281
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Near-optimal search-and-rescue path planning for a moving target

, &
Pages 688-700 | Received 03 May 2019, Accepted 11 Oct 2019, Published online: 27 Jan 2020

References

  • Benkoski, S., Monticino, M., & Weisinger, J. (1991). A survey of the search theory literature. Naval Research Logistics, 38(4), 469–494. doi:10.1002/1520-6750(199108)38:4<469::AID-NAV3220380404>3.0.CO;2-E
  • Brown, S. S. (1980). Optimal search for a moving target in discrete time and space. Operations Research, 28(6), 1275–1289. doi:10.1287/opre.28.6.1275
  • Chung, T. H., Hollinger, G. A., & Isler, V. (2011). Search and pursuit-evasion in mobile robotics. Autonomous Robots, 31(4), 299–316. doi:10.1007/s10514-011-9241-4
  • Dell, R. F., Eagle, J. N., Martins, G. H. A., & Garnier, S. A. (1996). Using multiple searchers in constrained-path moving target search problem. Naval Research Logistics, 43(4), 463–480. doi:10.1002/(SICI)1520-6750(199606)43:4<463::AID-NAV1>3.3.CO;2-2
  • Ding, Y. F., & Pan, Q. (2011). Path planning for mobile robot search and rescue based on improved ant colony optimization algorithm. Applied Mechanics and Materials, 66–68, 1039–1044. doi:10.4028/www.scientific.net/AMM.66-68.1039
  • Eagle, J. N. (1984). The optimal search for a moving target moving target when the search path is constrained. Operations Research, 32(5), 1107–1115. doi:10.1287/opre.32.5.1107
  • Eagle, J. N., & Yee, J. R. (1990). An optimal branch-and-bound procedure for the constrained path, moving target search problem. Operations Research, 38(1), 110–114. doi:10.1287/opre.38.1.110
  • Goodrich, M. A., Morse, B. S., Engh, C., Cooper, J. L., & Adams, J. A. (2009). Towards using unmanned aerial vehicles (UAVs) in wilderness search and rescue: Lessons from field trials. Interact. Stud, 10 (3), 453–478. doi:10.1075/is.10.3.08goo
  • Hanna, D., Ferworn, A., Lukaczyn, M., Abhari, A., & Lum, J. (2018). Using unmanned aerial vehicles (UAVs) in locating wandering patients with dementia. Proceedings of the IEEE/ION Position and Navigation Symposium, Monterey, CA, USA, pp. 809–815.
  • Hohzaki, R., & Iida, K. (1995). Optimal search plan for a moving target when a search path is given. Mathematica Japonica, 41(1), 175–184.
  • Hong, S. P., Cho, S.-J., Park, M.-J., & Lee, M.-G. (2009). Optimal search-relocation trade-off in Markovian-target searching. Computers & Operations Research, 36(6), 2097–2104. doi:10.1016/j.cor.2008.07.007
  • IBM ILOG CPLEX Optimizer and IBM ILOG CPLEX V12.1. (2009). Retrieved from http://www-01.ibm.com/software/integration/optimization/cplex-optimization-studio/cplex-optimizer/cplex-performance/, ftp://public.dhe.ibm.com/software/websphere/ilog/docs/optimization/cplex/ps_usrmancplex.pdf.
  • Kashino, Z., Nejat, G., & Benhabib, B. (2020). A hybrid strategy for target search using static and mobile sensors. IEEE Transactions on Cybernetics, 50(2), 856–868. doi:10.1109/TCYB.2018.2875625
  • Lau, H., Huang, S., & Dissanayake, G. (2008). Discounted MEAN bound for the optimal searcher path problem with non-uniform travel times. European Journal of Operational Research, 190(2), 383–397. doi:10.1016/j.ejor.2007.06.043
  • Lau, H. (2007). Optimal Search in Structured Environments. PhD. Thesis, University of Technology, Sydney.
  • Lau, H., & Dissanayake, G. (2005). Optimal search for multiple targets in a built environment. Proceedings of the IEEE/RSJ International Conference Intelligent Robots and Systems, Edmonton, Alberta, Canada, pp. 228–233.
  • Lau, H., & Dissanayake, G. (2006). Probabilistic search for a moving target in an indoor environment. Proceedings of the IEEE/RSJ International Conference Intelligent Robots and Systems, pp. 3393–3398.
  • Lavis, B., Furukawa, T., & Whyte, H. F. D. (2008). Dynamic space reconfiguration for Bayesian search and tracking with moving targets. Autonomous Robots, 24 (4), 387–399. doi:10.1007/s10514-007-9081-4
