41
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Hexavalent chromium scavenging performances of one-pot synthesized hydrous cerium-copper-mixed oxide from contaminated water with plausible mechanism

, , , , &
Received 08 Apr 2024, Accepted 20 Jun 2024, Published online: 29 Jun 2024

References

  • Anirudhan, T. S.; Jalajamony, S.; Suchithra, P. S. Improved Performance of a Cellulose-Based Anion Exchanger with Tertiary Amine Functionality for the Adsorption of Chromium(vi) from Aqueous Solutions. Colloids Surf. A Physicochem. Eng. Aspects. 2009, 335(1–3), 107–113. DOI: 10.1016/j.colsurfa.2008.10.035.
  • Hossini, H.; Shafie, B.; Niri, A. D.; Nazari, M.; Esfahlan, A. J.; Ahmadpour, M.; Nazmara, Z.; Ahmadimanesh, M.; Makhdoumi, P.; Mirzaei, N., et al. A Comprehensive Review on Human Health Effects of Chromium: Insights on Induced Toxicity. Environ. Sci. Pollut. Res. 2022, 29(47), 70686–70705. DOI: 10.1007/s11356-022-22705-6.
  • Sharma, P.; Singh, S. P.; Parakh, S. K.; Tong, Y. W. Health Hazards of Hexavalent Chromium (Cr (VI)) and Its Microbial Reduction. Bioengineered. 2022, 13(3), 4923–4938. DOI: 10.1080/21655979.2022.2037273.
  • Clesceri, L. S.; Greenberg, A. E.; Eaton, A. D. Standard Methods for the Examination of Water and Wastewater, 20th Edition; Washington, D.C.: APHA American Public Health Association, 1998.
  • Alemu, A.; Habtu, N. Assessment of Chromium Contamination in the Surface Water and Soil at the Riparian of Abbay River Caused by the Nearby Industries in Bahir Dar City, Ethiopia. Water. Pract. Technol. 2017, 12(1), 72–79. DOI: 10.2166/wpt.2017.012.
  • Chandra, P.; Sinha, S.; Rai, U. N. Bioremediation of Chromium from Water and Soil by Vascular Aquatic Plants. In Phytoremediation of Soil and Water Contaminants; ACS Symposium Series; American Chemical Society 1997; Vol. 664, pp. 274–282. DOI: 10.1021/bk-1997-0664.ch020.
  • Xie, Q.; Wang, D.; Han, Z.; Tao, H.; Liu, S. Removal of Carbon and Dioxins from Municipal Solid Waste Incineration Fly Ash by Ball Milling and Flotation Methods. J. Mater. Cycles Waste Manag. 2023, 25(1), 62–73. DOI: 10.1007/s10163-022-01514-6.
  • Pi, S.-Y.; Wang, Y.; Pu, C.; Mao, X.; Liu, G.-L.; Wu, H.-M.; Liu, H. Cr(vi) Reduction Coupled with Cr(iii) Adsorption/Precipitation for Cr(vi) Removal at Near Neutral pHs by Polyaniline Nanowires-Coated Polypropylene Filters. J. Taiwan Inst. Chem. Eng. 2021, 123, 166–174. DOI: 10.1016/j.jtice.2021.05.019.
  • Nabavi, S. R.; Seyednezhad, S. M.; Shakiba, M. Fabrication of Polyamide6/Polyaniline As an Effective Nano-Web Membrane for Removal of Cr (VI) from Water and a Black Box Approach in Modeling of Adsorption Process. Environ. Sci. Pollut. Res. 2023, 30(36), 85968–85985. DOI: 10.1007/s11356-023-28566-x.
  • Mohammed, A. M.; Thalji, M. R.; Yasin, S. A.; Shim, J.-J.; Chong, K. F.; Guda, A. A.; Ali, G. A. M. Recent Advances in Electrospun Fibrous Membranes for Effective Chromium (VI) Removal from Water. J. Mol. Liq. 2023, 383, 122110. DOI: 10.1016/j.molliq.2023.122110.
  • Roa, K.; Boulett, A.; Oyarce, E.; Sánchez, J. Removal of Cr(vi) by Ultrafiltration Enhanced by a Cellulose-Based Soluble Polymer. J. Water Process Eng. 2023, 51, 103478. DOI: 10.1016/j.jwpe.2022.103478.
