17
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Structural selective regulation of Fe3O4@C composite as adsorbent for removing different organic pollutants

, , , & ORCID Icon
Received 03 Feb 2024, Accepted 06 Jun 2024, Published online: 19 Jun 2024

References

  • Qiang, L. W.; Chen, M.; Zhu, L. Y.; Wu, W.; Wang, Q. Facilitated Bioaccumulation of Perfluorooctanesulfonate in Common Carp (Cyprinus Carpio) by Graphene Oxide and Remission Mechanism of Fulvic Acid. Environ. Sci. Technol. 2016, 50(21), 11627–11636. DOI: 10.1021/acs.est.6b02100.
  • Zhao, Q. D.; Zhao, X. M.; Cao, J. J. Advanced Nanomaterials for Degrading Persistent Organic Pollutants. Adv. Nanomaterials For Pollutant Sensing And Environ. Catalysis 2020, 6, 249–305. DOI: 10.1016/B978-0-12-814796-2.00007-1.
  • Atia, A. A.; Donia, A. M.; ELwakeel, K. Z. Adsorption Behaviour of Non-Transition Metal Ions on a Synthetic Chelating Resin Bearing Iminoacetate Functions. Sep. Purif. Technol. 2005, 43(1), 43–48. DOI: 10.1016/j.seppur.2004.09.012.
  • Elwakeel, K. Z.; El-Bindary, A. A.; Kouta, E. Y. Retention of Copper, Cadmium and Lead from Water by Na-Y-Zeolite Confined in Methyl Methacrylate Shell. J. Environ. Chem. Eng. 2017a, 5(4), 3698–3710. DOI: 10.1016/j.jece.2017.06.049.
  • Elwakeel, K. Z.; El-Bindary, A. A.; Kouta, E. Y.; Guibal, E. Functionalization of Polyacrylonitrile/na-Y-Zeolite Composite with Amidoxime Groups for the Sorption of Cu(ii), Cd(ii) and Pb(ii) Metal Ions. Chem. Eng. J. 2018b, 332, 727–736. DOI: 10.1016/j.cej.2017.09.091.
  • Elwakeel, K. Z.; Aly, M. H.; El-Howety, M. A.; El-Fadaly, E.; Al-Said, A. Synthesis of Chitosan@activated Carbon Beads with Abundant Amino Groups for Capture of Cu(ii) and Cd(ii) from Aqueous Solutions. J. Polym. Environ. 2018c, 26(9), 3590–3602. DOI: 10.1007/s10924-018-1243-2.
  • Sang, R. L.; Yan, C. L.; Sang, R. L.; Guo, F. Y. Adsorption Characteristics of Dyes in Aqueous Solution by Fe3O4@coffee Grounds Magnetic Adsorbent. Chem. Reagents 2020, 42(11), 1287–1293. DOI: 10.13822/j.cnki.hxsj.2020007702.
  • Wang, G.; Fan, Z. H.; Zou, X.; Li, L. Synthesis of Magnesium-Aluminum Layered Double Hydroxide with Different Morphologies by Urea Hydrothermal Growth Method and Its Adsorption Properties for Reactive Red Dyes. J. Tianjin Normal Univ. (Nat. Sci. Edition) 2021a, 41(3), 17–23. DOI: 10.19638/j.issn1671-1114.20210304.
  • Wang, J.; Li, Y.; Zhang, Z. Q.; Han, M.; Hao, H.; Zhang, C.; Zhang, Y. T. The Preparation and Application of Ferroferric Oxide Nano-Particles. Low Carbon World 2021b, 11(7), 231–232. DOI: 10.16844/j.cnki.cn10-1007/tk.2021.07.113.
  • Xiang, H. L.; Ren, G. K.; Zhong, Y. J.; Xu, D. H.; Zhang, Z. Y.; Wang, X. L.; Yang, X. H. Fe3O4@C Nanoparticles Synthesized by in situ Solid-Phase Method for Removal of Methylene Blue. Nanomaterials. 2021, 11(2), 330. DOI: 10.3390/nano11020330.
  • Brillas, E.; Garcia-Segura, S. Benchmarking Recent Advances and Innovative Technology Approaches of Fenton, Photo-Fenton, Electro-Fenton, and Related Processes: A Review on the Relevance of Phenol As Model Molecule. Sep. Purif. Technol. 2020, 237, 116337. DOI: 10.1016/j.seppur.2019.116337.
