186
Views
4
CrossRef citations to date
0
Altmetric
Articles

Mud acts as a noise dampener in Australian passerine nests

ORCID Icon
Pages 45-52 | Received 15 Mar 2018, Accepted 29 Jul 2018, Published online: 26 Aug 2018

References

  • Asuquo, U., Obisung, E., and Faithpraise, F. (2010). Sound absorbing properties of different density local acoustic materials. International Research Journals 1, 039–041.
  • Barber, J. R., Crooks, K. R., and Fristrup, K. M. (2010). The costs of chronic noise exposure for terrestrial organisms. Trends in Ecology & Evolution 25, 180–189. doi:10.1016/j.tree.2009.08.002
  • Bayne, E. M., Habib, L., and Boutin, S. (2008). Impacts of chronic anthropogenic noise from energy-sector activity on abundance of songbirds in the boreal forest. Conservation Biology 22, 1186–1193. doi:10.1111/j.1523-1739.2008.00973.x
  • Berardi, U., and Iannace, G. (2015). Acoustic characterization of natural fibers for sound absorption applications. Building and Environment 94, 840–852. doi:10.1016/j.buildenv.2015.05.029
  • Beruldsen, G. (2003). ‘Australian Birds Their Nests and Eggs,’ Revised edn. (G & E Beruldsen: Kenmore Hills, Australia).
  • Blickley, J. L., and Patricelli, G. L. (2010). Impacts of anthropogenic noise on wildlife: Research priorities for the development of standards and mitigation. Journal of International Wildlife Law Policy 13, 274–292. doi:10.1080/13880292.2010.524564
  • Blickley, J. L., Word, K. R., Krakauer, A. H., Phillips, J. L., Sells, S. N., Taff, C. C., Wingfield, J. C. et al. (2012). Experimental chronic noise is related to elevated fecal corticosteroid metabolites in lekking male Greater Sage-Grouse (Centrocercus urophasianus). PLoS ONE 7, e50462. doi:10.1371/journal.pone.0050462
  • Blumenrath, S. H., Dabelsteen, T., and Pedersen, S. B. (2004). Being inside nest boxes: Does it complicate the receiving conditions for great tit parus major females? Bioacoustics 14, 209–223. doi:10.1080/09524622.2004.9753526
  • Brischoux, F., Meillère, A., Dupoué, A., Lourdais, O., and Angelier, F. (2017). Traffic noise decreases nestlings’ metabolic rates in an urban exploiter. Journal of Avian Biology 48, 905–909. doi:10.1111/jav.2017.v48.i7
  • Brooker, M., and Rowley, I. (1991). Impact of wildfire on the nesting behaviour of birds in heathland. Wildlife Research 18, 249–263. doi:10.1071/WR9910249
  • Bucur, V. (2006). ‘Urban Forest Acoustics.’ (Springer-Verlag: Heidelberg.)
  • Cardoso, G. C. (2014). Nesting and acoustic ecology, but not phylogeny, influence passerine urban tolerance. Global Change Biology 20, 803–810. doi:10.1111/gcb.12410
  • Chen, H. L., and Koprowski, J. L. (2015). Animal occurrence and space use change in the landscape of anthropogenic noise. Biological Conservation 192, 315–322. doi:10.1016/j.biocon.2015.10.003
  • Crino, O. L., Johnson, E. E., Blickley, J. L., Patricelli, G. L., and Breuner, C. W. (2013). Effects of experimentally elevated traffic noise on nestling white-crowned sparrow stress physiology, immune function and life history. The Journal of Experimental Biology 216, 2055–2062. doi:10.1242/jeb.081109
  • Fairhurst, E. N., Horn, A. G., and Leonard, M. L. (2013). Nest acoustics and begging call structure in nestling tree swallows. Animal Behaviour 85, 917–923. doi:10.1016/j.anbehav.2013.02.007
  • Francis, C. D., Paritsis, J., Ortega, C. P., and Cruz, A. (2011). Landscape patterns of avian habitat use and nest success are affected by chronic gas well compressor noise. Landscape Ecology 26, 1269–1280. doi:10.1007/s10980-011-9609-z
  • Gelman, A., and Hill, J. 2006. Data Analysis Using Regression and Multilevel/hierarchical Models. (Cambridge University Press: Cambridge.)
