1,328
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Where have all the equations gone? A unified view on semi-quantitative problem structuring and modelling

ORCID Icon, ORCID Icon & ORCID Icon
Pages 290-309 | Received 19 Jan 2021, Accepted 31 Jan 2022, Published online: 01 Mar 2022

References (* denotes work reviewed in table 4)

  • Abastante, F., Corrente, S., Greco, S., Ishizaka, A., & Lami, I. M. (2018). Choice architecture for architecture choices: Evaluating social housing initiatives putting together a parsimonious AHP methodology and the Choquet integral. Land Use Policy, 78, 748–762. https://doi.org/10.1016/j.landusepol.2018.07.037
  • Ackermann, F. (2019). PSMs are dead; long live PSMs. Journal of the Operational Research Society, 70(8), 1396–1397. https://doi.org/10.1080/01605682.2018.1502630
  • Ackermann, F., Alexander, J., Stephens, A., & Pincombe, B. (2020). In defence of Soft OR: Reflections on teaching Soft OR. Journal of the Operational Research Society, 71(1), 1–15. https://doi.org/10.1080/01605682.2018.1542960
  • Ackoff, R. L. (1974). The systems revolution. Long Range Planning, 7(6), 2–20. https://doi.org/10.1016/0024-6301(74)90127-7
  • *Aggarwal, S., & Srivastava, M. K. (2019). A grey-based DEMATEL model for building collaborative resilience in supply chain. International Journal of Quality & Reliability Management, 36(8), 1409–1437. https://doi.org/10.1108/IJQRM-03-2018-0059
  • *Alawamleh, M., & Popplewell, K. (2011). Interpretive structural modelling of risk sources in a virtual organisation. International Journal of Production Research, 49(20), 6041–6063. https://doi.org/10.1080/00207543.2010.519735
  • *Ali, S. M., Moktadir, M. A., Kabir, G., Chakma, J., Rumi, M. J. U., & Islam, M. T. (2019). Framework for evaluating risks in food supply chain: Implications in food wastage reduction. Journal of Cleaner Production, 228, 786–800. https://doi.org/10.1016/j.jclepro.2019.04.322
  • *Alora, A., & Barua, M. K. (2019). An integrated structural modelling and MICMAC analysis for supply chain disruption risk classification and prioritisation in India. International Journal of Value Chain Management, 10(1), 1–25. https://doi.org/10.1504/IJVCM.2019.096538
  • *Babu, H., Bhardwaj, P., & Agrawal, A. K. (2021). Modelling the supply chain risk variables using ISM: A case study on Indian manufacturing SMEs. Journal of Modelling in Management, 16(1), 215–239. https://doi.org/10.1108/JM2-06-2019-0126
  • Bañuls, V. A., López, C., Turoff, M., & Tejedor, F. (2017). Predicting the impact of multiple risks on project performance: A scenario-based approach. Project Management Journal, 48(5), 95–114. https://doi.org/10.1177/875697281704800507
  • Bolaños, R., Fontela, E., Nenclares, A., & Pastor, P. (2005). Using interpretive structural modelling in strategic decision-making groups. Management Decision, 43(6), 877–895. https://doi.org/10.1108/00251740510603619
  • *Can, G. F., & Toktas, P. (2018). A novel fuzzy risk matrix based risk assessment approach. Kybernetes, 47(9), 1721–1751. https://doi.org/10.1108/K-12-2017-0497
  • Chaudhary, S., & Suri, P. K. (2021). Modelling the enablers of e-trading adoption in agricultural marketing: A TISM-based analysis of eNAM. Vision, https://doi.org/10.1177/0972262920977979
  • *Chaudhuri, A., Srivastava, S. K., Srivastava, R. K., & Parveen, Z. (2016). Risk propagation and its impact on performance in food processing supply chain. Journal of Modelling in Management, 11(2), 660–693. https://doi.org/10.1108/JM2-08-2014-0065
  • Chopra, S., & Sodhi, M. S. (2004). Managing risk to avoid supply-chain breakdown. MIT Sloan Management Review, 46(1), 53.