  • Rashed, M. N. Adsorption Technique for the Removal of Organic Pollutants from Water and Wastewater. Organ. Pollut. Moni. Risk Treat. 2013, 7, 168–194. DOI: 10.5772/54048.
  • Ibrahim, A. O.; Adegoke, K. A.; Adegoke, R. O.; Abdulwahab, Y. A.; Adesina, M. O. Adsorptive Removal of Different Pollutants Using Metal-Organic Framework Adsorbents. J. Mol. Liq. 2021, 333, 115593. DOI: 10.1016/j.molliq.2021.115593.
  • Mironyuk, I.; Tatarchuk, T.; Naushad, M.; Vasylyeva, H.; Mykytyn, I. Highly Efficient Adsorption of Strontium Ions by Carbonated Mesoporous TiO2. J. Mol. Liq. 2019, 285, 742–753. DOI: 10.1016/j.molliq.2019.04.111.
  • Al-Wakeel, K. Z.; El-Bindary, A.; El-Sonbati, A.; Hawas, A. R. Magnetic Alginate Beads with High Basic Dye Removal Potential and Excellent Regeneration Ability. Can. J. Chem. 2017, 95(8), 807–815. DOI: 10.1139/cjc-2016-0641.
  • Awad, A. M.; Jalab, R.; Benamor, A.; Nasser, M. S.; Ba-Abbad, M. M.; El-Naas, M.; Mohammad, A. W. Adsorption of Organic Pollutants by Nanomaterial-Based Adsorbents: An Overview. J. Mol. Liq. 2020, 301, 112335. DOI: 10.1016/j.molliq.2019.112335.
  • Buhani, D. J. S.; Fajriyah, N. S.; Rilyanti, M.; Suharso, S. K. Z.; Elwakeel. Modification of Non-Activated Carbon from Rubber Fruit Shells with 3-(Aminopropyl)-Triethoxysilane and Its Adsorption Study on Coomassie Brilliant Blue and Methylene Blue in Solution. Water Air Soil Pollut. 2023a, 234(9), 578. DOI: 10.1007/s11270-023-06506-2.
  • Buhani, S.; Antika, M.; Rilyanti, F. D. R.; Lestari, L. P.; Sumadi, A. M.; Elwakeel, K. Functionalization of Carbon from Rubber Fruit Shells (Hevea Brasiliensis) with Silane Agents and Its Application to the Adsorption of Bi-Component Mixtures of Methylene Blue and Crystal Violet. Environ. Sci. Pollut. Res. 2023b, 30. DOI: 10.1007/s11356-023-28031-9.
  • Dhaka, S.; Kumar, R.; Deep, A.; Kurade, M. B.; Ji, S. W.; Jeon, B. H. Metal–Organic Frameworks (MOFs) for the Removal of Emerging Contaminants from Aquatic Environments. Coord. Chem. Rev. 2019, 380, 330. DOI: 10.1016/j.ccr.2018.10.003.
  • Elwakeel, K. Z.; Shahat, A.; Al-Bogami, A. S.; Wijesirid, B.; Goonetilleke, A. The Synergistic Effect of Ultrasound Power and Magnetite in Corporation on the Sorption/Desorption Behavior of Cr(vi) and As(v) Oxoanions in an Aqueous System. J. Coll. Interf. Sci. 2020d, 569, 76–88. DOI: 10.1016/j.jcis.2020.02.067.
  • Ai, L. H.; Huang, H. Y.; Chen, Z. L.; Wei, X.; Jiang, J. Activated carbon/CoFe2O4 Composites: Facile Synthesis, Magnetic Performance and Their Potential Application for the Removal of Malachite Green from Water. Chem. Eng. J. 2010, 156(2), 243–249. DOI: 10.1016/j.cej.2009.08.028.
  • Ai, L. H.; Zhang, C. Y.; Liao, F.; Wang, Y.; Li, M.; Meng, L. Y.; Jiang, J. Removal of Methylene Blue from Aqueous Solution with Magnetite Loaded Multi-Wall Carbon Nanotube: Kinetic, Isotherm and Mechanism Analysis. J. Hazard. Mater. 2011, 198, 282–290. DOI: 10.1016/j.jhazmat.2011.10.041.
  • Thinh, N. N.; Hahn, P. T. B.; Ha, L. T. T.; Anh, L. G.; Hoang, T. V.; Hoang, V. D.; Dang, L. H.; Khoi, N. V.; Lam, T. D. Magnetic Chitosan Nanoparticles for Removal of Cr(vi) from Aqueous Solution. Mater. Sci. Eng. C 2013, 33(3), 1214–1218. DOI: 10.1016/j.msec.2012.12.013.
