241
Views
7
CrossRef citations to date
0
Altmetric
Articles

Do beak volume and bite force influence the song structure of sympatric species of seedeaters (Thraupidae: Sporophila)?

ORCID Icon, &
Pages 71-78 | Received 05 Apr 2018, Accepted 08 Oct 2018, Published online: 29 Oct 2018

References

  • Areta, J. I. (2008). The entre ríos seedeater (Sporophila zelichi): A species that never was. Journal of Field Ornithology 79, 352–363. doi:10.1111/jofo.2008.79.issue-4
  • Areta, J. I., and Repenning, M. (2011). Systematics of the Tawny-Bellied Seedeater (Sporophila hypoxantha). I. Geographic variation, ecology, and evolution of vocalizations. The Condor 113, 664–677. doi:10.1525/cond.2011.100058
  • Ballentine, B. (2006). Morphological adaptation influences the evolution of a mating signal. Evolution 60, 1936–1944.
  • Baptista, L. F. (1996). ‘Apuntamientos para la historia natural de lós páxaros Del Paraguai y Río de La Plata’. (Imprenta de La Viuda de Ibarra: Madrid.)
  • Barker, F. K., Burns, K. J., Klicka, J., Lanyon, S. M., and Lovette, I. J. (2015). New insights into New World biogeography: An integrated view from the phylogeny of blackbirds, cardinals, sparrows, tanagers, warblers, and allies. The Auk 132, 333–348. doi:10.1642/AUK-14-110.1
  • Brumm, H., and Zollinger, S. A. (2011). The evolution of the Lombard effect: 100 years of psychoacoustic research. Behavior 148, 1173–1198. doi:10.1163/000579511X605759
  • Burns, K. J., Shultz, A. J., Title, P. O., Mason, N. A., Barker, F. K., Klicka, J., Lanyon, S. M. et al. (2014). Phylogenetics and diversification of tanagers (Passeriformes: Thraupidae), the largest radiation of Neotropical songbirds. Molecular Phylogenetics and Evolution 75, 41–77. doi:10.1016/j.ympev.2014.02.006
  • Burns, K. J., Unitt, P., and Mason, N. A. (2016). A genus-level classification of the family Thraupidae (Class Aves: Order Passeriformes). Zootaxa 4088(3), 329–354. doi:10.11646/zootaxa.4088.3.2
  • Buskirk, J. V. (1997). Independent evolution of song structure and note structure in American wood warblers. Proceedings of the Royal Society B: Biological Sciences 264(1382), 755–761. doi:10.1098/rspb.1997.0107
  • Campagna, L., Silveira, L. F., Tubaro, P. L., and Lougheed, S. C. (2013). Identifying the sister species to the rapid capuchino seedeater radiation (Passeriformes: Sporophila). The Auk 130, 645–655. doi:10.1525/auk.2013.13064
  • Cardoso, G. C., and Mota, P. G. (2007). Song diversification and complexity in canaries and seedeaters (Serinus spp.). Biological Journal of the Linneal Society 92, 183–194. doi:10.1111/j.1095-8312.2007.00837.x
  • Carsoso, G. C., Hu, Y., and Mota, P. G. (2012). Birdsong, sexual selection, and the flawed taxonomy of canaries, goldfinches and allies. Animal Behavior 84, 111–119. doi:10.1016/j.anbehav.2012.04.015
  • Catchpole, C. K., and Slater, P. J. B. (2008). ‘Bird Song: Biological Themes and Variations,’ 2nd edn. (Cambridge University Press: Cambridge, UK).
  • Christensen, R., Kleindorfer, S., and Robertson, J. (2006). Song is a reliable signal of bill morphology in Darwin’s small tree finch Camarhynchus parvulus, and vocal performance predicts male pairing success. Journal of Avian Biology 37, 617–624. doi:10.1111/jav.2006.37.issue-6
  • Derryberry, E. P., Seddon, N., Claramunt, S., Tobias, J. A., Baker, A., Aleixo, A., and Brumfield, A. T. (2012). Correlated evolution of beak morphology and song in the Neotropical woodcreeper radiation. Evolution 69, 2784–2797. doi:10.1111/j.1558-5646.2012.01642.x
  • Endler, J. A. (1992). Signals, signal conditions, and the direction of evolution. The American Naturalist 139, 125–153. doi:10.1086/285308