  • Wu, Z.; Zhang, H.; Ali, E.; Shahab, A.; Huang, H.; Ullah, H.; Zeng, H. Synthesis of Novel Magnetic Activated Carbon for Effective Cr(vi) Removal via Synergistic Adsorption and Chemical Reduction. Environ. Technol. Innov. 2023, 30, 103092. DOI: 10.1016/j.eti.2023.103092.
  • Li, H.; Yu, L.; Chen, Z.; Xiao, B.; Jin, K. The Characteristics of Adsorption Cr(vi) by Iron-Modified and Iron-Doped Phosphorus-Based Biochar Biochar. Green Chem. Lett. Rev. 2024, 17(1), 2329607. DOI: 10.1080/17518253.2024.2329607.
  • Rawat, S.; Misra, N.; Singh, M.; Tiwari, M.; Ghosh, A.; Shelkar, S. A.; Samanta, S.; Goel, N. K.; Kumar, V. Remediation of Cr(vi) Using a Radiation Functionalized Green Adsorbent: Adsorption Modelling, Mechanistic Insights and Prototype Water Purifier Demonstration. J. Water Process Eng. 2024, 60, 105109. DOI: 10.1016/j.jwpe.2024.105109.
  • Singh, S.; Anil, A. G.; Uppara, B.; Behera, S. K.; Nath, B.; N, P.; Bhati, S.; Singh, J.; Khan, N. A.; Ramamurthy, P. C. Adsorption and DFT Investigations of Cr(vi) Removal Using Nanocrystals Decorated with Graphene Oxide. Npj Clean Water. 2024, 7(1), 1–13. DOI: 10.1038/s41545-024-00306-9.
  • Jacob, A. P.; Soni, P. Chromium(vi) Removal from Water Using Different Bio-Adsorbents: Comparison and Scope in the Treatment of Local Water Bodies with Economic Analysis. Desalin & Water. Treat. 2024, 318, 100314. DOI: 10.1016/j.dwt.2024.100314.
  • Al-Qodah, Z.; Dweiri, R.; Khader, M.; Al-Sabbagh, S.; Al-Shannag, M.; Qasrawi, S.; Al-Halawani, M. Processing and Characterization of Magnetic Composites of Activated Carbon, Fly Ash, and Beach Sand As Adsorbents for Cr(vi) Removal. Case Stud. Chem. & Environ. Eng. 2023, 7, 100333. DOI: 10.1016/j.cscee.2023.100333.
  • Recillas, S.; Colón, J.; Casals, E.; González, E.; Puntes, V.; Sánchez, A.; Font, X. Chromium VI Adsorption on Cerium Oxide Nanoparticles and Morphology Changes During the Process. J. Hazard. Mater. 2010, 184(1–3), 425–431. DOI: 10.1016/j.jhazmat.2010.08.052.
  • Islam, A.; Angove, M. J.; Morton, D. W.; Pramanik, B. K.; Awual, R. A Mechanistic Approach of Chromium (VI) Adsorption Onto Manganese Oxides and Boehmite. J. Environ. Chem. Eng. 2020, 8(2), 103515. DOI: 10.1016/j.jece.2019.103515.
  • Hu, C.-Y.; Lo, S.-L.; Liou, Y.-H.; Hsu, Y.-W.; Shih, K.; Lin, C.-J. Hexavalent Chromium Removal from Near Natural Water by Copper–Iron Bimetallic Particles. Water Res. 2010, 44(10), 3101–3108. DOI: 10.1016/j.watres.2010.02.037.
  • Wen, Z.; Ke, J.; Xu, J.; Guo, S.; Zhang, Y.; Chen, R. One-Step Facile Hydrothermal Synthesis of Flowerlike Ce/Fe Bimetallic Oxides for Efficient As(v) and Cr(vi) Remediation: Performance and Mechanism. Chem. Eng. J. 2018, 343, 416–426. DOI: 10.1016/j.cej.2018.03.034.
  • Alizadeh, A.; Abdi, G.; Khodaei, M. M.; Ashokkumar, M.; Amirian, J. Graphene Oxide/Fe 3 O 4/SO 3 H Nanohybrid: A New Adsorbent for Adsorption and Reduction of Cr(vi) from Aqueous Solutions. R.S.C. Adv. 2017, 7(24), 14876–14887. DOI: 10.1039/C7RA01536D.