  • Lo, N., Berger, J., & Noel, M. (2012). Toward optimizing static target search path planning. Proceedings of the 5th IEEE Symposium on Computational Intelligence for Security and Defence Applications, Ottawa, Canada.
  • Macwan, A., Vilela, J., Nejat, G., & Benhabib, B. (2015). A multirobot pathplanning strategy for autonomous wilderness search and rescue. IEEE Transactions on Cybernetics, 45(9), 1784–1797. doi:10.1109/TCYB.2014.2360368
  • Macwan, A., Vilela, J., Nejat, G., & Benhabib, B. (2016). Multi-robot deployment for wilderness search and rescue. International Journal of Robotics and Automation, 31(1), 124.
  • Morin, M., Lamontagne, L., Abi-Zeid, I., Lang, P., & Maupin, P. (2009). The optimal searcher path problem with a visibility criterion in discrete time and space. International Conference on Information Fusion, Seattle, USA.
  • Pack, D. J., DeLima, P., Toussaint, G. J., & York, G. (2009). Cooperative control of UAVs for localization of intermittently emitting mobile targets. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39 (4), 959–970. doi:10.1109/TSMCB.2009.2010865
  • Pietz, J., & Royset, J. O. (2013). Generalized orienteering problem with resource dependent rewards. Naval Research Logistics (Nrl), 60(4), 294–312. doi:10.1002/nav.21534
  • Raap, M., Zsifkovits, M., & Pickl, S. (2017). Trajectory optimization under kinematical constraints for moving target search. Computers & Operations Research, 88, 324–331. doi:10.1016/j.cor.2016.12.016
  • Rogge, J. A., & Aeyels, D. (2009). Multi-robot coverage to locate fixed and moving targets. Proceedings of the Control Appl. Intell. Control, St. Petersburg, Russia, pp. 902–907.
  • Royset, J. O., & Sato, H. (2010). Route optimization for multiple searchers. Naval Research Logistics (Nrl), 57(8), 701–717. doi:10.1002/nav.20432
  • Sato, H., & Royset, J. O. (2010). Path optimization for the resource-constrained searcher. Naval Research Logistics, 57(5), 422–440. doi:10.1002/nav.20411
  • Stewart, T. J. (1979). Search for a moving target when the searcher motion is restricted. Computers & Operations Research, 6(3), 129–140. doi:10.1016/0305-0548(79)90025-X
  • Stewart, T. J. (1980). Experience with a branch-and-bound algorithm for constrained searcher motion. In K. B. Haley and L. D. Stone (Eds.), Search Theory and Applications. New York: Plenum Press.
  • Stone, L. D. (2007). Theory of optimal search. 2nd ed, Topics in Operations Research Series, INFORMS Military Applications Society (MAS).
  • Stone, L. D., Royset, J. O., & Washburn, A. R. (2016). Optimal search for moving targets. Germany: Springer.
  • Sung, Y., & Furukawa, T. (2016). Information measure for the optimal control of target searching via the grid-based method. Proc. Int. Conf. Inf. Fusion, Heidelberg, Germany, pp. 2075–2080.
  • Trummel, K. E., & Weisinger, J. R. (1986). The complexity of the optimal searcher path problem. Operations Research, 34 (2), 324–327. doi:10.1287/opre.34.2.324
  • Washburn, A. R. (1998). Branch and bound methods for a search problem. Naval Research Logistics, 45(3), 243–257. doi:10.1002/(SICI)1520-6750(199804)45:3<243::AID-NAV1>3.0.CO;2-7
  • Washburn, A. R., Royset, J. O., & Stone, L. D. (2016). Optimal search for moving targets. international series in operations research & management science. Germany: Springer.
  • Xiao, H., Cui, R., & Xu, D. (2018). A sampling-based Bayesian approach for cooperative multiagent online search with resource constraints. IEEE Transactions on Cybernetics, 48(6), 1773–1785. doi:10.1109/TCYB.2017.2715228
  • Yuan, H., Xiao, C., Zhan, W., Wang, Y., Shi, C., Ye, H., … Li, Q. (2018). Target detection, positioning and tracking using new UAV gas sensor systems: Simulation and analysis. Journal of Intelligent and Robotic Systems, 1–12. doi:10.1007/s10846-018-0909-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.