  • Guilford, T., and Dawkins, M. S. (1991). Receiver psychology and the evolution of animal signals. Animal Behaviour 42, 1–14. doi:10.1016/S0003-3472(05)80600-1
  • Halfwerk, W., Both, C., and Slabbekoorn, H. (2016). Noise affects nest-box choice of two competing songbird species, but not their reproduction. Behavioral Ecology 27, 1592–1600.
  • Halfwerk, W., Holleman, L. J. M., Lessells, C. M., and Slabbekoorn, H. (2011). Negative impact of traffic noise on avian reproductive success. Journal of Applied Ecology 48, 210–219. doi:10.1111/j.1365-2664.2010.01914.x
  • Hammad, R. N. S., and Gibbs, B. M. (1983). The acoustic performance of building façades in hot climates: Part 2 – Closed balconies. Applied Acoustics 16, 441–454. doi:10.1016/0003-682X(83)90011-7
  • Haskell, D. (1994). Experimental evidence that nestling begging behaviour incurs a cost due to nest predation. Proceedings of the Royal Society B: Biological Sciences 257, 161–164.
  • Huet Des Aunay, G., Grenna, M., Slabbekoorn, H., Nicolas, P., Nagle, L., Leboucher, G., Malacarne, G. et al. (2017). Negative impact of urban noise on sexual receptivity and clutch size in female domestic canaries. Ethology 123, 843–853. doi:10.1111/eth.12659
  • Kight, C. R., and Swaddle, J. P. (2011). How and why environmental noise impacts animals: An integrative, mechanistic review. Ecology Letters 14, 1052–1061. doi:10.1111/j.1461-0248.2011.01664.x
  • Kleist, N. J., Guralnick, R. P., Cruz, A., and Francis, C. D. (2017). Sound settlement: Noise surpasses land cover in explaining breeding habitat selection of secondary cavity-nesting birds. Ecological Applications 27, 260–273. doi:10.1002/eap.1437
  • Korner-Nievergelt, F., Roth, T., Felten, S. V., Guelat, J., Almasi, B., and Korner-Nievergelt, P. (2015). ‘Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS and Stan.’ (Elsevier: London.)
  • Leonard, M. L., and Horn, A. G. (2005). Ambient noise and the design of begging signals. Proceedings of the Royal Society B: Biological Sciences 272, 651–656. doi:10.1098/rspb.2004.3021
  • Leonard, M. L., and Horn, A. G. (2008). Does ambient noise affect growth and begging call structure in nestling birds? Behavioral Ecology 19, 502–507. doi:10.1093/beheco/arm161
  • Leonard, M. L., and Horn, A. G. (2012). Ambient noise increases missed detections in nestling birds. Biology Letters 8, 530–532. doi:10.1098/rsbl.2012.0032
  • Leonard, M. L., Horn, A. G., Oswald, K. N., and McIntyre, E. (2015). Effect of ambient noise on parent–Offspring interactions in tree swallows. Animal Behaviour 109, 1–7. doi:10.1016/j.anbehav.2015.07.036
  • Lucass, C., Eens, M., and Müller, W. (2016). When ambient noise impairs parent-offspring communication. Environmental Pollution 212, 592–597. doi:10.1016/j.envpol.2016.03.015
  • Magrath, R. D., Haff, T. M., Horn, A. G., and Leonard, M. L. (2010). Chapter 6 – calling in the face of danger: Predation risk and acoustic communication by parent birds and their offspring. In ‘Advances in the Study of Behavior. Vol. 41’. (Eds H. J. Brockmann, T. J. Roper, M. Naguib, K. E. Wynne-Edwards, J. C. Mitani, and L. W. Simmons.) pp. 187–253. (Academic Press: Burlington)
  • McCarthy, M. A. (2007). ‘Bayesian Methods for Ecology.’ (University Press: Cambridge.)