  • *Chowdhury, N. A., Ali, S. M., Mahtab, Z., Rahman, T., Kabir, G., & Paul, S. K. (2019). A structural model for investigating the driving and dependence power of supply chain risks in the readymade garment industry. Journal of Retailing and Consumer Services, 51, 102–113. https://doi.org/10.1016/j.jretconser.2019.05.024
  • *Dandage, R. V., Mantha, S. S., & Rane, S. B. (2019). Strategy development using TOWS matrix for international project risk management based on prioritization of risk categories. International Journal of Managing Projects in Business, 12(4), 1003–1029. https://doi.org/10.1108/IJMPB-07-2018-0128
  • Dasaklis, T. K., & Pappis, C. P. (2018). Critical success factors for implementing cholera vaccination campaigns in humanitarian emergencies: A DEMATEL-based approach. EURO Journal on Decision Processes, 6(1-2), 1–20. https://doi.org/10.1007/s40070-017-0062-3
  • Deo, N. (1974). Graph theory: With applications to engineering and computer science. Prentice-Hall.
  • *Diabat, A., Govindan, K., & Panicker, V. V. (2012). Supply chain risk management and its mitigation in a food industry. International Journal of Production Research, 50(11), 3039–3050. https://doi.org/10.1080/00207543.2011.588619
  • Duperrin, J.-C., & Godet, M. (1973). Méthode de hiérarchisation des éléments d’un système: essai de prospective du système de l’énergie nucléaire dans son contexte sociétal (CEA-R-4541). Centre d'Etudes Nucléaire de Saclay.
  • Duval, A., Fontela, E., & Gabus, A. (1974). Cross-impact analysis: A handbook on concepts and applications (DEMATEL Innovative methods No. 1. Battelle.
  • *Etemadinia, H., & Tavakolan, M. (2021). Using a hybrid system dynamics and interpretive structural modeling for risk analysis of design phase of the construction projects. International Journal of Construction Management, 21(1), 93–112. 35 https://doi.org/10.1080/15623599.2018.15
  • *Ethirajan, M., Arasu, M. T., Kandasamy, J., Vimal, K. E., Nadeem, S. P., & Kumar, A. (2021). Analysing the risks of adopting circular economy initiatives in manufacturing supply chains. Business Strategy and the Environment, 30(1), 204–236. https://doi.org/10.1002/bse.2617
  • *Faisal, M. N., Banwet, D. K., & Shankar, R. (2007). Information risks management in supply chains: An assessment and mitigation framework. Journal of Enterprise Information Management, 20(6), 677–699. https://doi.org/10.1108/17410390710830727
  • Farris, D. R., & Sage, A. P. (1975). On the use of interpretive structural modeling for worth assessment. Computers & Electrical Engineering, 2(2-3), 149–174. https://doi.org/10.1016/0045-7906(75)90004-X
  • *Fazli, S., Kiani Mavi, R., & Vosooghidizaji, M. (2015). Crude oil supply chain risk management with DEMATEL-ANP. Operational Research, 15(3), 453–480. https://doi.org/10.1007/s12351-015-0182-0
  • Flood, R. L. (1988). Situational complexity, systems modelling and methodology. Transactions of the Institute of Measurement and Control, 10(3), 122–129. https://doi.org/10.1177/014233128801000303
  • Fontela, E., & Gabus, A. (1974a). DEMATEL: Progress achieved. Futures, 6(4), 361–363. https://doi.org/10.1016/0016-3287(74)90086-X
  • Fontela, E., & Gabus, A. (1974b). Structural analysis of the world problematique: Methods (DEMATEL Innovative methods. Battelle.
  • Funtowicz, S. O., & Ravetz, J. R. (1993). Science for the post-normal age. Futures, 25(7), 739–755. https://doi.org/10.1016/0016-3287(93)90022-L
  • Gardas, B. B., Raut, R. D., Cheikhrouhou, N., & Narkhede, B. E. (2019). A hybrid decision support system for analyzing challenges of the agricultural supply chain. Sustainable Production and Consumption, 18, 19–32. https://doi.org/10.1016/j.spc.2018.11.007
  • Georgantzas, N. C., & Hessel, M. P. (1995). The intermediate structure of designs for quality. International Journal of Quality & Reliability Management, 12(6), 97–108. https://doi.org/10.1108/02656719510089957
  • Godet, M. (1977). Crise de la prévision. Essor de la prospective. Presses Universitaires de France.
