536
Views
18
CrossRef citations to date
0
Altmetric
Articles

Green parallel machines scheduling problem: A bi-objective model and a heuristic algorithm to obtain Pareto frontier

, &
Pages 967-978 | Received 30 Apr 2018, Accepted 08 Mar 2019, Published online: 29 May 2019

References

  • Azizoglu, M., & Kirca, O. (1999). On the minimization of total weighted flow time with identical and uniform parallel machines. European Journal of Operational Research, 113(1), 91–100. doi:10.1016/S0377-2217(97)00427-X
  • Behnamian, J., Zandieh, M., & Fatemi Ghomi, S. M. T. (2009). Parallel-machine scheduling problems with sequence-dependent setup times using an ACO, SA and VNS hybrid algorithm. Expert Systems with Applications, 36(6), 9637–9644. doi:10.1016/j.eswa.2008.10.007
  • Brucker, P., & Shakhlevich, N. V. (2016). Necessary and sufficient optimality conditions for scheduling unit time jobs on identical parallel machines. Journal of Scheduling, 19(6), 659–685. doi:10.1007/s10951-016-0471-3
  • Che, A., Zhang, S., & Wu, X. (2017). Energy-conscious unrelated parallel machine scheduling under time-of-use electricity tariffs. Journal of Cleaner Production, 156, 688–697. doi:10.1016/j.jclepro.2017.04.018
  • Chen, J. F., & Wu, T. H. (2006). Total tardiness minimization on unrelated parallel machine scheduling with auxiliary equipment constraints. Omega, 34(1), 81–89. doi:10.1016/j.omega.2004.07.023
  • Cheng, T. C. E., & Sin, C. C. S. (1990). A state-of-the-art review of parallel-machine scheduling research. European Journal of Operational Research, 47(3), 271–292. doi:10.1016/0377-2217(90)90215-W
  • Deb K., Agrawal S., Pratap A., & Meyarivan T. (2000). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In M. Schoenauer M. et al. (eds), Parallel Problem Solving from Nature PPSN VI. PPSN 2000. Lecture Notes in Computer Science (vol. 1917, pp. 849–858). doi: 10.1007/3-540-45356-3_83
  • Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A fast elitist non-dominated sorting genetic algorithm for mullet-objective optimization: {NSGA-II}.
  • Ding, J. Y., Song, S., & Wu, C. (2016). Carbon-efficient scheduling of flow shops by multi-objective optimization. European Journal of Operational Research, 248(3), 758–771. doi:10.1016/j.ejor.2015.05.019
  • Fang, K., Uhan, N., Zhao, F., & Sutherland, J. W. (2011). A new approach to scheduling in manufacturing for power consumption and carbon footprint reduction. Journal of Manufacturing Systems, 30(4), 234–240. doi:10.1016/j.jmsy.2011.08.004
  • Giret, A., Trentesaux, D., & Prabhu, V. (2015). Sustainability in manufacturing operations scheduling: A state of the art review. Journal of Manufacturing Systems, 37, 126–140. doi:10.1016/j.jmsy.2015.08.002
  • Goh, C. K., & Tan, K. C. (2009). A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization. IEEE Transactions on Evolutionary Computation, 13 (1), 103–127.
  • Horn, W. A. (1973). Technical note—minimizing average flow time with parallel machines. Operations Research, 21(3), 846–847. doi:10.1287/opre.21.3.846
  • Horowitz, E., & Sahni, S. (1976). Exact and approximate algorithms for scheduling nonidentical processors. Journal of the ACM, 23(2), 317–327. doi:10.1145/321941.321951
  • Hwang, C., & Masud, A. S. M. (1979). Multiple objective decision making-methods and applications: A state-of-the-art survey. Springer-Verlag Berlin Heidelberg (Vol. 164) doi:10.1007/978-3-642-45511-7
  • Li, K., & Lin Yang, S. (2009). Non-identical parallel-machine scheduling research with minimizing total weighted completion times: models, relaxations and algorithms. Applied Mathematical Modelling, 33(4), 2145–2158. doi:10.1016/j.apm.2008.05.019
  • Liang, P., Yang, H. D., Liu, G. S., & Guo, J. H. (2015). An ant optimization model for unrelated parallel machine scheduling with energy consumption and total tardiness. Mathematical Problems in Engineering, 2015, 1–8. doi:10.1155/2015/907034
  • Liu, C. H., & Tsai, W. N. (2016). Multi-objective parallel machine scheduling problems by considering controllable processing times. Journal of the Operational Research Society., 67(4), 654–663. doi:10.1057/jors.2015.82
