C.; Gücüyener, C.; Szyja, B. M.; Gascon, J.; Kapteijn, F.; Hensen, E. J. M. High Flux High-Silica SSZ-13 Membrane for CO2 Separation. J. Mater. Chem. A. 2014, 2(32), 13083–13092. DOI: 10.1039/C4TA02744B.
  • Zhang, X. Q.; Li, W. C.; Lu, A. H. Designed Porous Carbon Materials for Efficient CO2 Adsorption and Separation. New Carbon Mater. 2015, 30(6), 481–501. DOI: 10.1016/S1872-5805(15)60203-7.
  • Casco, M. E.; Martínez-Escandell, M.; Silvestre-Albero, J.; Rodríguez-Reinoso, F. Effect of the Porous Structure in Carbon Materials for CO2 Capture at Atmospheric and High-Pressure. Carbon. 2014, 67, 230–235. DOI: 10.1016/j.carbon.2013.09.086.
  • Estevez, L.; Barpaga, D.; Zheng, J.; Sabale, S.; Patel, R. L.; Zhang, J.-G.; McGrail, B. P.; Motkuri, R. K. Hierarchically Porous Carbon Materials for CO2 Capture: The Role of Pore Structure. Ind. Eng. Chem. Res. 2018, 57(4), 1262–1268. DOI: 10.1021/acs.iecr.7b03879.
  • James, S. L. Metal-Organic Frameworks. Chem. Soc. Rev. 2003, 32(5), 276–288. DOI: 10.1039/B200393G.
  • Moghadam, P. Z.; Li, A.; Wiggin, S. B.; Tao, A.; Maloney, A. G. P.; Wood, P. A.; Ward, S. C.; Fairen-Jimenez, D. Development of a Cambridge Structural Database Subset: A Collection of Metal–Organic Frameworks for Past, Present, and Future. Chem. Mater. 2017, 29(7), 2618–2625. DOI: 10.1021/acs.chemmater.7b00441.
  • Bai, Y.; Dou, Y.; Xie, L. H.; Rutledge, W.; Li, J. R.; Zhou, H. C. Zr-Based Metal–Organic Frameworks: Design, Synthesis, Structure, and Applications. Chem. Soc. Rev. 2016, 45(8), 2327–2367. DOI: 10.1039/C5CS00837A.
  • Yang, Q.; Wiersum, A. D.; Jobic, H.; Guillerm, V.; Serre, C.; Llewellyn, P. L.; Maurin, G. Understanding the Thermodynamic and Kinetic Behavior of the CO2/CH4 Gas Mixture within the Porous Zirconium Terephthalate UiO-66(Zr): A Joint Experimental and Modeling Approach. J. Phys. Chem. C. 2011, 115(28), 13768–13774. DOI: 10.1021/jp202633t.
  • Abid, H. R.; Pham, G. H.; Ang, H. M.; Tade, M. O.; Wang, S. Adsorption of CH4 and CO2 on Zr-Metal Organic Frameworks. J. Coll. Interf. Sci. 2012, 366(1), 120–124. DOI: 10.1016/j.jcis.2011.09.060.
  • Sun, D.; Fu, Y.; Liu, W.; Ye, L.; Wang, D.; Yang, L.; Fu, X.; Li, Z. Studies on Photocatalytic CO2 Reduction Over NH2-Uio-66(Zr) and Its Derivatives: Towards a Better Understanding of Photocatalysis on Metal–Organic Frameworks. Chem. Eur. J. 2013, 19(42), 14279–14285. DOI: 10.1002/chem.201301728.
  • Jasuja, H.; Zang, J.; Sholl, D. S.; Walton, K. S. Rational Tuning of Water Vapor and CO2 Adsorption in Highly Stable Zr-Based MOFs. J. Phys. Chem. C. 2012, 116(44), 23526–23532. DOI: 10.1021/jp308657x.