  • Godet, M. (1986). Introduction to la prospective: Seven key ideas and one scenario method. Futures, 18(2), 134–157. https://doi.org/10.1016/0016-3287(86)90094-7
  • Godet, M. (2007). Manuel de prospective stratégique. Dunod.
  • Gölcük, İ., & Baykasoğlu, A. (2016). An analysis of DEMATEL approaches for criteria interaction handling within ANP. Expert Systems with Applications, 46, 346–366. https://doi.org/10.1016/j.eswa.2015.10.041
  • Gothwal, S., & Raj, T. (2017). Analyzing the factors affecting the flexibility in FMS using weighted interpretive structural modeling (WISM) approach. International Journal of System Assurance Engineering and Management, 8(2), 408–422. https://doi.org/10.1007/s13198-016-0443-1
  • *Govindan, K., & Chaudhuri, A. (2016). Interrelationships of risks faced by third party logistics service providers: A DEMATEL based approach. Transportation Research Part E: Logistics and Transportation Review, 90(Supplement C), 177–195. https://doi.org/10.1016/j.tre.2015.11.010
  • *Hachicha, W., & Elmsalmi, M. (2014). An integrated approach based-structural modeling for risk prioritization in supply network management. Journal of Risk Research, 17(10), 1301–1324. https://doi.org/10.1080/13669877.2013.841734
  • *Han, Q., Zhu, Y., Ke, G. Y., & Hipel, K. W. (2019). Public private partnership in brownfield remediation projects in China: Identification and structure analysis of risks. Land Use Policy, 84, 87–104. https://doi.org/10.1016/j.landusepol.2019.01.034
  • Harary, F., Norman, R. Z., & Catwright, D. (1965). Structural models: an introduction to the theory of directed graphs. (D. Cartwright & R. Z. Norman, Eds.). John Wiley & Sons, Inc.
  • Harwood, S. (2019). Whither is problem structuring methods (PSMs)? Journal of the Operational Research Society, 70(8), 1391–1392. https://doi.org/10.1080/01605682.2018.1502628
  • He, L., Wu, Z., Xiang, W., Goh, M., Xu, Z., Song, W., Ming, X., & Wu, X. (2021). A novel Kano-QFD-DEMATEL approach to optimise the risk resilience solution for sustainable supply chain. International Journal of Production Research, 59(6), 1714–1735. https://doi.org/10.1080/00207543.2020.1724343
  • Hsieh, Y.-F., Lee, Y.-C., & Lin, S.-B. (2016). Rebuilding DEMATEL threshold value: An example of a food and beverage information system. SpringerPlus, 5, 1385. https://doi.org/10.1186/s40064-016-3083-7
  • *Hung, S.-J. (2011). Activity-based divergent supply chain planning for competitive advantage in the risky global environment: A DEMATEL-ANP fuzzy goal programming approach. Expert Systems with Applications, 38(8), 9053–9062. https://doi.org/10.1016/j.eswa.2010.09.024
  • Jackson, M. C. (2006). Beyond problem structuring methods: Reinventing the future of OR/MS. Journal of the Operational Research Society, 57(7), 868–878. https://doi.org/10.1057/palgrave.jors.2602093
  • Jackson, M. C. (2019). Critical systems thinking and the management of complexity: Responsible leadership for a complex world. John Wiley & Sons, Ltd.
  • *Jain, V., Kumar, S., Soni, U., & Chandra, C. (2017). Supply chain resilience: Model development and empirical analysis. International Journal of Production Research, 55(22), 6779–6800. https://doi.org/10.1080/00207543.2017.1349947
  • Janes, F. R. (1988). Interpretive structural modelling: A methodology for structuring complex issues. Transactions of the Institute of Measurement and Control, 10(3), 145–154. https://doi.org/10.1177/014233128801000306
  • *Kazemian, I., Torabi, S. A., Zobel, C. W., Li, Y. H., & Baghersad, M. (2021). A multi-attribute supply chain network resilience assessment framework based on SNA-inspired indicators. Operational Research: An International Journal, https://doi.org/10.1007/s12351-021-00644-3
  • Kendall, M. G. (1955). Further Contributions to the Theory of Paired Comparisons. Biometrics, 11(1), 43–62. https://doi.org/10.2307/3001479
  • Kim, I., & Watada, J. (2009). Decision making with an interpretive structural modeling method using a DNA-based algorithm. IEEE Transactions on Nanobioscience, 8(2), 181–191. https://doi.org/10.1109/TNB.2009.2023788
  • Kolfschoten, G., French, S., & Brazier, F. (2014). A discussion of the cognitive load in collaborative problem-solving. EURO Journal on Decision Processes, 2(3-4), 257–280. https://doi.org/10.1007/s40070-014-0034-9
  • Kunc, M. (2020). Behavioral operations and behavioral operational research: Similarities and differences in competences and capabilities. In L. White, M. Kunc, K. Burger, & J. Malpass (Eds.), Behavioral Operational Research: A Capabilities Approach (pp. 3–22). Springer International Publishing.