  • Yao, Y.; Miao, S.; Liu, S.; Ma, L. P.; Sun, H. Q.; Wang, S. B. Synthesis, Characterization, and Adsorption Properties of Magnetic Fe3O4@graphene Nanocomposite. Chem. Eng. J. 2012, 184, 326–332. DOI: 10.1016/j.cej.2011.12.017.
  • Lin, X. H.; Li, B. G. Preparation and Characterization of Lanthanum/Fly Ash Composite Adsorbent and Its Application. Chin. Rare Earths 2018, 39(5), 9. DOI: 10.16533/J.CNKI.15-1099/TF.201805002.
  • Wang, Z. F.; Xiao, P. F.; He, N. Y. Synthesis and Characteristics of Carbon Encapsulated Magnetic Nanoparticles Produced by a Hydrothermal Reaction. Carbon 2006, 44(15), 3277–3284. DOI: 10.1016/j.carbon.2006.06.026.
  • Wang, H.; Yuan, X. Z.; Wu, Y.; Chen, X. H.; Leng, L. J.; Wang, H.; Li, H.; Zeng, G. M. Facile Synthesis of Polypyrrole Decorated Reduced Graphene oxide–Fe3O4 Magnetic Composites and Its Application for the Cr(vi) Removal. Chem. Eng. J. 2015, 262, 597–606. DOI: 10.1016/j.cej.2014.10.020.
  • Yang, X.; Tsibart, A.; Nam, H.; Hur, J.; El-Naggar, A.; Tack, F. M. G.; Wang, C. H.; Lee, Y. H.; Sang, D. C. W.; Ok, Y. S. Effect of Gasification Biochar Application on Soil Quality: Trace Metal Behavior, Microbial Community, and Soil Dissolved Organic Matter. J. Hazard. Mater. 2019, 365, 684–694. DOI: 10.1016/j.jhazmat.2018.11.042.
  • Mahnaz, G.; Abbas Ali, E.; Majid, D. Adsorptive Removal of Methylene Blue from Aqueous Solutions Using Magnetic Fe3O4@C-dots: Removal and Kinetic Studies. Sep. Sci. Technol. 2022, 57(13), 2005–2023. DOI: 10.1080/01496395.2022.2029490.
  • Ivanova, O. S.; Edelman, I. S.; Sokolov, A. E.; Svetlitsky, E. S.; Zharkov, S. M.; Sukhachev, A. L.; Lin, C. R.; Chen, Y. Z. Adsorption of Organic Dyes by Fe3O4@C, Fe3O4@C@C, and Fe3O4@SiO2 Magnetic Nanoparticles. Bull. Russ. Acad. Sci. Phys. 2023, 87(3), 338–342. DOI: 10.3103/S1062873822701192.
  • Ren, J. J.; Wang, C. J.; Ding, J. X.; Li, T. X.; Ma, Y. Magnetic Core–Shell Fe3O4@polypyrrole@4-vinylpyridine Composites for the Removal of Multiple Dyes. ACS Appl. Polymer Mater. 2022, 4(12), 9449–9462. DOI: 10.1021/acsapm.2c01773.
  • He, Y. J.; Kim, K. J.; Chang, C. H. Segmented Microfluidic Flow Reactors for Nanomaterial Synthesis. Nanomaterials. 2020, 10(7), 1421. DOI: 10.3390/nano10071421.
  • Lin, L. L.; Yin, Y. J.; Starostin, S. A.; Xu, H. J.; Li, C. D.; Wu, K. J.; He, C. H.; Hessel, V. Microfluidic Fabrication of Fluorescent Nanomaterials: A Review. Chem. Eng. J. 2021, 425, 131511. DOI: 10.1016/j.cej.2021.131511.
  • Lohse, S. E. Size and Shape Control of Metal Nanoparticles in Millifluidic Reactors. Phys. Sci. Rev. 2018, 3(11), 48. DOI: 10.1515/psr-2017-0120.
  • Polyzoidis, A.; Schwarzer, M.; Loebbecke, S.; Piscopo, C. G. Continuous Synthesis of UiO-66 in Microreactor: Pursuing the Optimum Between Intensified Production and Structural Properties. Mater. Lett. 2017, 197(15), 213–216. DOI: 10.1016/j.matlet.2017.02.091.