  • Franz, I., and Fontana, C. S. (2013). Breeding biology of the Tawny-Bellied Seedeater (Sporophila hypoxantha) in southern Brazilian upland grasslands. The Wilson Journal of Ornithology 125, 280–292. doi:10.1676/12-059.1
  • Freeman, P. W., and Lemen, C. A. (2008). Measuring bite force in small mammals with a piezo-resistive sensor. Journal of Mammalogy 89, 513–517. doi:10.1644/07-MAMM-A-101R.1
  • García, N., and Tubaro, P. L. (2018). Dissecting the roles of body size and beak morphology in song evolution in the “blue” cardinals (Passeriformes: Cardinalidae). The Auk 135, 262–275. doi:10.1642/AUK-17-146.1
  • Genbrugge, A., Herrel, A., Boone, M., Hoorebeke, L. V., Podos, J., Dirckx, J., Aerts, P. et al. (2011). The head of the finch: The anatomy of the feeding system in two species of finches (Geospiza fortis and Padda oryzivora). Journal of Anatomy 219, 676–695. doi:10.1111/j.1469-7580.2011.01437.x
  • Giraudeau, M., Nolan, P. M., Black, C. E., Earl, S. R., Hasegawa, M., and McGraw, K. J. (2014). Song characteristics track bill morphology along a gradient of urbanization in house finches (Hamorhous mexicanus). Frontiers in Zoology 11, 83. doi:10.1186/s12983-014-0083-8
  • Grant, B. R., and Grant, P. R. (1979). Darwin’s finches: Population variation and sympatric speciation. Proceedings of the National Academy of Sciences of the United States of America 76, 2359–2363.
  • Grenier, J. L., and Greenberg, R. (2005). A biogeographic pattern in sparrow Bill morphology: Parallel adaptation to tidal marshes. Evolution 59, 1588–1595. doi:10.1554/04-502
  • Herrel, A., Podos, J., Huber, S. K., and Hendry, A. P. (2005). Bite performance and morphology in a population of Darwin’s finches: Implications for the evolution of beak shape. Functional Ecology 19, 43–48. doi:10.1111/fec.2005.19.issue-1
  • Herrel, A., Podos, J., Vanhooydonck, B., and Hendry, A. P. (2009). Force-velocity trade-off in Darwin’s finch jaw function: A biomechanical basis for ecological speciation? Functional Ecology 23, 119–125. doi:10.1111/fec.2009.23.issue-1
  • Hoese, W. J., Podos, J., Boetticher, N. C., and Nowicki, S. (2000). Vocal tract function in birdsong production: Experimental manipulations of beak movements. The Journal of Experimental Biology 203, 1845–1855.
  • Huber, S. K., and Podos, J. (2006). Beak morphology and song features covary in a population of Darwin’s finches (Geospiza fortis). Biological Journal of the Linnean Society 88, 489–498. doi:10.1111/bij.2006.88.issue-3
  • Lack, D. (1947). ‘Darwin’s Finches’. (Cambridge University Press: Cambridge, UK.)
  • Linskens, H. F., Martens, M. J. M., Hendrikssen, H. J. G. M., Roestenberg-Sinnige, A. M., Browers, W. A. J. M., van der Staak, A. L. H. C., and Strik-Jansen, A. M. J. (1976). The acoustic climate of plant communities. Oecologia 23, 165–177. doi:10.1007/BF00361233
  • Marler, P., Slabbekoorn, H. V., and Bowman, R. I. (2004). ‘Nature’s Music: The Science of Birdsong’. (Elsevier Academic: Boston, MA.)
  • Martin, J. P., Doucet, S. M., Knox, R. C., and Mennill, D. J. (2011). Body size correlates negatively with the frequency of distress calls and songs of Neotropical birds. Journal of Field Ornithology 82, 259–268. doi:10.1111/jofo.2011.82.issue-3
  • Mason, N. A., and Burns, K. J. (2013). Molecular phylogenetics of the neotropical seedeaters and seed-finches (Sporophila. Oryzoborus. Dolospingus). Ornitologia Neotropical 24, 139–155.
  • Mason, N. A., and Burns, K. J. (2015). The effect of habitat and body size on the evolution of vocal displays in Thraupidae (tanagers), the largest family of songbirds. Biological Journal of the Linnean Society 114, 538–551. doi:10.1111/bij.12455
