277
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Evolution in aviculture: loss of genetic diversity and head-colour morph frequency divergence in the domesticated Gouldian Finch (Erythrura gouldiae)

ORCID Icon & ORCID Icon
Pages 55-67 | Received 13 May 2020, Accepted 30 Nov 2020, Published online: 05 Jun 2021

References

  • Araki, H., Cooper, B., and Blouin, M. S. (2007). Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science 318(5847), 100–103. doi:10.1126/science.1145621
  • Archer, F. I., Adams, P. E., and Schneiders, B. B. (2017). Stratag: An R package for manipulating, summarizing and analysing population genetic data. Molecular Ecology Resources 17, 5–11. doi:10.1111/1755-0998.12559
  • Bolton, P. E. (2017). Colourful Conservation: Genetic Incompatibility and Conservation Genetics of the Wild Gouldian Finch (Erythrura gouldiae). Ph.D. Thesis, Macquarie University, Sydney, Australia.
  • Bolton, P. E., Rollins, L. A., Brazill-Boast, J., Kim, K.-W., Burke, T., and Griffith, S. C. (2017). The colour of paternity: Extra-pair paternity in the wild Gouldian Finch does not appear to be driven by genetic incompatibility between morphs. Journal of Evolutionary Biology 30(1), 174–190. doi:10.1111/jeb.12997
  • Bolton, P. E., West, A. J., Cardilini, A. P. A., Clark, J. A., Maute, K. L., Legge, S., Brazill-Boast, J., et al. (2016). Three molecular markers show no evidence of population genetic structure in the Gouldian Finch (Erythrura gouldiae). Plos One 11, e0167723. doi:10.1371/journal.pone.0167723
  • Brazill-Boast, J., Griffith, S. C., and Pryke, S. R. (2013). Morph-dependent resource acquisition and fitness in a polymorphic bird. Evolutionary Ecology 27(6), 1189–1198. doi:10.1007/s10682-013-9651-1
  • Christie, M. R., Marine, M. L., French, R. A., and Blouin, M. S. (2012). Genetic adaptation to captivity can occur in a single generation. Proceedings of the National Academy of Sciences of the United States of America 109, 238–242. doi:10.1073/pnas.1111073109
  • Courtney Jones, S. K., Munn, A. J., and Byrne, P. G. (2017). Effects of captivity on house mice behaviour in a novel environment: Implications for conservation practices. Applied Animal Behaviour Science 189, 98–106. doi:10.1016/j.applanim.2017.01.007
  • Courtney Jones, S. K., Munn, A. J., and Byrne, P. G. (2018). Effect of captivity on morphology: Negligible changes in external morphology mask significant changes in internal morphology. Royal Society Open Science 5, 172470. doi:10.1098/rsos.172470
  • Coyle, B. J., Braun, M. J., Rodriguez-Clark, K. M., and Ovalle Moleiro, L. (2013). Recovering the endangered Red Siskin. Journal of the National Finch and Softbill Society 30, 30–38.
  • Darwin, C. R. (1859). ‘On the Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life.’ (London.): John Murray.)
  • Excoffier, L. G., and Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetic analyses under Linux and Windows. Molecular Ecology Resources 10, 564–567. doi:10.1111/j.1755-0998.2010.02847.x
  • Falconer, D. S., and Mackay, T. F. C. 1996. Introduction to Quantitative Genetics. 4th. Longman:Harlow, England..
  • Fischer, J., and Lindenmayer, D. B. (2000). An assessment of the published results of animal translocations. Biological Conservation 96, 1–11.