  • Stolzenburg, P.; Lorenz, T.; Dietzel, A.; Garnweitner, G. Microfluidic Synthesis of Metal Oxide Nanoparticles via the Nonaqueous Method. Chem. Eng. Sci. 2018, 191, 500–510. DOI: 10.1016/j.ces.2018.07.007.
  • Zhou, S. W.; Dong, J. C.; Lu, C.; Li, B.; Li, F.; Zhang, B.; Wang, H.; Wei, Y. G. Effect of Sodium Carbonate on Phase Transformation of High-Magnesium Laterite Ore. Mater. Trans. 2017, 58(5), 90–794. DOI: 10.2320/matertrans.m2016439.
  • Kuśmierek, K.; Fronczyk, J.; A, Ś. Adsorptive Removal of Rhodamine B Dye from Aqueous Solutions Using Mineral Materials As Low-Cost Adsorbents. Water Air Soil Pollut. 2023, 234(8), 531. DOI: 10.1007/s11270-023-06511-5.
  • Liu, Y. F.; Ren, S.; Wu, R. L.; Li, Y. Y.; Shi, X. H.; Chi, W. D.; Huang, Q. G. Double-Layer SiO2 Encapsulated Fe3O4 Composite: Preparation and Dye Adsorption. Chin. J. Inorg. Chem. 2015, 31(12), 2373–2378. DOI: 10.11862/CJIC.2015.302.
  • Osaka, T.; Nara, H.; Momma, T.; Yokoshima, T. New Si–O–C Composite Film Anode Materials for LIB by Electrodeposition. J. Mater. Chem. A 2014, 2(4), 883. DOI: 10.1039/c3ta13080k.
  • Huang, J.; Li, Y.; Jia, X. H.; Song, H. J. Preparation and Tribological Properties of Core-Shell Fe3O4@C Microspheres. Tribol. Int. 2019, 129, 427–435. DOI: 10.1016/j.triboint.2018.08.036.
  • Tian, Q. H.; Yan, J. B.; Yang, L. Achieving Extremely Facile Preparation in High-Performance Ferroferric Oxide/Carbon Composite Anode Material for Lithium-Ion Batterie. J. Phys. And Chem. Solids 2019, 130, 263–269. DOI: 10.1016/j.jpcs.2019.02.018.
  • Fang, Y. Y.; Chen, Y. Z.; Li, X. Z.; Zhou, X. C.; Li, J.; Tang, W. J.; Huang, J. W.; Jin, J.; Ma, J. T. Gold on Thiol-Functionalized Magnetic Mesoporous Silica Sphere Catalyst for the Aerobic Oxidation of Olefins. J. Mol. Catal. A. Chem. 2014, 392, 16–21. DOI: 10.1016/j.molcata.2014.04.032.
  • Yoon, T.; Chae, C.; Sun, Y. K.; Zhao, X.; Kung, H. H.; Lee, J. K. Bottom-Up in situ Formation of Fe3O4 Nanocrystals in a Porous Carbon Foam for Lithium-Ion Battery Anodes. J. Mater. Chem. 2011, 21(43), 17325–17330. DOI: 10.1039/c1jm13450g.
  • Zhao, Z. G.; Cao, C. F.; Li, H. G. Thermodynamics on Soda Decomposition of Scheelite. Chin. J. Nonferr. Met. 2008, 18(2), 356–360. DOI: 10.19476/j.ysxb.1004.0609.2008.02.028.
  • Song, Y. Y.; Fan, J. B.; Wang, S. T. Recent Progress in Interfacial Polymerization. Mater. Chem. Front. 2017, 1(6), 1028. DOI: 10.1039/c6qm00325g.
  • Zhang, Z. B.; Duan, H. F.; Li, S. H.; Lin, Y. J. Assembly of Magnetic Nanospheres into One-Dimensional Nanostructured Carbon Hybrid Materials. Langmuir 2010, 26(9), 6676–6680. DOI: 10.1021/la904010y.
  • Chen, L. M.; Zhen, Y. L.; Chen, D. S.; Wang, L. N.; Zhao, H. X.; Meng, F. C.; Qi, T.; Zhang, G. H. Carbothermic Reduction of Vanadium Titanomagnetite with the Assistance of Sodium Carbonate. Int. J. Miner. Metall. Mater. 2022, 29(2), 239–247. DOI: 10.1007/s12613-020-2160-7.
