479
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Dispatch and conflict-free routing of capacitated vehicles with storage stack allocation

, ORCID Icon & ORCID Icon
Pages 1780-1793 | Received 30 Apr 2018, Accepted 05 Mar 2019, Published online: 25 Apr 2019

References

  • Berbeglia, G., Cordeau, J.-F., Gribkovskaia, I., & Laporte, G. (2007). Static pickup and delivery problems: A classification scheme and survey. Top, 15(1), 1–31.
  • Bish, E. K., Leong, T.-Y., Li, C.-L., Ng, J. W., & Simchi-Levi, D. (2001). Analysis of a new vehicle scheduling and location problem. Naval Research Logistics (NRL), 48(5), 363–385. doi:10.1002/nav.1024.abs
  • Burke, E. K., & Bykov, Y. (2017). The late acceptance hill-climbing heuristic. European Journal of Operational Research, 258(1), 70–78. doi:10.1016/j.ejor.2016.07.012
  • Cao, J., Shi, Q., & Lee, D.-H. (2008). A decision support method for truck scheduling and storage allocation problem at container. Tsinghua Science and Technology, 13, 211–216. doi:10.1016/S1007-0214(08)70151-2
  • Carlo, H. J., Vis, I. F., & Roodbergen, K. J. (2014). Transport operations in container terminals: Literature overview, trends, research directions and classification scheme. European Journal of Operational Research, 236(1), 1–13. doi:10.1016/j.ejor.2013.11.023
  • Cherkesly, M., Desaulniers, G., & Laporte, G. (2014). Branch-price-and-cut algorithms for the pickup and delivery problem with time windows and last-in-first-out loading. Transportation Science, 49(4), 752–766. doi:10.1287/trsc.2014.0535
  • Cherkesly, M., Desaulniers, G., & Laporte, G. (2015). A population-based metaheuristic for the pickup and delivery problem with time windows and lifo loading. Computers & Operations Research, 62, 23–35. doi:10.1016/j.cor.2015.04.002
  • Cordeau, J.-F., Iori, M., Laporte, G., & Salazar González, J. J. (2010). A branch-and-cut algorithm for the pickup and delivery traveling salesman problem with LIFO loading. Networks, 55(1), 46–59. doi:10.1002/net.20312
  • Corréa, A. I., Langevin, A., & Rousseau, L.-M. (2007). Scheduling and routing of automated guided vehicles: A hybrid approach. Computers & Operations Research, 34(6), 1688–1707. doi:10.1016/j.cor.2005.07.004
  • Côté, J.-F., Archetti, C., Speranza, M. G., Gendreau, M., & Potvin, J.-Y. (2012). A branch-and-cut algorithm for the pickup and delivery traveling salesman problem with multiple stacks. Networks, 60(4), 212–226. doi:10.1002/net.21459
  • Côté, J.-F., Gendreau, M., & Potvin, J.-Y. (2012). Large neighborhood search for the pickup and delivery traveling salesman problem with multiple stacks. Networks, 60(1), 19–30. doi:10.1002/net.20448
  • Desaulniers, G., Langevin, A., Riopel, D., & Villeneuve, B. (2003). Dispatching and conflict-free routing of automated guided vehicles: An exact approach. International Journal of Flexible Manufacturing Systems, 15(4), 309–331. doi:10.1023/B:FLEX.0000036032.41757.3d
  • Downsland, K. A., & Greaves, A. M. (1994). Collision avoidance in bi-directional AGV systems. Journal of the Operational Research Society, 45(7), 817–826. doi:10.1057/jors.1994.125
  • Fazlollahtabar, H., & Saidi-Mehrabad, M. (2015). Methodologies to optimize automated guided vehicle scheduling and routing problems: A review study. Journal of Intelligent & Robotic Systems, 77(3–4), 525–545. doi:10.1007/s10846-013-0003-8
  • Kim, C. W., & Tanchoco, J. M. (1991). Conflict-free shortest-time bidirectional AGV routing. The International Journal of Production Research, 29(12), 2377–2391. doi:10.1080/00207549108948090
  • Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science (New York, N.Y.), 220(4598), 671–680. doi:10.1126/science.220.4598.671
  • Krishnamurthy, N. N., Batta, R., & Karwan, M. H. (1993). Developing conflict-free routes for automated guided vehicles. Operations Research, 41(6), 1077–1090. doi:10.1287/opre.41.6.1077