  • Fisher, D. N., James, A., Rodríguez-Muñoz, R., and Tregenza, T. (2015). Behaviour in captivity predicts some aspects of natural behaviour, but not others, in a wild cricket population. Proceedings of the Royal Society B: Biological Sciences 282, 20150708. doi:10.1098/rspb.2015.0708
  • Fiumera, A. C., Parker, P. G., and Fuerst, P. A. (2000). Effective population size and maintenance of genetic diversity in captive-bred populations of a lake Victoria Cichlid. Conservation Biology 14, 886–892. doi:10.1046/j.1523-1739.2000.97337.x
  • Forstmeier, W., Segelbacher, G., Mueller, J. C., and Kempenaers, B. (2007). Genetic variation and differentiation in captive and wild zebra Finches (Taeniopygia guttata). Molecular Ecology 16, 4039–4050. doi:10.1111/j.1365-294X.2007.03444.x
  • Frankham, R. (2008). Genetic adaptation to captivity in species conservation programs. Molecular Ecology 17, 325–333. doi:10.1111/j.1365-294X.2007.03399.x
  • Frankham, R., Ballou, J. D., and Briscoe, D. A. (2010). ‘Introduction to Conservation Genetics.’ (Cambridge University Press: Cambridge, UK.)
  • Franklin, D. C., Burbidge, A. H., and Dostine, P. L. (1999). The harvest of wild birds for aviculture: An historical perspective on Finch trapping in the Kimberley with special emphasis on the Gouldian Finch. Australian Zoologist 31, 92–109. doi:10.7882/AZ.1999.010
  • Franklin, D. C., and Dostine, P. L. (2000). A note on the frequency and genetics of head colour morphs in the Gouldian Finch. Emu 100, 236–239. doi:10.1071/MU00911
  • Fraser, D. J. (2008). How well can captive breeding programs conserve biodiversity? A review of salmonids. Evolutionary Applications 1, 535–586. doi:10.1111/j.1752-4571.2008.00036.x
  • Fridolfsson, A.-K., and Ellegren, H. (1999). A simple and universal method for molecular sexing of non-ratite birds. Journal of Avian Biology 20, 116–121. doi:10.1242/jeb.089763
  • Gilby, A. J., Pryke, S. R., and Griffith, S. C. (2009). The historical frequency of head-colour morphs in the Gouldian Finch (Erythrura gouldiae). Emu 109, 222–229. doi:10.1071/MU09013
  • Goldberg, C. S., and Waits, L. P. (2010). Quantification and reduction of bias from sampling larvae to infer population and landscape genetic structure. Molecular Ecology Resources 10, 304–313. doi:10.1111/j.1755-0998.2009.02755.x
  • Goudet, J. (2005). Hierfstat, a package for R to compute and test variance components and F-statistics. Molecular Ecology Notes 5, 184–186. doi:10.1111/j.1471-8286.2004.00828.x
  • Griffith, S. C., Crino, O. L., Andrew, S. C., Nomano, F. Y., Adkins-Regan, E., Alonso-Alvarez, C., Bailey, I. E., et al. (2017). Variation in reproductive success across captive populations: methodological differences, potential biases and opportunities. Ethology 123, 1–29. doi:10.1111/eth.12576
  • Griffith, S. C., Pryke, S. R., and Buttemer, W. A. (2011). Constrained mate choice in social monogamy and the stress of having an unattractive partner. Proceedings of the Royal Society of London B: Biological Sciences 278, 2798–2805. doi:10.1098/rspb.2010.2672
  • Jost, L. (2008). GST and its relatives do not measure differentiation. Molecular Ecology 17, 4015–4026. doi:10.1111/j.1365-294X.2008.03887.x
  • Jost, L., Archer, F., Flanagan, S., Latch, E., Latch, E., and Latch, E. (2018). Differentiation measures for conservation genetics. Evolutionary Applications 11, 1139–1148. doi:10.1111/eva.12590
  • Jule, K. R., Leaver, L. A., and Lea, S. E. G. (2008). The effects of captive experience on reintroduction survival in carnivores: A review and analysis. Biological Conservation 141, 355–363. doi:10.1016/j.biocon.2007.11.007
  • Kamzar, Z., Tabima, J., and Grunwald, N. (2014). Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281. doi:10.7717/peerj.281
