56
Views
0
CrossRef citations to date
0
Altmetric
Oil/Water Separation

Oil/water separation through dual-channeled superhydrophobic/underwater superoleophobic meshes toward continuous processes

, , , &
Pages 1068-1082 | Received 13 Feb 2024, Accepted 28 May 2024, Published online: 04 Jun 2024

References

  • Peterson, C. H.; Rice, S. D.; Short, J. W.; Esler, D.; Bodkin, J. L.; Ballachey, B. E.; Irons, B. E. Long-Term Ecosystem Response to the Exxon Valdez Oil Spill. Science 2003, 302(5653), 2082–2086. DOI: 10.1126/science.1084282.
  • Kumar, L.; Chugh, M.; Kumar, S.; Kumar, K.; Sharma, J.; Bharadvaja, N. Remediation of Petrorefinery Wastewater Contaminants: A Review on Physicochemical and Bioremediation Strategies. Process Saf. Environ. Prot. 2022, 159, 362–375. DOI: 10.1016/j.psep.2022.01.009.
  • Liu, Q.-L.; Li, H.-J.; Zhu, H.-T.; Feng, S.-L.; Yang, Q.; Lu, H. Novel Purification of Oily Process Water from Ethylene Production at Pilot Scale. J. Water. Process. Eng. 2023, 52, 103548. DOI: 10.1016/j.jwpe.2023.103548.
  • Yao, X.; Song, Y.; Jiang, L. Applications of Bio-Inspired Special Wettable Surfaces. Adv. Mater. 2011, 23(6), 719–734. DOI: 10.1002/adma.201002689.
  • Ashokkumar, M.; Chipara, A. C.; Narayanan, N. T.; Anumary, A.; Sruthi, R.; Thanikaivelan, P.; Vajtai, R.; Mani, S. A.; Ajayan, P. M. Three-Dimensional Porous Sponges from Collagen Biowastes. ACS Appl. Mater. Interfaces. 2016, 8(23), 14836–14844. DOI: 10.1021/acsami.6b04582.
  • Wang, Z.; Ma, H.-Y.; Chu, B.; Hsiao, B. Super-Hydrophobic Polyurethane Sponges for Oil Absorption. Sep. Sci. Technol. 2017, 52(2), 221–227. DOI: 10.1080/01496395.2016.1246570.
  • Xu, Z.-L.; Miyazaki, K.; Hori, T. Dopamine-Induced Superhydrophobic Melamine Foam for Oil/Water Separation. Adv. Mater. Interfaces. 2015, 2(15), 1500255. DOI: 10.1002/admi.201500255.
  • Wang, X.-L.; Pan, Y.-M.; Liu, X.-H.; Liu, H.; Li, N.; Liu, C.-T.; Schubert, D. W.; Shen, C.-Y. Facile Fabrication of Superhydrophobic and Eco-Friendly Poly(lactic acid) Foam for Oil–Water Separation via Skin Peeling. ACS Appl. Mater. Interfaces. 2019, 11(15), 14362–14367. DOI: 10.1021/acsami.9b02285.
  • Zhu, H.-G.; Chen, D.-Y.; An, W.; Li, N.-J.; Xu, Q.-F.; Li, H.; He, J.-H.; Lu, J.-M. A Robust and Cost-Effective Superhydrophobic Graphene Foam for Efficient Oil and Organic Solvent Recovery. Small. 2015, 11(39), 5222–5229. DOI: 10.1002/smll.201501004.
  • Guo, Z.; Long, B.; Gao, S.-J.; Luo, J.-C.; Wang, L.; Huang, X.-W.; Wang, D.; Xue, H.-G.; Gao, J.-F. Carbon Nanofiber Based Superhydrophobic Foam Composite for High Performance Oil/Water Separation. J. Hazard. Mater. 2021, 402, 123838. DOI: 10.1016/j.jhazmat.2020.123838.
  • Song, R.; Zhang, N.-S.; Dong, H.; Wang, P.; Ding, H.; Wang, J.; Li, S.-Y. Three-Dimensional Biomimetic Superhydrophobic Nickel Sponge without Chemical Modifications for Efficient Oil/Water Separation. Sep. Purif. Technol. 2022, 289, 120723. DOI: 10.1016/j.seppur.2022.120723.
  • Tian, G.-Y.; Zhang, M.; Yan, H.; Zhang, J.; Sun, Q.; Guo, R.-J. N. Nonfluorinated, Mechanically Stable, and Durable Superhydrophobic 3D Foam Iron for High Efficient Oil/Water Continuous Separation. App. Surf. Sci. 2020, 527, 146861. DOI: 10.1016/j.apsusc.2020.146861.
  • Han, L.; Wu, W.-H.; Huang, Z.; Lei, W.; Li, S.-S.; Zhang, H.-J.; Jia, Q.-L.; Zhang, S.-W. Preparation and Characterization of a Novel Fluorine-Free and pH-Sensitive Hydrophobic Porous Diatomite Ceramic As Highly Efficient Sorbent for Oil-Water Separation. Sep. Purif. Technol. 2021, 254, 117620. DOI: 10.1016/j.seppur.2020.117620.
  • Hai, O.; Xiao, X.-N.; Xie, Q.-B.; Ren, Q.; Wu, X.-L.; Pei, M.-K.; Zheng, P. Preparation of Three-Dimensionally Linked Pore-Like Porous Atomized Ceramics with High Oil and Water Absorption Rates. J. Eur. Ceram. Soc. 2023, 43(10), 4530–4540. DOI: 10.1016/j.jeurceramsoc.2023.03.042.