  • Aravind, M. K.; Kappen, J.; Narayanamoorthi, E.; Sanjaykumar, A.; Varalakshmi, P.; Arockiadoss, T.; John, S. A.; Ashokkumar, B. Bioengineered Magnetic Graphene Oxide Microcomposites for Bioremediation of Chromium in ex situ - a Novel Strategy for Aggrandized Recovery by Electromagnetic Gadgetry. Environ. Pollut. 2022, 308, 119675. DOI: 10.1016/j.envpol.2022.119675.
  • Preethi, J.; Meenakshi, S. Fabrication of La 3+ Impregnated Chitosan/β-Cyclodextrin Biopolymeric Materials for Effective Utilization of Chromate and Fluoride Adsorption in Single Systems. J. Chem. Eng, Data. 2018, 63(3), 723–731. DOI: 10.1021/acs.jced.7b00889.
  • Mandal, S.; Mahapatra, S. S.; Patel, R. K. Enhanced Removal of Cr(vi) by Cerium Oxide Polyaniline Composite: Optimization and Modeling Approach Using Response Surface Methodology and Artificial Neural Networks. J. Environ. Chem. Eng. 2015, 3(2), 870–885. DOI: 10.1016/j.jece.2015.03.028.
  • Zou, H.; Zhao, J.; He, F.; Zhong, Z.; Huang, J.; Zheng, Y.; Zhang, Y.; Yang, Y.; Yu, F.; Bashir, M. A., et al. Ball Milling Biochar Iron Oxide Composites for the Removal of Chromium (Cr(vi)) from Water: Performance and Mechanisms. J. Hazard. Mater. 2021, 413, 125252. DOI: 10.1016/j.jhazmat.2021.125252.
  • Liao, W.; Zhou, X.; Cai, N.; Chen, Z.; Yang, H.; Zhang, S.; Zhang, X.; Chen, H. Simultaneous Removal of Cadmium, Lead, Chromate by Biochar Modified with Layered Double Hydroxide with Sulfide Intercalation. Bioresour. Technol. 2022, 360, 127630. DOI: 10.1016/j.biortech.2022.127630.
  • Ghosh, A.; Pal, M.; Biswas, K.; Ghosh, U. C.; Manna, B. Manganese Oxide Incorporated Ferric Oxide Nanocomposites (MIFN): A Novel Adsorbent for Effective Removal of Cr(vi) from Contaminated Water. J. Water Process Eng. 2015, 7, 176–186. DOI: 10.1016/j.jwpe.2015.06.008.
  • Ghosh, A.; Basu, T.; Manna, B.; Bhattacharya, S.; Chand Ghosh, U.; Biswas, K. Synthesis of a Nanocomposite Adsorbent with High Adsorptive Potential and Its Application for Abatement of Chromium(vi) from Aqueous Stream. J. Environ. Chem. Eng. 2015, 3(1), 565–573. DOI: 10.1016/j.jece.2015.01.012.
  • Babić, B. M.; Milonjić, S. K.; Polovina, M. J.; Kaludierović, B. V. Point of Zero Charge and Intrinsic Equilibrium Constants of Activated Carbon Cloth. Carbon. 1999, 37(3), 477–481. DOI: 10.1016/S0008-6223(98)00216-4.
  • Rath, R. K.; Subramanian, S.; Sivanandam, V.; Pradeep, T. Studies on the Interaction of Guar Gum with Chalcopyrite. Can. Metall. Q. 2001, 40(1), 1–11. DOI: 10.1179/cmq.2001.40.1.1.
  • Albadarin, A. B.; Yang, Z.; Mangwandi, C.; Glocheux, Y.; Walker, G.; Ahmad, M. N. M. Experimental Design and Batch Experiments for Optimization of Cr(vi) Removal from Aqueous Solutions by Hydrous Cerium Oxide Nanoparticles. Chem. Eng. Res. Des. 2014, 92(7), 1354–1362. DOI: 10.1016/j.cherd.2013.10.015.