  • Li, K., Zhang, X., Leung, J. Y.-T., & Yang, S.-L. (2016). Parallel machine scheduling problems in green manufacturing industry. Journal of Manufacturing Systems, 38, 98–106. doi:10.1016/j.jmsy.2015.11.006
  • Li, Z., Yang, H., Zhang, S., & Liu, G. (2016). Unrelated parallel machine scheduling problem with energy and tardiness cost. International Journal of Advanced Manufacturing Technology, 84(1-4), 213–226. doi:10.1007/s00170-015-7657-2
  • Luo, H., Du, B., Huang, G. Q., Chen, H., & Li, X. (2013). Hybrid flow shop scheduling considering machine electricity consumption cost. International Journal of Production Economics, 146(2), 423–439. doi:10.1016/j.ijpe.2013.01.028
  • Liu, Y., Dong, H., Lohse, N., Petrovic, S., & Gindy, N. (2014). An investigation into minimising total energy consumption and total weighted tardiness in job shops. Journal of Cleaner Production, 65, 87–96. doi:10.1016/j.jclepro.2013.07.060
  • Mansouri, S. A., Aktas, E., & Besikci, U. (2016). Green scheduling of a two-machine flowshop: Trade-off between makespan and energy consumption. European Journal of Operational Research., 248(3), 772–788. doi:10.1016/j.ejor.2015.08.064
  • Mavrotas, G. (2009). Effective implementation of the epsilon-constraint method in Multi-Objective Mathematical Programming problems. Journal of Applied Mathematics and Computing., 213(2), 455–465. doi:10.1016/j.amc.2009.03.037
  • May, G., Stahl, B., Taisch, M., & Prabhu, V. (2015). Multi-objective genetic algorithm for energy-efficient job shop scheduling. International Journal of Production Research, 53(23), 7071–7089. doi:10.1080/00207543.2015.1005248
  • Min, L., & Cheng, W. (1999). A genetic algorithm for minimizing the makespan in the case of scheduling identical parallel machines. Artificial Intell Engineering, 13(4), 399–403. doi:10.1016/S0954-1810(99)00021-7
  • Shukla, P. K. On the normal boundary intersection method for generation of efficient front. Computational Science, 4487, 310–317.
  • Schott, J. R. (1995). Fault tolerant design using single and multi-criteria genetic algorithms (Master’s thesis), Department of Aeronautics and Astronautics, Massachusetts Institute of Technology.
  • Tavana, M., Li, Z., Mobin, M., Komaki, M., & Teymourian, E. (2016). “Multi-objective control chart design optimization using NSGA-III and MOPSO enhanced with DEA and TOPSIS,”. Expert Systems with Applications, 50, 17–39. doi:10.1016/j.eswa.2015.11.007
  • Xu, D. H., Sun, K. B., & Li, H. X. (2008). Parallel machine scheduling with almost periodic maintenance and non-preemptive jobs to minimize makespan. Computers & Operations Research., 35(4), 1344–1349. doi:10.1016/j.cor.2006.08.015
  • Yildirim, M. B., & Mouzon, G. (2012). Single-machine sustainable production planning to minimize total energy consumption and total completion time using a multiple objective genetic algorithm. IEEE Transactions on Engineering Management, 59(4), 585–597. doi:10.1109/TEM.2011.2171055
  • Yoshida, T., & Hitomi, K. (1979). Optimal two-stage production scheduling with setup times separated. AIIE Transactions, 11, 261–263. doi:10.1080/05695557908974469
  • Zhang, R., & Chiong, R. (2016). Solving the energy-efficient job shop scheduling problem: A multi-objective genetic algorithm with enhanced local search for minimizing the total weighted tardiness and total energy consumption. Journal of Cleaner Production, 112, 3361–3375. doi:10.1016/j.jclepro.2015.09.097
  • Zhang, L., & Lu, L. (2016). Parallel-machine scheduling with release dates and rejection. 4OR, 14(2), 1–8.
  • Zhang, H. C., Kuo, T. C., Lu, H., & Huang, S. H. (1997). Environmentally conscious design and manufacturing: A state-of-the-art survey. Journal of Manufacturing Systems, 16(5), 352–371. doi:10.1016/S0278-6125(97)88465-8
  • Zhang, H., Zhao, F., Fang, K., & Sutherland, J. W. (2014). Energy-conscious flow shop scheduling under time-of-use electricity tariffs. CIRP Annals, 63(1), 37–40. doi:10.1016/j.cirp.2014.03.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.