  • Langevin, A., Lauzon, D., & Riopel, D. (1996). Dispatching, routing, and scheduling of two automated guided vehicles in a flexible manufacturing system. International Journal of Flexible Manufacturing Systems, 8(3), 247–262. doi:10.1007/BF00403127
  • Lee, D. H., Cao, J. X., Shi, Q., & Chen, J. H. (2009). A heuristic algorithm for yard truck scheduling and storage allocation problems. Transportation Research Part E: Logistics and Transportation Review, 45(5), 810–820. doi:10.1016/j.tre.2009.04.008
  • Lee, J. H., Lee, B. H., & Choi, M. H. (1998). A real-time traffic control scheme of multiple AGV systems for collision free minimum time motion: A routing table approach. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 28(3), 347–358.
  • Levitin, G., & Abezgaouz, R. (2003). Optimal routing of multiple-load AGV subject to lifo loading constraints. Computers & Operations Research, 30(3), 397–410. doi:10.1016/S0305-0548(01)00106-X
  • Matsushita, S., Nishi, T., Morikawa, M., & Hisano, T. (2013). A continuous time model of multi-vehicle routing problems: A column generation approach. In Systems, Man, and Cybernetics (SMC), 2013 IEEE International Conference (pp. 397–402). doi:10.1109/SMC.2013.74
  • Miyamoto, T., & Inoue, K. (2016). Local and random searches for dispatch and conflict-free routing problem of capacitated AGV systems. Computers & Industrial Engineering, 91, 1–9. doi:10.1016/j.cie.2015.10.017
  • Nishi, T., Hiranaka, Y., & Grossmann, I. E. (2011). A bilevel decomposition algorithm for simultaneous production scheduling and conflict-free routing for automated guided vehicles. Computers & Operations Research, 38(5), 876–888. doi:10.1016/j.cor.2010.08.012
  • Oboth, C., Batta, R., & Karwan, M. (1999). Dynamic conflict-free routing of automated guided vehicles. International Journal of Production Research, 37(9), 2003–2030. doi:10.1080/002075499190888
  • Pollaris, H., Braekers, K., Caris, A., Janssens, G. K., & Limbourg, S. (2015). Vehicle routing problems with loading constraints: State-of-the-art and future directions. OR Spectrum, 37(2), 297–330. doi:10.1007/s00291-014-0386-3
  • Rajotia, S., Shanker, K., & Batra, J. (1998). A semi-dynamic time window constrained routing strategy in an AGV system. International Journal of Production Research, 36(1), 35–50. doi:10.1080/002075498193921
  • Thanos, E., Wauters, T., & Vanden Berghe, G. (2017). Scheduling container transportation through conflict-free trajectories in a warehouse layout: A local search approach. In G.A., G. Kendall, L. Soon, B. McCollum, & H.-V. Seow (Eds.), Proceedings of the 8th MISTA Conference, 05–08 Dec 2017, Kuala Lumpur, Malaysia (pp. 330–335). (Abstract). ISSN: 2305-249X. http://www.schedulingconference.org/proceedings/2017/mista2017.pdf
  • Umar, U. A., Ariffin, M., Ismail, N., & Tang, S. (2015). Hybrid multiobjective genetic algorithms for integrated dynamic scheduling and routing of jobs and automated-guided vehicle (AGV) in flexible manufacturing systems (FMS) environment. The International Journal of Advanced Manufacturing Technology, 81(9–12), 2123–2141. doi:10.1007/s00170-015-7329-2
  • Vis, I. F., De Koster, R., Roodbergen, K. J., & Peeters, L. W. (2001). Determination of the number of automated guided vehicles required at a semi-automated container terminal. Journal of the Operational Research Society, 52(4), 409–417. doi:10.1057/palgrave.jors.2601094
  • Wang, Z., Chan, F. T., Chung, S., & Niu, B. (2015). Minimization of delay and travel time of yard trucks in container terminals using an improved GA with guidance search. Mathematical Problems in Engineering, 2015. doi:10.1155/2015/710565
  • Wang, Y., Jiang, X., Lee, L. H., Chew, E. P., & Tan, K. C. (2017). Tree based searching approaches for integrated vehicle dispatching and container allocation in a transshipment hub. Expert Systems with Applications, 74, 139–150. doi:10.1016/j.eswa.2017.01.003
  • Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 1(6), 80–83. doi:10.2307/3001968

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.