  • Aguirre, J. M.; Gutiérrez, A.; Giraldo, O. Simple Route for the Synthesis of Copper Hydroxy Salts. J. Braz. Chem. Soc. 2011, 22(3), 546–551. DOI: 10.1590/S0103-50532011000300019.
  • Rahimi-Nasrabadi, M.; Pourmortazavi, S. M.; Davoudi-Dehaghani, A. A.; Hajimirsadeghi, S. S.; Zahedi, M. M. Synthesis and Characterization of Copper Oxalate and Copper Oxide Nanoparticles by Statistically Optimized Controlled Precipitation and Calcination of Precursor. CrystEngcomm. 2013, 15(20), 4077. DOI: 10.1039/c3ce26930b.
  • Sakthiraj, K.; Karthikeyan, B. Synthesis and Characterization of Cerium Oxide Nanoparticles Using Different Solvents for Electrochemical Applications. Appl. Phys. A. 2020, 126(1), 52. DOI: 10.1007/s00339-019-3227-z.
  • Devamani, R. H. P.; Alagar, M. Synthesis and Characterisation of Copper II Hydroxide Nano Particles. Nano Biomed Eng. 2013, 5(3), 116–120. DOI: 10.5101/nbe.v5i3.p116-120.
  • Nilchi, A.; Yaftian, M.; Aboulhasanlo, G.; Rasouli Garmarodi, S. Adsorption of Selected Ions on Hydrous Cerium Oxide. J. Radioanal. Nucl. Chem. 2009, 279(1), 65–74. DOI: 10.1007/s10967-007-7255-3.
  • Teterin Yu, A.; Lebedev, A. M.; Utkin, I. O. The XPS Spectra of Cerium Compounds Containing Oxygen. J. Electron Spectrosc. Relat. Phenom. 1998, 88–91, 275–279. DOI: 10.1016/S0368-2048(97)00139-4.
  • Li, X.; Cao, J.; Zhang, W. Stoichiometry of Cr(vi) Immobilization Using Nanoscale Zerovalent Iron (nZVI): A Study with High-Resolution X-Ray Photoelectron Spectroscopy (HR-XPS). Ind. Eng. Chem. Res. 2008, 47(7), 2131–2139. DOI: 10.1021/ie061655x.
  • Chowdhury, S. R.; Yanful, E. K.; Pratt, A. R. Chemical States in XPS and Raman Analysis During Removal of Cr(vi) from Contaminated Water by Mixed Maghemite–Magnetite Nanoparticles. J. Hazard. Mater. 2012, 235–236, 246–256. DOI: 10.1016/j.jhazmat.2012.07.054.
  • Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87(9–10), 1051–1069. DOI: 10.1515/pac-2014-1117.
  • Wu, Y.; Cha, L.; Fan, Y.; Fang, P.; Ming, Z.; Sha, H. Activated Biochar Prepared by Pomelo Peel Using H3PO4 for the Adsorption of Hexavalent Chromium: Performance and Mechanism. Water Air Soil Pollut. 2017, 228(10), 405. DOI: 10.1007/s11270-017-3587-y.
  • Choi, K.; Lee, S.; Park, J. O.; Park, J.-A.; Cho, S.-H.; Lee, S. Y.; Lee, J. H.; Choi, J.-W. Chromium Removal from Aqueous Solution by a PEI-Silica Nanocomposite. Sci. Rep. 2018, 8(1), 1438. DOI: 10.1038/s41598-018-20017-9.
  • Klumpen, C.; Breunig, M.; Homburg, T.; Stock, N.; Senker, J. Microporous Organic Polyimides for CO 2 and H 2 O Capture and Separation from CH 4 and N 2 Mixtures: Interplay Between Porosity and Chemical Function. Chem. Mater. 2016, 28(15), 5461–5470. DOI: 10.1021/acs.chemmater.6b01949.
  • You, T.; Niwa, O.; Tomita, M.; Ando, H.; Suzuki, M.; Hirono, S. Characterization and Electrochemical Properties of Highly Dispersed Copper Oxide/Hydroxide Nanoparticles in Graphite-Like Carbon Films Prepared by RF Sputtering Method. Electrochem. Commun. 2002, 4(5), 468–471. DOI: 10.1016/S1388-2481(02)00340-5.