  • Ye, Q.; Peng, Z. W.; Li, G. H.; Liu, Y.; Liu, M. D.; Ye, L.; Wang, L. C.; Rao, M. J.; Jiang, T.; Zhao, B. X. Catalytic Role of Sodium Carbonate in Reduction of Ferromanganese Spinel. Powder Technol. 2021, 377, 20–28. DOI: 10.1016/j.powtec.2020.08.070.
  • Singh, K. K.; Kishor, B.; Mankhand, T. R. Reduction of Manavalakurichi Ilmenite by Activated Charcoal in Presence of Catalyst. Trans. Indian Inst. Met 2018, 71(12), 2993–3001. DOI: 10.1007/s12666-018-1400-2.
  • Dotto, G. L.; Santos, J. M. N.; Rodrigues, I. L.; Rosa, R.; Pavan, F. A.; Lima, E. C. Adsorption of Methylene Blue by Ultrasonic Surface Modified Chitin. J. Coll. Interf. Sci. 2015, 446, 133–140. DOI: 10.1016/j.jcis.2015.01.046.
  • Sud, D.; Mahajan, G.; Kaur, M. P. Agricultural Waste Material As Potential Adsorbent for Sequestering Heavy Metal Ions from Aqueous Solutions. A Review. Bioresour. Technol. 2008, 99(14), 6017–6027. DOI: 10.1016/j.biortech.2007.11.064.
  • Wang, Y. R.; Ning, J. Q.; Hu, E. L.; Zheng, C. C.; Zhong, Y. J.; Hu, Y. Direct Coating ZnO Nanocrystals Onto 1D Fe3O4/C Composite Microrods As Highly Efficient and Reusable Photocatalysts for Water Treatment. J. Alloys Compound. 2015, 637, 301–307. DOI: 10.1016/j.jallcom.2015.03.033.
  • Divriklioglu, M.; Akar, S. T.; Akar, T. A Passively Immobilized Novel Biomagsorbent for the Effective Biosorptive Treatment of Dye Contamination. Environ. Sci. Pollut. Res. 2019, 26, 25834–25843. DOI: 10.1007/s11356-019-05716-8.
  • Zheng, H.; Zhang, Q.; Liu, G. C.; Luo, X. X.; Li, F. M.; Zhang, Y. P.; Wang, Z. Y. Characteristics and Mechanisms of Chlorpyrifos and Chlorpyrifos-Methyl Adsorption Onto Biochars: Influence of Deashing and Low Molecular Weight Organic Acid (LMWOA) Aging and Co-Existence. Sci. Total Environ. 2018, 657(20), 953–962. DOI: 10.1016/j.scitotenv.2018.12.018.
  • Inyang, M.; Dickenson, E. The Potential Role of Biochar in the Removal of Organic and Microbial Contaminants from Potable and Reuse Water: A Review. Chemosphere 2015, 134, 232–240. DOI: 10.1016/j.chemosphere.2015.03.072.
  • Zhang, Y. X.; Hao, X. D.; Wang, T.; Meng, Y. X.; Han, X. MnOx-Modified ZnAl-LDOs As High-Performance Adsorbent for the Removal of Methyl Orange. Dalton Trans. 2014, 43, 6667–6676. DOI: 10.1039/c3dt53597e.
  • Zhao, W.; Yang, R. J.; Qian, T. T.; Hua, X.; Hang, W. B.; Katiyo, W. Preparation of Novel Poly(hydroxyethyl Methacrylate-Co-Glycidyl-Methacrylate)-Grafted Core-Shell Magnetic Chitosan Microspheres and Immobilization of Lactase. Int. J. Mol. Sci. 2013, 14(6), 12073–12089. DOI: 10.3390/ijms140612073.
  • Moussavi, G.; Mahmoudi, M. Removal of Azo and Anthraquinone Reactive Dyes from Industrial Wastewaters Using MgO Nanoparticles. J. Hazard. Mater. 2009, 168(2–3), 806–812. DOI: 10.1016/j.jhazmat.2009.02.097.
  • Zhang, X. M.; Dou, L.; Peng, C. S.; Shi, L.; Ji, X. L. Coupling Reaction and Vacuum Distillation to Prepare β-CD-Based Adsorption Material for Organic Dyes. Mater. Today Commun. 2020, 24, 101350. DOI: 10.1016/j.mtcomm.2020.101350.