  • Morton, E. (1975). Ecological sources of selection on avian sounds. The American Naturalist 109, 17–34. doi:10.1086/282971
  • Nowicki, S. (1987). Vocal tract resonances in oscine bird sound production: Evidence from birdsongs in a helium atmosphere. Nature 325, 53–55. doi:10.1038/325053a0
  • Podos, J. (1997). A performance constraint on the evolution of trilled vocalizations in a songbird family (Passeriformes: Emberezidae). Evolution 51, 537–551. doi:10.1111/j.1558-5646.1997.tb02441.x
  • Podos, J. (2001). Correlated evolution of morphology and vocal signal structure in Darwin’s Finches. Nature 409, 185–188. doi:10.1038/35051570
  • Podos, J., Huber, S., and Taft, B. (2004). Bird song: The interface of evolution and mechanisms. Annual Review of Ecology, Evolution, and Systematics 35, 55–87. doi:10.1146/annurev.ecolsys.35.021103.105719
  • Podos, J., and Nowicki, S. (2004). Beaks, adaptation, and vocal evolution in Darwin’s finches. BioScience 54, 501–510. doi:10.1641/0006-3568(2004)054[0501:BAAVEI]2.0.CO;2
  • Price, J. J., and Lanyon, S. M. (2002). Reconstructing the evolution of the complex bird song in the oropendolas. Evolution 56(7), 1514–1529. doi:10.1554/0014-3820(2002)056[1514:RTEOCB]2.0.CO;2
  • R Core Team. (2016). ‘R: A Language and Environment for Statistical Computing’. (R Foundation for Statistical Computing: Vienna, Austria.)
  • Ratcliffe, L. M., and Grant, P. R. (1985). Species recognition in Darwin’s finches (Geospiza, Gould). III. Male responses to playback of different song types, dialects and heterospecific songs. Animal Behaviour 33, 290–307. doi:10.1016/S0003-3472(85)80143-3
  • Repenning, M., and Fontana, C. (2013). A new species of gray seedeater (Emberezidae: Sporophila) from upland grasslands of southern Brazil. The Auk 130, 791–803. doi:10.1525/auk.2013.12167
  • Repenning, M., Rovedder, C. E., and Fontana, C. F. (2010). Another color morph of Sporophila Seedeater from the capuchinos group (Aves. Emberezidae). Iheringia Série Zoologia 100, 369–378. doi:10.1590/S0073-47212010000400012
  • Richards, D. G., and Wiley, R. H. (1980). Reverberations and amplitude fluctuations in the propagation of sound in a forest: Implications for animal communication. The American Naturalist 115, 381–933. doi:10.1086/283568
  • Roos, A. L. (2010). Capturando aves. In ‘Ornitologia e Conservação: Ciência Aplicada, Técnicas de Pesquisa e Levantamento’. 1st edn. (Eds S. Von Matter, F. C. Straube, V. Q. Piacentini, I. A. Accordi, and J. F. Cândido Jr.) pp. 79–104. (Technical Books Editora: Rio de Janeiro.)
  • Ryan, M. J., and Brenowitz, E. A. (1985). The role of body size, phylogeny, and ambient noise in the evolution of bird song. The American Naturalist 126, 87–100. doi:10.1086/284398
  • West, G. B., Brown, J. H., and Enquist, B. J. (1997). A general model for the origin of allometric scaling laws in biology. Science 276, 122–126.
  • Westneat, M. W., Long, J. H. Jr., Hoese, W., and Nowicki, S. (1993). Kinematics of birdsong: Functional correlation of cranial movements and acoustic features in sparrows. The Journal of Experimental Biology 182, 147–171.
  • Wiley, R. H., and Richards, D. G. (1978). Physical constraints on acoustic communication in the atmosphere: Implications for the evolution of animal vocalizations. Behavioral Ecology and Sociobiology 3, 69–94. doi:10.1007/BF00300047
  • Wilson, D. R., Bitton, P. P., Podos, J., and Mennill, D. J. (2014). Uneven sampling and the analysis of vocal performance constraint. The American Naturalist 183, 214–228. doi:10.1086/674379

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.