  • *Kwak, D. W., Rodrigues, V. S., Mason, R., Pettit, S., & Beresford, A. (2018). Risk interaction identification in international supply chain logistics: Developing a holistic model. International Journal of Operations & Production Management, 38(2), 372–389. https://doi.org/10.1108/IJOPM-03-2016-0121
  • Lakshmi Priyadarsini, S., & Suresh, M. (2020). Factors influencing the epidemiological characteristics of pandemic COVID 19: A TISM approach. International Journal of Healthcare Management, 13(2), 89–98. https://doi.org/10.1080/20479700.2020.1755804
  • Lathi, B. P. (2002). Linear systems and signals. Oxford University Press.
  • Lefebvre, J.-F. (1975). Une méthode d'analyse structurelle. METRA, 14(4), 635–659.
  • Lendaris, G. G. (1979). On the human aspects in structural modeling. Technological Forecasting and Social Change, 14(4), 329–351. https://doi.org/10.1016/0040-1625(79)90033-7
  • Lendaris, G. G. (1980). Structural Modeling a Tutorial Guide. IEEE Transactions on Systems, Man, and Cybernetics, 10(12), 807–840. https://doi.org/10.1109/TSMC.1980.4308410
  • Li, G., Huang, D., Sun, C., & Li, Y. (2019). Developing interpretive structural modeling based on factor analysis for the water-energy-food nexus conundrum. The Science of the Total Environment, 651(Pt 1), 309–322. https://doi.org/10.1016/j.scitotenv.2018.09.188
  • *Li, Y-F., Xie, Q-h. (2009). A method of identifying supply chain risk factors. In: Proceedings of the WRI World Congress on Software Engineering. https://doi.org/10.1109/WCSE.2009.275
  • *Li, Y., Sankaranarayanan, B., Thresh Kumar, D., & Diabat, A. (2019). Risks assessment in thermalpower plants using ISM methodology. Annals of Operations Research, 279(1-2), 89–113. https://doi.org/10.1007/s10479-018-3121-7
  • *Liu, X. L., Dou, Z. W., & Yang, W. (2021). Research on influencing factors of cross border E-Commerce supply chain resilience based on integrated Fuzzy DEMATEL-ISM. IEEE Access., 9, 36140–36153. https://doi.org/10.1109/ACCESS.2021.3059867
  • Malone, D. W. (1975). An introduction to the application of interpretive structural modeling. Proceedings of the IEEE, 63(3), 397–404. https://doi.org/10.1109/PROC.1975.9765
  • Mandic, K., Bobar, V., Delibasic, B. (2015). Modeling interactions among criteria in MCDM methods: A review. In B. Delibašić, J.E. Hernández, J. Papathanasiou, F. Dargam, P. Zaraté, R. Ribeiro, … V. Bobar (Eds.), Decision support systems V – big data analytics for decision making. Springer.