  • Szabó, M.; Kalmár, J.; Ditrói, T.; Bellér, G.; Lente, G.; Simic, N.; Fábián, I. Equilibria and Kinetics of Chromium(vi) Speciation in Aqueous Solution – a Comprehensive Study from pH 2 to 11. Inorganica. Chimica. Acta. 2018, 472, 295–301. DOI: 10.1016/j.ica.2017.05.038.
  • Rodrigues, L. A.; Maschio, L. J.; da Silva, R. E.; da Silva, M. L. C. P. Adsorption of Cr(vi) from Aqueous Solution by Hydrous Zirconium Oxide. J. Hazard. Mater. 2010, 173(1–3), 630–636. DOI: 10.1016/j.jhazmat.2009.08.131.
  • Badruddoza, A. Z.; Shawon, Z. B. Z.; Rahman, T.; Hao, K. W.; Hidajat, K.; Uddin, M. S. Ionically Modified Magnetic Nanomaterials for Arsenic and Chromium Removal from Water. Chem. Eng. J. 2013, 225, 607–615. DOI: 10.1016/j.cej.2013.03.114.
  • Luo, C.; Tian, Z.; Yang, B.; Zhang, L.; Yan, S. Manganese Dioxide/Iron Oxide/Acid Oxidized Multi-Walled Carbon Nanotube Magnetic Nanocomposite for Enhanced Hexavalent Chromium Removal. Chem. Eng. J. 2013, 234, 256–265. DOI: 10.1016/j.cej.2013.08.084.
  • Li, L.; Fan, L.; Sun, M.; Qiu, H.; Li, X.; Duan, H.; Luo, C. Adsorbent for Chromium Removal Based on Graphene Oxide Functionalized with Magnetic Cyclodextrin–Chitosan. Colloids And Surfaces B: Biointerfaces 2013, 107, 76–83. DOI: 10.1016/j.colsurfb.2013.01.074.
  • Zeraatkar Moghaddam, A.; Esmaeilkhanian, E.; Shakourian-Fard, M. Immobilizing Magnetic Glutaraldehyde Cross-Linked Chitosan on Graphene Oxide and Nitrogen-Doped Graphene Oxide As Well-Dispersible Adsorbents for Chromate Removal from Aqueous Solutions. Int. J. Biol. Macromol. 2019, 128, 61–73. DOI: 10.1016/j.ijbiomac.2019.01.086.
  • Canzano, S.; Iovino, P.; Salvestrini, S.; Capasso, S. Comment on “Removal of Anionic Dye Congo Red from Aqueous Solution by Raw Pine and Acid-Treated Pine Cone Powder As Adsorbent: Equilibrium, Thermodynamic, Kinetics, Mechanism and Process Design. Water Res. 2012, 46(13), 4314–4315. DOI: 10.1016/j.watres.2012.05.040.
  • Ballav, N.; Maity, A.; Mishra, S. B. High Efficient Removal of Chromium(vi) Using Glycine Doped Polypyrrole Adsorbent from Aqueous Solution. Chem. Eng. J. 2012, 198–199, 536–546. DOI: 10.1016/j.cej.2012.05.110.
  • Zhang, L.-H.; Sun, Q.; Yang, C.; Lu, A.-H. Synthesis of Magnetic Hollow Carbon Nanospheres with Superior Microporosity for Efficient Adsorption of Hexavalent Chromium Ions. Sci. China Mater. 2015, 58(8), 611–620. DOI: 10.1007/s40843-015-0076-8.
  • Tang, D.; Zhang, G. Efficient Removal of Fluoride by Hierarchical Ce–Fe Bimetal Oxides Adsorbent: Thermodynamics, Kinetics and Mechanism. Chem. Eng. J. 2016, 283, 721–729. DOI: 10.1016/j.cej.2015.08.019.
  • Van Nguyen, N.; Lee, J.; Jeong, J.; Pandey, B. D. Enhancing the Adsorption of Chromium(vi) from the Acidic Chloride Media Using Solvent Impregnated Resin (SIR). Chem. Eng. J. 2013, 219, 174–182. DOI: 10.1016/j.cej.2012.12.091.
  • Weber, W. J.; Morris, J. C. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 1963, 89(1), 31–60. DOI: 10.1061/JSEDAI.0000430.