  • Du, R. X.; Cao, H. P.; Wang, G. H.; Dou, K.; Tsidaeva, N.; Wang, W. PVP Modified rGO/CoFe2O4 Magnetic Adsorbents with a Unique Sandwich Structure and Superior Adsorption Performance for Anionic and Cationic Dyes. Sep. Purif. Technol. 2022, 286, 120484. DOI: 10.1016/j.seppur.2022.120484.
  • Vahedi, S.; Tavakoli, O.; Khoobi, M.; Ansari, A.; Faramarzi, M. A. Application of Novel Magnetic β-Cyclodextrin-Anhydride Polymer Nano-Adsorbent in Cationic Dye Removal from Aqueous Solution. J. Taiwan Inst. Chem. Eng. 2017, 80, 452–463. DOI: 10.1016/j.jtice.2017.07.039.
  • Ouyang, J. Y.; Gao, J. N.; Shen, J. W.; Wei, Y. M.; Wang, C. Z. Preparation of Magnetic graphene/β-Cyclodextrin Polymer Composites and Their Application for Removal of Organic Pollutants from Wastewater. J. Environ. Chem. Eng. 2023, 11(5), 110944. DOI: 10.1016/j.jece.2023.110944.
  • Chiou, C. S.; Chen, H. W. C.; T, Z. Application of Magnetic Adsorbent with Silicate and Phenyl Polymers to Adsorb Rhodamine B. Int. J. Environ. Sci. Technol. 2018, 15(9), 1879–1886. DOI: 10.1007/s13762-017-1553-2.
  • Khanna, S.; Chidambaram, S.; Rathinam, M. Preparation of Urchin Like Structures of SiO2/CuO by Low Temperature Hydrothermal Synthesis As Adsorbent for Dyes and Efficient Catalyst for 4-Nitrophenol. Surf. Interfaces 2023, 41, 103174. DOI: 10.1016/j.surfin.2023.103174.
  • Rubab, R.; Ali, S.; Rehman, A. U.; Khan, S. A.; Khan, A. M. Templated Synthesis of NiO/SiO2 Nanocomposite for Dye Removal Applications: Adsorption Kinetics and Thermodynamic Properties. Colloids Surf. A. 2021, 615, 126253. DOI: 10.1016/j.colsurfa.2021.126253.
  • Aryee, A. A.; Gao, C. P.; Han, R. P.; Qu, L. B. Functionalized Magnetic Biocomposite Based on Peanut Husk for the Efficient Sequestration of Basic Dyes in Single and Binary Systems: Adsorption Mechanism and Antibacterial Study. J. Environ. Chem. Eng. 2022, 10(4), 108205. DOI: 10.1016/j.jece.2022.108205.
  • Alharbi, A. F.; Alotaibi, A. A.; Gomaa, H. E. M.; Abahussain, A. A. M.; Abdel Azeem, S. M. Magnetic Biochar by One-Step Impregnation Pyrolysis of Peganum Harmala L. for Removal of Rhodamine B. Adsorpt. Sci. Technol. 2023, 2023, 9993465. DOI: 10.1155/2023/9993465.
  • Moradi-Bieranvand, M.; Farhadi, S.; Zabardasti, A.; Mahmoudi, F. Construction of Magnetic MoS2/NiFe2O4/MIL-101(Fe) Hybrid Nanostructures for Separation of Dyes and Antibiotics from Aqueous Media. RSC Advan. 2024, 14(16), 11037–11056. DOI: 10.1039/D4RA00505H.
  • Bo, C. M.; Jia, Z. H.; Liu, B.; Dai, X. J.; Ma, G. J.; Li, Y. Copolymer-Type Magnetic Graphene Oxide with Dual-Function for Adsorption of Variety of Dyes. J. Taiwan Inst. Chem. Eng. 2022, 138, 104499. DOI: 10.1016/j.jtice.2022.104499.
  • Sharma, R. K.; Kumar, R.; Singh, A. P. Metal Ions and Organic Dyes Sorption Applications of Cellulose Grafted with Binary Vinyl Monomers. Sep. Purif. Technol. 2019, 209, 684–697. DOI: 10.1016/j.seppur.2018.09.011.
  • Peng, X. J.; Zeng, W.; Miao, H. H.; Lu, S. J.; Li, S. S. A Novel Carbon Adsorbent Derived from Iron-Poisoned Waste Resin for Phosphate Removal from Wastewater: Performance and Mechanism. Process Saf. Environ. Prot. 2022, 168, 324–335. DOI: 10.1016/j.psep.2022.10.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.