  • McClure, C. J., Ware, H. E., Carlisle, J., Kaltenecker, G., and Barber, J. R. (2013). An experimental investigation into the effects of traffic noise on distributions of birds: Avoiding the phantom road. Proceedings of the Royal Society B: Biological Sciences 280, 20132290.
  • McIntyre, E., Leonard, M. L., and Horn, A. G. (2014). Ambient noise and parental communication of predation risk in tree swallows, Tachycineta bicolor. Animal Behaviour 87, 85–89. doi:10.1016/j.anbehav.2013.10.013
  • Mealings, K. T., Buchholz, J. M., Demuth, K., and Dillon, H. (2015). Investigating the acoustics of a sample of open plan and enclosed Kindergarten classrooms in Australia. Applied Acoustics 100, 95–105. doi:10.1016/j.apacoust.2015.07.009
  • Meillère, A., Brischoux, F., Ribout, C., and Angelier, F. (2015). Traffic noise exposure affects telomere length in nestling house sparrows. Biology Letters, 11.
  • Mennill, D. J., and Ratcliffe, L. M. (2004). Nest cavity orientation in black-capped chickadees Poecile atricapillus: Do the acoustic properties of cavities influence sound reception in the nest and extra-pair matings? Journal of Avian Biology 35, 477–482. doi:10.1111/jav.2004.35.issue-6
  • Munoz, N. E., and Blumstein, D. T. (2012). Multisensory perception in uncertain environments. Behavioral Ecology 23, 457–462. doi:10.1093/beheco/arr220
  • Parris, K. M., and McCarthy, M. A. (2013). Predicting the effect of urban noise on the active space of avian vocal signals. American Naturalist 182, 452–464. doi:10.1086/671906
  • Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and Team, R. C. (2018). nlme: Linear and nonlinear mixed effects models. In ‘R Package Version 3.1-131.1.’
  • Potvin, D. A. (2017). Coping with a changing soundscape: Avoidance, adjustments and adaptations. Animal Cognition 20, 9–18. doi:10.1007/s10071-016-0999-9
  • Potvin, D. A., Curcio, M. T., Swaddle, J. P., and MacDougall-Shackleton, S. A. (2016). Experimental exposure to urban and pink noise affects brain development and song learning in zebra finches (Taenopygia guttata). PeerJ 4, e2287. doi:10.7717/peerj.2287
  • Potvin, D. A., and MacDougall-Shackleton, S. A. (2015). Traffic noise affects embryo mortality and nestling growth rates in captive zebra finches. Journal of Experimental Zoology A 323, 722–730. doi:10.1002/jez.1965
  • Proppe, D. S., Sturdy, C. B., and St. Clair, C. C. (2013). Anthropogenic noise decreases urban songbird diversity and may contribute to homogenization. Global Change Biology 19, 1075–1084. [In 1354–1013]. doi:10.1111/gcb.12098
  • Reethof, G., Frank, L. D., and McDaniel, O. H. (1976). ‘Absorption of Sound by Tree Bark.’ (USDA Forest Service, U.S. Department of Agriculture: Upper Darby, PA, USA.)
  • Schroeder, J., Nakagawa, S., Cleasby, I. R., and Burke, T. (2012). Passerine birds breeding under chronic noise experience reduced fitness. PLoS ONE 7, e39200. doi:10.1371/journal.pone.0039200
  • Wang, Y., Chen, S., Blair, R. B., Jiang, P., and Ding, P. (2009). Nest composition adjustments by Chinese bulbuls pycnonotus sinensis in an urbanised landscape of Hangzhou (E China). Acta Ornithologica 44, 185–192. doi:10.3161/000164509X482768
  • Yang, Z., Dai, H. M., Chan, N. H., Ma, G. C., and Sheng, P. (2010). Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime. Applied Physics Letters 96, 041906. doi:10.1063/1.3299007
  • Yeh, P. J., Hauber, M. E., and Price, T. D. (2007). Alternative nesting behaviours following colonisation of a novel environment by a passerine bird. Oikos 116, 1473–1480. doi:10.1111/oik.2007.116.issue-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.