  • Polowczyk, I.; Urbano, B. F.; Rivas, B. L.; Bryjak, M.; Kabay, N. Equilibrium and Kinetic Study of Chromium Sorption on Resins with Quaternary Ammonium and N-Methyl- D -Glucamine Groups. Chem. Eng. J. 2016, 284, 395–404. DOI: 10.1016/j.cej.2015.09.018.
  • Saikia, J.; Saha, B.; Das, G. Efficient Removal of Chromate and Arsenate from Individual and Mixed System by Malachite Nanoparticles. J. Hazard. Mater. 2011, 186(1), 575–582. DOI: 10.1016/j.jhazmat.2010.11.036.
  • Mukhopadhyay, K.; Naskar, A.; Ghosh, U. C.; Sasikumar, P. One-Pot Synthesis of β-Cyclodextrin Amended Mesoporous Cerium(iv) Incorporated Ferric Oxide Surface Towards the Evaluation of Fluoride Removal Efficiency from Contaminated Water for Point of Use. J. Hazard. Mater. 2020, 384, 121235. DOI: 10.1016/j.jhazmat.2019.121235.
  • Ghosal, P. S.; Gupta, A. K. An Insight into Thermodynamics of Adsorptive Removal of Fluoride by Calcined Ca–Al–(NO 3) Layered Double Hydroxide. R.S.C. Adv. 2015, 5(128), 105889–105900. DOI: 10.1039/C5RA20538G.
  • Duranoğlu, D.; Trochimczuk, A. W.; Beker, U. Kinetics and Thermodynamics of Hexavalent Chromium Adsorption Onto Activated Carbon Derived from Acrylonitrile-Divinylbenzene Copolymer. Chem. Eng. J. 2012, 187, 193–202. DOI: 10.1016/j.cej.2012.01.120.
  • AL-Othman, Z. A.; Ali, R.; Naushad, M. Hexavalent Chromium Removal from Aqueous Medium by Activated Carbon Prepared from Peanut Shell: Adsorption Kinetics, Equilibrium and Thermodynamic Studies. Chem. Eng. J. 2012, 184, 238–247. DOI: 10.1016/j.cej.2012.01.048.
  • Avila, M.; Burks, T.; Akhtar, F.; Göthelid, M.; Lansåker, P. C.; Toprak, M. S.; Muhammed, M.; Uheida, A. Surface Functionalized Nanofibers for the Removal of Chromium(vi) from Aqueous Solutions. Chem. Eng. J. 2014, 245, 201–209. DOI: 10.1016/j.cej.2014.02.034.
  • Ghosh, U. C.; Dasgupta, M.; Debnath, S.; Bhat, S. C. Studies on Management of Chromium(vi) – Contaminated Industrial Waste Effluent Using Hydrous Titanium Oxide (HTO). Water Air Soil Pollut. 2003, 143(1), 245–256. DOI: 10.1023/A:1022814401404.
  • Goswami, S.; Bhat, S. C.; Ghosh, U. C. Crystalline Hydrous Ferric Oxide: An Adsorbent for Chromium(vi)-Contaminated Industrial Wastewater Treatment. Water Environ. Res. 2006, 78(9), 986–993. DOI: 10.2175/106143005X73604.
  • Goswami, S.; Ghosh, U. C. Studies on Adsorption Behaviour of Cr(vi) Onto Synthetic Hydrous Stannic Oxide. WSA. 2006, 31(4), 597–602. DOI: 10.4314/wsa.v31i4.5150.
  • Xiao, H.; Ai, Z.; Zhang, L. Nonaqueous Sol−gel Synthesized Hierarchical CeO 2 Nanocrystal Microspheres as Novel Adsorbents for Wastewater Treatment. J. Phys. Chem. C. 2009, 113(38), 16625–16630. DOI: 10.1021/jp9050269.
  • Kim, J.-H.; Kim, J.-H.; Bokare, V.; Kim, E.-J.; Chang, Y.-Y.; Chang, Y.-S. Enhanced Removal of Chromate from Aqueous Solution by Sequential Adsorption–Reduction on Mesoporous Iron–Iron Oxide Nanocomposites. J Nanopart Res. 2012, 14(8), 1010. DOI: 10.1007/s11051-012-1010-6.