  • *Mangla, S. K., Kumar, P., & Barua, M. K. (2014). Flexible decision approach for analysing performance of sustainable supply chains under risks/uncertainty. Global Journal of Flexible Systems Management, 15(2), 113–130. https://doi.org/10.1007/s40171-014-0059-8
  • Manzano-Solís, L. R., Díaz-Delgado, C., Gómez-Albores, M. A., Mastachi-Loza, C. A., & Soares, D. (2019). Use of structural systems analysis for the integrated water resources management in the Nenetzingo river watershed. Land Use Policy, 87, 104029. https://doi.org/10.1016/j.landusepol.2019.104029
  • Marttunen, M., Lienert, J., & Belton, V. (2017). Structuring problems for multi-criteria decision analysis in practice: A literature review of method combinations. European Journal of Operational Research, 263(1), 1–17. https://doi.org/10.1016/j.ejor.2017.04.041
  • Mohammed, A. (2020). Towards 'gresilient' supply chain management: A quantitative study. Resources Conservation and Recycling, 155, 104641 https://doi.org/10.1016/j.resconrec.2019.104641
  • Multon, K. D., & Coleman, J. S. M. (2010). Ordinal scale. In N. Salkind (Ed.), Encyclopedia of research design. Sage Publications
  • Olson, D. L., & Wu, D. D. (2010). A review of enterprise risk management in supply chain. Kybernetes, 39(5), 694–706. https://doi.org/10.1108/03684921011043198
  • Pal, S., & Bhunia, S. C. (2015). Engineering mathematics. Oxford University Press.
  • *Parkouhi, S. V., Ghadikolaei, A. S., & Lajimi, H. F. (2019). Resilient supplier selection and segmentation in grey environment. Journal of Cleaner Production, 207, 1123–1137. https://doi.org/10.1016/j.jclepro.2018.10.007
  • *Pfohl, H., Gallus, P., & Thomas, D. (2011). Interpretive structural modeling of supply chain risks. International Journal of Physical Distribution & Logistics Management, 41(9), 839–859. https://doi.org/10.1108/09600031111175816
  • *Pitchaimuthu, S., Thakkar, J., & Gopal, P. R. C. (2019). Modelling of risk factors for defence aircraft industry using interpretive structural modelling, interpretive ranking process and system dynamics. Measuring Business Excellence, 23(3), 217–239. https://doi.org/10.1108/MBE-05-2018-0028
  • *Prakash, S., Soni, G., Rathore, A. P. S., & Singh, S. (2017). Risk analysis and mitigation for perishable food supply chain: A case of dairy industry. Benchmarking: An International Journal, 24(1), 2–23. https://doi.org/10.1108/BIJ-07-2015-0070
  • Pulido, A., Pérez, J., Dones, M., Rueda-Cantuche, J. .́., &., & Lahr, M. L. (2008). Obituary: Emilio Fontela Remembered. Economic Systems Research, 20(1), 129–131. https://doi.org/10.1080/09535310801892140
  • Ragade, R. K. (1976). Fuzzy interpretive structural modeling. Journal of Cybernetics, 6(3-4), 189–211. https://doi.org/10.1080/01969727608927531
  • *Rajesh, R. (2017). Technological capabilities and supply chain resilience of firms: A relational analysis using Total Interpretive Structural Modeling (TISM). Technological Forecasting and Social Change, 118, 161–169. https://doi.org/10.1016/j.techfore.2017.02.017
  • *Rajesh, R., & Ravi, V. (2015). Modeling enablers of supply chain risk mitigation in electronic supply chains: A Grey–DEMATEL approach. Computers & Industrial Engineering, 87(Supplement C), 126–139. https://doi.org/10.1016/j.cie.2015.04.028
  • *Rane, S. B., & Kirkire, M. S. (2017). Interpretive structural modelling of risk sources in medical device development process. International Journal of System Assurance Engineering and Management, 8(1), 451–464. https://doi.org/10.1007/s13198-015-0399-6
  • Saaty, T. L. (1987). Rank according to Perron: A new insight. Mathematics Magazine, 60(4), 211–213. https://doi.org/10.2307/2689340
  • Saaty, T. L. (2010). Principia mathematica decernendi: Mathematical principles of decision making: generalization of the analytic network process to neural firing and synthesis. RWS Publications.
  • *Samvedi, A., Goh, M., de Souza, R. (2016). Handling network disruption risks for supply-chain information systems selection using fuzzy DEMOPSIS. In: Proceedings of the IEEE International Conference on Management of Innovation and Technology. https://doi.org/10.1109/ICMIT.2016.7605013
  • *Samvedi, A., & Jain, V. (2013). A study on the interactions between supply chain risk management criteria using fuzzy DEMATEL method. International Journal of Operational Research, 18(3), 255–271. https://doi.org/10.1504/IJOR.2013.056685
  • Sargut, G., & McGrath, R. G. (2011). Learning to live with. Harvard Business Review, 89(9), 68–76.