  • Su, C.-P.; Yang, H.; Song, S.; Lu, B.; Chen, R. A Magnetic Superhydrophilic/Oleophobic Sponge for Continuous Oil-Water Separation. Chem. Eng. J. 2017, 309, 366–373. DOI: 10.1016/j.cej.2016.10.082.
  • Li, W.-L.; Wang, F.-Q.; Li, Z.-X. A Facile Strategy for Fabricating Robust Superhydrophobic and Superoleophilic Metal Mesh via Diazonium Chemistry. Colloids Surf. A. 2021, 630, 127570. DOI: 10.1016/j.colsurfa.2021.127570.
  • Jiang, L.; Tang, Z.-G.; Park-Lee, K. J.; Hess, D. W.; Breedveld, V. Fabrication of Non-Fluorinated Hydrophilic-Oleophobic Stainless Steel Mesh for Oil-Water Separation. Sep. Purif. Technol. 2017, 184, 394–403. DOI: 10.1016/j.seppur.2017.05.021.
  • Tudu, B. K.; Kumar, A. Robust and Durable Superhydrophobic Steel and Copper Meshes for Separation of Oil-Water Emulsions. Prog. Org. Coat. 2019, 133, 316–324. DOI: 10.1016/j.porgcoat.2019.04.069.
  • Liu, J.; Wang, L.; Guo, F.-Y.; Hou, L.-L.; Chen, Y.-E.; Liu, J.-C.; Wang, N.; Zhao, Y.; Jiang, L. Opposite and Complementary: A Superhydrophobic–Superhydrophilic Integrated System for High-Flux, High-Efficiency and Continuous Oil/Water Separation. J. Mater. Chem. A 2016, 4, 4365. DOI: 10.1039/C5TA10472F.
  • Cao, G.-L.; Zhang, W.-B.; Jia, Z.; Liu, F.; Yang, H.-Y.; Yu, Q.-Q.; Wang, Y.-Z.; Di, X.; Wang, C.-Y.; Ho, S.-H. Dually Prewetted Underwater Superoleophobic and Under Oil Superhydrophobic Fabric for Successive Separation of Light Oil/Water/Heavy Oil Three-Phase Mixtures. ACS Appl. Mater. Interfaces 2017, 9, 36368–36376. DOI: 10.1021/acsami.7b08997.
  • Wu, W.-B.; Zhang, H.; Qiao, Z.-Z.; Cai, X.-M.; Liao, G.-L.; Lei, T.-P. Separation of Binary and Ternary Oil/Water Mixtures from a Highly Hydrophobic Metal Mesh. Water Sci. Technol. 2023, 88, 2264–2270. DOI: 10.2166/wst.2023.341.
  • Luo, Q.-X.; Xu, R.-J.; Wang, K.-K.; He, J.; Liu, C.-J.; Wu, P.; Jiang, W. Continuous Separation of Oil/Water Mixture by a Double-Layer Corrugated Channel Structure with Superhydrophobicity and Superoleophilicity. Sep. Purif. Technol. 2021, 269, 118647. DOI: 10.1016/j.seppur.2021.118647.
  • Cremaldi, J.; Bhushan, B. Fabrication of Bioinspired, Self-Cleaning Superliquiphilic/Phobic Stainless Steel Using Different Pathways. J. Colloid. Interface. Sci. 2018, 518, 284–297. DOI: 10.1016/j.jcis.2018.02.034.
  • Rouzmeh, S. S.; Naderi, R.; Mahdavian, M. A Sulfuric Acid Surface Treatment of Mild Steel for Enhancing the Protective Properties of an Organosilane Coating. Prog. Org. Coat. 2017, 103, 156–164. DOI: 10.1016/j.porgcoat.2016.10.033.
  • Sinapi, F.; Naji, A.; Delhalle, J.; Mekhalif, Z. Assessment by XPS and Electrochemical Techniques of Two Molecular Organosilane Films Prepared on Stainless-Steel Surfaces. Surf. Interface. Anal 2004, 36, 1484–1490. DOI: 10.1002/sia.1926.
  • Lee, L.-H.; Chen, W.-C.; Liu, W.-C. Structural Control of Oligomeric Methyl Silsesquioxane Precursors and Their Thin-Film Properties. J. Polym. Sci. Part A Polym. Chem. 2002, 40(10), 1560–1571. DOI: 10.1002/pola.10246.
  • Niemczyk, A.; Dziubek, K.; Sacher-Majewska, B.; Krystyna Czaja, K.; Czech-Polak, J.; Oliwa, R.; Lenża, J.; Szołyga, M. Thermal Stability and Flame Retardancy of Polypropylene Composites Containing Siloxane-Silsesquioxane Resins. Polymers 2018, 10(9), 1019. DOI: 10.3390/polym10091019.
  • Wang, S.-T.; Jiang, L. Definition of Superhydrophobic States. Adv. Mater. 2007, 19, 3423–3424. DOI: 10.1002/adma.200700934.
  • Quéré, D.; Lafuma, A. Superhydrophobic States. Nat. Mater. 2003, 2(7), 457–460. DOI: 10.1038/nmat924.
  • Goebel, A.; Lunkenheimer, K. Interfacial Tension of the Water/n-Alkane Interface. Langmuir. 1997, 13(2), 369–372. DOI: 10.1021/la960800g.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.