  • Kim, K., Jackson, B. C., Zhang, H., Toews, D. P. L., Taylor, S. A., Greig, E. I., Lovette, I. J., et al. (2019). Genetics and evidence for balancing selection of a sex-linked colour polymorphism in a songbird. Nature Communications 10, 1852. doi:10.1038/s41467-019-09806-6
  • Kokko, H., Griffith, S. C., and Pryke, S. R. (2014). The hawk − dove game in a sexually reproducing species explains a colourful polymorphism of an endangered bird. Proceedings of the Royal Society B: Biological Sciences 281, 20141794. doi:10.1098/rspb.2014.1794
  • Krause, E. T., Krüger, O., Hoffman, J. I., and Roulin, A. (2017). The influence of inherited plumage colour morph on morphometric traits and breeding investment in zebra Finches (Taeniopygia guttata). PLoS ONE 12, e0188582. doi:10.1371/journal.pone.0188582
  • Mäkinen, H., Vasemägi, A., Mcginnity, P., Cross, T. F., and Primmer, C. R. (2015). Population genomic analyses of early-phase Atlantic Salmon (Salmo salar) domestication/captive breeding. Evolutionary Applications 8, 93–107. doi:10.1111/eva.12230
  • McDonald, P. G., and Griffith, S. C. (2011). To pluck or not to pluck: The hidden ethical and scientific costs of relying on feathers as a primary source of DNA. Journal of Avian Biology 42, 197–203. doi:10.1111/j.1600-048X.2011.05365.x
  • Milligan, B. (2003). Maximum-likelihood estimation of relatedness. Genetics 163, 1153–1167.
  • Moseby, K. E., Blumstein, D. T., and Letnic, M. (2016). Harnessing natural selection to tackle the problem of prey naïveté. Evolutionary Applications 9, 334–343. doi:10.1111/eva.12332
  • Nielsen, R. K., Pertoldi, C., and Loeschcke, V. 2007. Genetic evaluation of the captive breeding program of the Persian wild ass. Journal of Zoology 272, 349–357. 10.1111/j.1469-7998.2007.00294.x
  • Nijman, V., Langgeng, A., Birot, H., Imron, M. A., and Nekaris, K. A. I. 2018. Wildlife trade, captive breeding and the imminent extinction of a songbird. Global Ecology and Conservation 15, 10.1016/j.gecco.2018.e00425
  • O’Malley, C. (2006). ‘National Recovery Plan for the Gouldian Finch (Erythrura Gouldiae).’ (WWF-Australia, Sydney and Parks and Wildlife NT, Department of Natural Resources, Environment and the Arts, NT Government: Palmerston.)
  • Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, D. P., McGlinn, D., Minchin, P. R., et al. (2017). ‘Vegan: community ecology package.’ R package version 2.4-3. Available at: https://cran.r-project.org/package=vegan
  • Olsson, M., Healey, M., Wapstra, E., Schwartz, T., Lebas, N., and Uller, T. (2007). Mating system variation and morph fluctuations in a polymorphic lizard. Molecular Ecology 16, 5307–5315. doi:10.1111/j.1365-294X.2007.03578.x
  • Paradis, E. (2010). pegas: An R package for population genetics with an integrated-modular approach. Bioinformatics 26, 419–420. doi:10.1093/bioinformatics/btp696
  • Paradis, E., Claude, J., and Strimmer, K. (2004). APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290. doi:10.1093/bioinformatics/btg412
  • Pennings, P. S. (2012). ‘R Code for calculating Jost D for mtDNA sequences.’ Available at: https://pleunipennings.wordpress.com/2012/10/23/r-code-for-calculating-jost-d-for-mtdna-sequences/[ accessed 4 April 2019]
  • Pennings, P. S., Achenbach, A., and Foitzik, S. (2011). Similar evolutionary potentials in an obligate ant parasite and its two host species. Journal of Evolutionary Biology 24, 871–886. doi:10.1111/j.1420-9101.2010.02223.x
  • Pew, J., Muir, P. H., Wang, J., and Frasier, T. R. (2015). Related: An R package for analysing pairwise relatedness from codominant molecular markers. Molecular Ecology Resources 15, 557–561. doi:10.1111/1755-0998.12323
  • Pryke, S. R. (2007). Fiery red heads: Female dominance among head color morphs in the Gouldian Finch. Behavioral Ecology 18, 621–627. doi:10.1093/beheco/arm020