  • Saxena, J. P., Sushil., & Vrat, P. (1990). Impact of indirect relationships in classification of variables—a MICMAC analysis for energy conservation. Systems Research, 7(4), 245–253. https://doi.org/10.1002/sres.3850070404
  • Schwenk, C. R. (1985). Management illusions and biases: Their impact on strategic decisions. Long Range Planning, 18(5), 74–80. https://doi.org/10.1016/0024-6301(85)90204-3
  • *Sen, D. K., Datta, S., & Mahapatra, S. S. (2018). On evaluation of supply chain's ecosilient (g-resilient) performance index: A fuzzy embedded decision support framework. Benchmarking: An International Journal, 25(7), 2370–2389. https://doi.org/10.1108/BIJ-03-2017-0038
  • Senge, P. M. (2006). The fifth discipline. (2nd ed.). Random House Business.
  • Settanni, E., Srai, J. S., Kumar, M. (2018). Identifying risk interdependencies in pharmaceutical supply chains through gamification-enabled structural modelling. In: Proceedings of the 49th Annual Meeting of the Decision Sciences Institute (pp. 731–745).
  • Shieh, J.-I., & Wu, H.-H. (2016). Measures of consistency for DEMATEL method. Communications in Statistics - Simulation and Computation, 45(3), 781–790. https://doi.org/10.1080/03610918.2013.875564
  • Simon, H. A., Dantzig, G. B., Hogarth, R., Plott, C. R., Raiffa, H., Schelling, T. C., Shepsle, K. A., Thaler, R., Tversky, A., & Winter, S. (1987). Decision making and problem solving. Interfaces, 17(5), 11–31. https://doi.org/10.1287/inte.17.5.11
  • *Singh, R. K., Gupta, A., & Gunasekaran, A. (2018). Analysing the interaction of factors for resilient humanitarian supply chain. International Journal of Production Research, 56(21), 6809–6827. https://doi.org/10.1080/00207543.2018.1424373
  • *Song, W., Ming, X., & Liu, H.-C. (2017). Identifying critical risk factors of sustainable supply chain management: A rough strength-relation analysis method. Journal of Cleaner Production, 143, 100–115. https://doi.org/10.1016/j.jclepro.2016.12.145
  • *Srivastava, S. K., Chaudhuri, A., & Srivastava, R. K. (2015). Propagation of risks and their impact on performance in fresh food retail. The International Journal of Logistics Management, 26(3), 568–602. https://doi.org/10.1108/IJLM-02-2014-0032
  • Strang, G. (1986). Introduction to Applied Mathematics. Wellesley-Cambridge Press.
  • Suh, S., & Heijungs, R. (2007). Power series expansion and structural analysis for life cycle assessment. The International Journal of Life Cycle Assessment, 12(6), 381–390. https://doi.org/10.1065/lca2007.08.360
  • *Sun, W. Y., Lin, W. T. (2011). Application Fuzzy DEMATEL to develop a cause and effect model of risk in supply chain. In: Proceedings of the International Conference on Management and Service Science. https://doi.org/10.1109/ICMSS.2011.5998293
  • Sushil, (2017). Modified ISM/TISM process with simultaneous transitivity checks for reducing direct pair comparisons. Global Journal of Flexible Systems Management, 18(4), 331–351. https://doi.org/10.1007/s40171-017-0167-3
  • Sushil, (2018). How to check correctness of total interpretive structural models? Annals of Operations Research, 270(1), 473–487. https://doi.org/10.1007/s10479-016-2312-3
  • Thomason, M. G. (1977). Convergence of powers of a fuzzy matrix. Journal of Mathematical Analysis and Applications, 57(2), 476–480. https://doi.org/10.1016/0022-247X(77)90274-8
  • *Tseng, C.-P., Chen, C.-W., & Tu, Y.-P. (2011). A new viewpoint on risk control decision models for natural disasters. Natural Hazards, 59(3), 1715–1733. https://doi.org/10.1007/s11069-011-9861-1
  • *Venkatesh, V. G., Rathi, S., & Patwa, S. (2015). Analysis on supply chain risks in Indian apparel retail chains and proposal of risk prioritization model using Interpretive structural modeling. Journal of Retailing and Consumer Services, 26, 153–167. https://doi.org/10.1016/j.jretconser.2015.06.001
  • Villacorta, P. J., Masegosa, A. D., Castellanos, D., & Lamata, M. T. (2014). A new fuzzy linguistic approach to qualitative Cross Impact Analysis. Applied Soft Computing, 24, 19–30. https://doi.org/10.1016/j.asoc.2014.06.025
  • *Vishnu, C. R., Sridharan, R., Kumar, P. N., & Kumar, V. R. (2019). Analysis of the operational risk factors in public hospitals in an Indian state A hybrid DEMATEL-ISM-PROMETHEE approach. International Journal of Health Care Quality Assurance, 33(1), 67–88. https://doi.org/10.1108/IJHCQA-06-2018-0156
  • *Wang, L. (2018). Research on Risk Management for Healthcare Supply Chain in Hospital. (Ph.D. thesis) Liverpool John Moores University.