  • Weilong, W.; Xiaobo, F. Efficient Removal of Cr(vi) with Fe/Mn Mixed Metal Oxide Nanocomposites Synthesized by a Grinding Method. J. Nanomater. 2013, 2013, 1–8. DOI: 10.1155/2013/514917.
  • Dey, S.; Bhattacharjee, S.; Chaudhuri, M. G.; Bose, R. S.; Halder, S.; Ghosh, C. K. Synthesis of Pure Nickel(iii) Oxide Nanoparticles at Room Temperature for Cr(vi) Ion Removal. R.S.C. Adv. 2015, 5(67), 54717–54726. DOI: 10.1039/C5RA05810D.
  • Bisht, G.; Neupane, S.; Makaju, R. Supercritical CO 2 Assisted Synthesis of EDTA-Fe 3 O 4 Nanocomposite with High Adsorption Capacity for Hexavalent Chromium. J. Nanomater. 2016, 2016, 1–10. DOI: 10.1155/2016/2192647.
  • Kumar, R.; Barakat, M. A.; Alseroury, F. A. Oxidized G-C3N4/Polyaniline Nanofiber Composite for the Selective Removal of Hexavalent Chromium. Sci. Rep. 2017, 7(1), 12850. DOI: 10.1038/s41598-017-12850-1.
  • Zhang, R.; Ma, H.; Wang, B. Removal of Chromium(vi) from Aqueous Solutions Using Polyaniline Doped with Sulfuric Acid. Ind. Eng. Chem. Res. 2010, 49(20), 9998–10004. DOI: 10.1021/ie1008794.
  • McKay, G.; Poots, V. J. P. Kinetics and Diffusion Processes in Colour Removal from Effluent Using Wood As an Adsorbent. J. Chem. Technol. Biotechnol. 2007, 30(1), 279–292. DOI: 10.1002/jctb.503300134.
  • Nogueira, A. E.; Giroto, A. S.; Neto, A. B. S.; Ribeiro, C. CuO Synthesized by Solvothermal Method As a High Capacity Adsorbent for Hexavalent Chromium. Colloids Surf. A Physicochem. Eng. Aspects 2016, 498, 161–167. DOI: 10.1016/j.colsurfa.2016.03.022.
  • Khan, S. U.; Zaidi, R.; Hassan, S. Z.; Farooqi, I. H.; Azam, A. Application of Fe-Cu Binary Oxide Nanoparticles for the Removal of Hexavalent Chromium from Aqueous Solution. Water Sci. Technol. 2016, 74(1), 165–175. DOI: 10.2166/wst.2016.172.
  • Gupta, V. K.; Chandra, R.; Tyagi, I.; Verma, M. Removal of Hexavalent Chromium Ions Using CuO Nanoparticles for Water Purification Applications. J. Coll. Interf. Sci. 2016, 478, 54–62. DOI: 10.1016/j.jcis.2016.05.064.
  • Preethi, J.; Prabhu, S. M.; Meenakshi, S. Effective Adsorption of Hexavalent Chromium Using Biopolymer Assisted Oxyhydroxide Materials from Aqueous Solution. React. Funct. Polym. 2017, 117, 16–24. DOI: 10.1016/j.reactfunctpolym.2017.05.006.
  • Khan, S. U.; Zaidi, R.; Hassan, S. Z.; Farooqi, I. H.; Azam, A. Application of Fe-Cu Binary Oxide Nanoparticles for the Removal of Hexavalent Chromium from Aqueous Solution. Water Sci. Technol. 2016, 74(1), 165–175. DOI: 10.2166/wst.2016.172.
  • Gupta, V. K.; Chandra, R.; Tyagi, I.; Verma, M. Removal of Hexavalent Chromium Ions Using CuO Nanoparticles for Water Purification Applications. J. Coll. Interf. Sci. 2016, 478, 54–62. DOI: 10.1016/j.jcis.2016.05.064.
  • Preethi, J.; Prabhu, S. M.; Meenakshi, S. Effective Adsorption of Hexavalent Chromium Using Biopolymer Assisted Oxyhydroxide Materials from Aqueous Solution. React. Funct. Polym. 2017, 117, 16–24. DOI: 10.1016/j.reactfunctpolym.2017.05.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.