  • Pryke, S. R., Astheimer, L. B., Buttemer, W. A., and Griffith, S. C. (2007). Frequency-dependent physiological trade-offs between competing colour morphs. Biology Letters 3, 494–497. doi:10.1098/rsbl.2007.0213
  • Pryke, S. R., and Griffith, S. C. (2006). Red dominates black: Agonistic signalling among head morphs in the colour polymorphic Gouldian Finch. Proceedings of the Royal Society of London B: Biological Sciences 273, 949–957. doi:10.1098/rspb.2005.3362
  • Pryke, S. R., and Griffith, S. C. (2009a). Postzygotic genetic incompatibility between sympatric color morphs. Evolution 63, 793–798. doi:10.1111/j.1558-5646.2008.00584.x
  • Pryke, S. R., and Griffith, S. C. (2009b). Socially mediated trade-offs between aggression and parental effort in competing color morphs. American Naturalist 174, 455–464. doi:10.1086/605376
  • R Core Team (2018). ‘R: A language and environment for statistical computing.’ Available at: https://www.r-project.org/
  • Reed, D. H., and Frankham, R. (2003). Correlation between fitness and genetic diversity. Conservation Biology 17, 230–237. doi:10.1046/j.1523-1739.2003.01236.x
  • Rodríguez-Clark, K. M., Davidson, B., Kingston, S., Coyle, B. J., Duchesne, P., and Braun, M. J. (2018). Evaluating a potential source of founders for ex situ conservation efforts: Genetic differentiation between disjunct populations of the endangered red siskin Spinus cucullatus. Endangered Species Research 36, 183–196. doi:10.3354/esr00898
  • Rodríguez-Ramilo, S. T., and Wang, J. (2012). The effect of close relatives on unsupervised Bayesian clustering algorithms in population genetic structure analysis. Molecular Ecology Resources 12, 873–884. doi:10.1111/j.1755-0998.2012.03156.x
  • Rollins, L. A., Svedin, N., Pryke, S. R., and Griffith, S. C. (2012). The role of the Ord Arid intrusion in the historical and contemporary genetic division of long-tailed Finch subspecies in northern Australia. Ecology and Evolution 2, 1208–1219. doi:10.1002/ece3.259
  • Southern, H. N. (1945). Polymorphism in Poephila gouldiae Gould. Journal of Genetics 47, 51–57. doi:10.1007/BF02989037
  • Tarszisz, E., Dickman, C. R., and Munn, A. J. (2014). Conservation physiology. Physiology in Conservation Translocations 1, cou054. doi:10.1093/conphys/cou054
  • The Red Siskin Initiative. (2017). The Red Siskin initiative. Available at: http://www.redsiskin.org/
  • Tidemann, S. C. (1996). Causes of the decline of the Gouldian Finch Erythrura gouldiae. Bird Conservation International 6, 49–61. doi:10.1017/S0959270900001301
  • Toomey, M. B., Marques, C., Andrade, P., Araújo, P. M., Sabatino, S., Gazda, M. A., Afonso, S., et al. (2018). A non-coding region near follistatin controls head color polymorphism in Gouldian Finch. Proceedings of the Royal Society B: Biological Sciences 285, 20181788. doi:10.1098/rspb.2018.1788
  • Waples, R. S., and Anderson, E. C. (2017). Purging putative siblings from population genetic data sets: A cautionary view. Molecular Ecology 26, 1211–1224. doi:10.1111/mec.14022
  • Williams, L. J., King, A. J., and Mettke-Hofmann, C. (2012). Colourful characters: Head colour reflects personality in a social bird, the Gouldian Finch, Erythrura gouldiae. Animal Behaviour 84, 159–165. doi:10.1016/j.anbehav.2012.04.025
  • Williams, S. E., and Hoffman, E. A. (2009). Minimizing genetic adaptation in captive breeding programs: A review. Biological Conservation 142, 2388–2400. doi:10.1016/j.biocon.2009.05.034
  • Willoughby, J. R., and Christie, M. R. (2019). Long-term demographic and genetic effects of releasing captive-born individuals into the wild. Conservation Biology 33, 377–388. doi:10.1111/cobi.13217

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.