  • Warfield, J. N. (1973a). Binary matrices in system modeling. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(5), 441–449. https://doi.org/10.1109/TSMC.1973.4309270
  • Warfield, J. N. (1973b). On arranging elements of a hierarchy in graphic form. IEEE Transactions on Systems, Man, and Cybernetics, SMC, 3(2), 121–132. https://doi.org/10.1109/TSMC.1973.5408493
  • Warfield, J. N. (1974). Toward interpretation of complex structural models. IEEE Transactions on Systems, Man, and Cybernetics, SMC-4(5), 405–417. https://doi.org/10.1109/TSMC.1974.4309336
  • Warfield, J. N. (1976). Societal systems: Planning, policy, and complexity. John Wiley & Sons, Ltd.
  • Warfield, J. N. (1982). Interpretive structural modeling (ISM). In S.A. Olsen (Ed.), Group planning and problem-solving methods in engineering management. Wiley.
  • Warfield, J. N. (2003). A proposal for systems science. Systems Research and Behavioral Science, 20(6), 507–520. https://doi.org/10.1002/sres.528
  • Warfield, J. N., & Cárdenas, A. R. (1994). A handbook of interactive management (2nd ed.). Iowa State University Press.
  • Warfield, J. N., & Staley, S. M. (1996). Structural thinking: Organizing complexity through disciplined activity. Systems Research, 13(1), 47–67. https://doi.org/10.1002/(SICI)1099-1735(199603)
  • Waugh, F. V. (1950). Inversion of the Leontief Matrix by power series. Econometrica, 18(2), 142–154. https://doi.org/10.2307/1907265
  • WEF [World Economic Forum] (2013). Perspectives on a Hyperconnected World: Insights from the Science of Complexity. World Economic Forum. https://www.weforum.org/reports/perspectives-hyperconnected-world
  • WEF [World Economic Forum] (2018). The Global Risks Report. 2018 World Economic Forum.
  • *Wu, K.-J., Liao, C.-J., Tseng, M.-L., Lim, M. K., Hu, J., & Tan, K. H. (2017). Toward sustainability: Using big data to explore the decisive attributes of supply chain risks and uncertainties. Journal of Cleaner Production, 142, 663–676. https://doi.org/10.1016/j.jclepro.2016.04.040
  • *Wu, W.-S., Yang, C.-F., Chang, J.-C., Château, P.-A., & Chang, Y.-C. (2015). Risk assessment by integrating interpretive structural modeling and Bayesian network, case of offshore pipeline project. Reliability Engineering & System Safety, 142, 515–524. https://doi.org/10.1016/j.ress.2015.06.013
  • *Yazdani, M., Chatterjee, P., Pamucar, D., & Abad, M. D. (2019). A risk-based integrated decision-making model for green supplier selection A case study of a construction company in Spain. Kybernetes, 49(4), 1229–1252. https://doi.org/10.1108/K-09-2018-0509
  • *Zhao, G. Q., Liu, S. F., Lopez, C., Chen, H. L., Lu, H. Y., Mangla, S. K., & Elgueta, S. (2020). Risk analysis of the agri-food supply chain: A multi-method approach. International Journal of Production Research, 58(16), 4851–4876. https://doi.org/10.1080/00207543.2020.1725684