  • Hu, Z.; Khurana, M.; Seah, Y. H.; Zhang, M.; Guo, Z.; Zhao, D. Ionized Zr-MOFs for Highly Efficient Post-Combustion CO2 Capture. Chem. Eng. Sci. 2015, 124, 61–69. Metal-Organic Frameworks for Emerging Chemical Technologies. DOI: 10.1016/j.ces.2014.09.032.
  • Kumar, K. V.; Charalambopoulou, G.; Kainourgiakis, M.; Stubos, A.; Steriotis, T. Insights on the Physical Adsorption of Hydrogen and Methane in UiO Series of MOFs Using Molecular Simulations. Comput. Theor. Chem. 2015, 1061, 36–45. DOI: 10.1016/j.comptc.2015.03.007.
  • Wang, H.; Dong, X.; Lin, J.; Teat, S. J.; Jensen, S.; Cure, J.; Alexandrov, E. V.; Xia, Q.; Tan, K.; Wang, Q., et al. Topologically Guided Tuning of Zr-MOF Pore Structures for Highly Selective Separation of C6 Alkane Isomers. Nat. Commun. 2018, 9(1). DOI: 10.1038/s41467-018-04152-5.
  • Martin, R. L.; Smit, B.; Haranczyk, M. Addressing Challenges of Identifying Geometrically Diverse Sets of Crystalline Porous Materials. J. Chem. Inf. Model. 2012, 52(2), 308–318. PMID: 22098053. DOI: 10.1021/ci200386x.
  • Willems, T. F.; Rycroft, C. H.; Kazi, M.; Meza, J. C.; Haranczyk, M. Algorithms and Tools for High-Throughput Geometry-Based Analysis of Crystalline Porous Materials. Microporous Mesoporous Mater. 2012, 149(1), 134–141. DOI: 10.1016/j.micromeso.2011.08.020.
  • Dubbeldam, D.; Calero, S.; Ellis, D. E.; Snurr, R. Q. RASPA: Molecular Simulation Software for Adsorption and Diffusion in Flexible Nanoporous Materials. Mol. Simul. 2015, 42(2), 81–101. DOI: 10.1080/08927022.2015.1010082.
  • Prakash, M.; Jobic, H.; Ramsahye, N. A.; Nouar, F.; Damasceno Borges, D.; Serre, C.; Maurin, G. Diffusion of H2, CO2, and Their Mixtures in the Porous Zirconium Based Metal–Organic Framework MIL-140A(zr): Combination of Quasi-Elastic Neutron Scattering Measurements and Molecular Dynamics Simulations. J. Phys. Chem. C. 2015, 119(42), 23978–23989. DOI: 10.1021/acs.jpcc.5b07253.
  • Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. UFF, a Full Periodic Table Force Field for Molecular Mechan- Ics and Molecular Dynamics Simulations. J. Am. Chem. Soc. 1992, 114(25), 10024–10035. DOI: 10.1021/ja00051a040.
  • Mayo, S. L.; Olafson, B. D.; Goddard, W. A. DREIDING: A Generic Force Field for Molecular Simulations. J. Phys. Chem. 1990, 94(26), 8897–8909. DOI: 10.1021/j100389a010.
  • Vieira Soares, C.; Damasceno Borges, D.; Wiersum, A.; Martineau, C.; Nouar, F.; Llewellyn, P. L.; Ramsahye, N. A.; Serre, C.; Maurin, G.; Leitão, A. A., et al. Adsorption of Small Molecules in the Porous Zirconium- Based Metal Organic Framework MIL-140A (Zr): A Joint Computational-Experimental Approach. J. Phys. Chem. C. 2016, 120(13), 7192–7200.
  • Mulliken, R. S. Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I. J. Chem. Phys. 1955, 23(10), 1833–1840. DOI: 10.1063/1.1740588.
  • Haldoupis, E.; Nair, S.; Sholl, D. S. Finding MOFs for Highly Selective CO2/N2 Adsorption Using Materials Screening Based on Efficient Assignment of Atomic Point Charges. J. Am. Chem. Soc. 2012, 134(9), 4313–4323. PMID: 22329402doi. DOI: 10.1021/ja2108239.
  • Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130(42), 13850–13851. PMID: 18817383doi. DOI: 10.1021/ja8057953.
  • Nik, O. G.; Chen, X. Y.; Kaliaguine, S. Functionalized Metal Organic Framework-Polyimide Mixed Matrix Membranes for CO2/CH4 Separation. J. Membr. Sci. 2012, 413-414, 48–61. DOI: 10.1016/j.memsci.2012.04.003.
  • Valenzano, L.; Civalleri, B.; Chavan, S.; Bordiga, S.; Nilsen, M. H.; Jakobsen, S.; Lillerud, K. P.; Lamberti, C. Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Syn- Ergic Combination of Experiment and Theory. Chem. Mater. 2011, 23(7), 1700–1718. DOI: 10.1021/cm1022882.
  • Øien, S.; Wragg, D.; Reinsch, H.; Svelle, S.; Bordiga, S.; Lamberti, C.; Lillerud, K. P. Detailed Structure Analysis of Atomic Positions and Defects in Zirconium Metal–Organic Frameworks. Cryst. Growth Des. 2014, 14(11), 5370–5372. DOI: 10.1021/cg501386j.
  • Bon, V.; Senkovska, I.; Weiss, M. S.; Kaskel, S. Tailoring of Network Dimensionality and Porosity Adjustment in Zr- and Hf-Based MOFs. CrystEngcomm. 2013, 15(45), 9572–9577. DOI: 10.1039/C3CE41121D.
  • Guillerm, V.; Ragon, F.; Dan-Hardi, M.; Devic, T.; Vishnuvarthan, M.; Campo, B.; Vimont, A.; Clet, G.; Yang, Q.; Maurin, G., et al. A Series of Isoreticular, Highly Stable, Porous Zirconium Oxide Based Metal–Organic Frameworks. Angew. Chem. Int. Ed. 2012, 51(37), 9267–9271.
  • Liang, W.; Babarao, R.; Church, T. L.; D’Alessandro, D. M. Tuning the Cavities of Zirconium-Based MIL-140 Frameworks to Modulate CO2 Adsorption. Chem. Commun. 2015, 51(56), 11286–11289. DOI: 10.1039/C5CC02539G.
  • Furukawa, H.; Gándara, F.; Zhang, Y. B.; Jiang, J.; Queen, W. L.; Hudson, M. R.; Yaghi, O. M. Water Adsorption in Porous Metal–Organic Frameworks and Related Materials. J. Am. Chem. Soc. 2014, 136(11), 4369–4381. PMID: 24588307. DOI: 10.1021/ja500330a.
  • Wei, Z.; Gu, Z. Y.; Arvapally, R. K. Rigidifying Fluorescent Linkers by Metal–Organic Framework Formation for Fluorescence Blue Shift and Quantum Yield Enhancement. J. Am. Chem. Soc. 2014, 136(23), 8269–8276.
  • Nosé, S. A Unified Formulation of the Constant Temperature Molecular Dynamics Methods. J. Chem. Phys. 1984, 81(1), 511–519. DOI: 10.1063/1.447334.
  • Maginn, E. J.; Messerly, R. A.; Carlson, D. J.; Roe, D. R.; Elliot, J. R. Best Practices for Computing Transport Properties 1. Self- Diffusivity and Viscosity from Equilibrium Molecular Dynamics [Article V1.0]. Living J. Comput. Mol. Sci. 2020, 2(1). DOI: 10.33011/livecoms.1.1.6324.
  • Ponraj, Y. K.; Borah, B. Separation of Methane from Ethane and Propane by Selective Adsorption and Diffusion in MOF Cu-BTC: A Molecular Simulation Study. J. Mol. Graphics Modell. 2020, 97, 107574. DOI: 10.1016/j.jmgm.2020.107574.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.