442
Views
3
CrossRef citations to date
0
Altmetric
Research Article

The gradual minimum covering location problem

& ORCID Icon
Pages 1092-1104 | Received 27 Jun 2021, Accepted 07 Mar 2022, Published online: 21 Apr 2022

References

  • Antunes, A. P., Teixeira, J., & Coutinho, M. (2008). Managing solid waste through discrete location analysis: A case study in central portugal. Journal of the Operational Research Society, 59(8), 1038–1046. https://doi.org/10.1057/palgrave.jors.2602422
  • Australian Bureau of Statistics. (n.d.). Retreived June 2020, from https://www.abs.gov.au/websitedbs/censushome.nsf/home/2016.
  • Berman, O., Drezner, Z., & Krass, D. (2010). Generalized coverage: New developments in covering location models. Computers & Operations Research, 37(10), 1675–1687. https://doi.org/10.1016/j.cor.2009.11.003
  • Berman, O., Drezner, Z., & Krass, D. (2019). The multiple gradual cover location problem. Journal of the Operational Research Society, 70(6), 931–940. https://doi.org/10.1080/01605682.2018.1471376
  • Berman, O., Drezner, Z., & Wesolowsky, G. O. (1996). Minimum covering criterion for obnoxious facility location on a network. Networks, 28(1), 1–5. https://doi.org/10.1002/(SICI)1097-0037(199608)28:1<1::AID-NET1>3.0.CO;2-J
  • Berman, O., & Huang, R. (2008). The minimum weighted covering location problem with distance constraints. Computers & Operations Research, 35(2), 356–372. https://doi.org/10.1016/j.cor.2006.03.003
  • Church, R. L., & Drezner, Z. (2021). Review of obnoxious facilities location problems. Computers and Operations Research, 12(2), 105468.
  • Church, R. L., & Garfinkel, R. S. (1978). Locating an obnoxious facility on a network. Transportation Science, 12(2), 107–118. https://doi.org/10.1287/trsc.12.2.107
  • Church, R., & ReVelle, C. (1974). The maximal covering location problem. Papers of the Regional Science Association, 32(1), 101–118. https://doi.org/10.1007/BF01942293
  • Colebrook, M., & Sicilia, J. (2007). Undesirable facility location problems on multicriteria networks. Computers & Operations Research, 34(5), 1491–1514. https://doi.org/10.1016/j.cor.2005.06.010
  • Current, J. R., & Schilling, D. A. (2010). Analysis of errors due to demand data aggregation in the set covering and maximal covering location problems. Geographical Analysis, 22(2), 116–126. https://doi.org/10.1111/j.1538-4632.1990.tb00199.x
  • Drezner, T., Drezner, Z., & Goldstein, Z. (2010). A stochastic gradual cover location problem. Naval Research Logistics (NRL), 57(4), 367–372. https://doi.org/10.1002/nav.20410
  • Drezner, T., Drezner, Z., & Kalczynski, P. (2020a). Gradual cover competitive facility location. Or Spectrum, 42(2), 333–354. https://doi.org/10.1007/s00291-020-00585-x
  • Drezner, T., Drezner, Z., & Kalczynski, P. (2020b). Multiple obnoxious facilities location: A cooperative model. IISE Transactions, 52(12), 1403–1412. https://doi.org/10.1080/24725854.2020.1753898
  • Drezner, T., Drezner, Z., & Schöbel, A. (2018). The weber obnoxious facility location model: A big arc small arc approach. Computers & Operations Research, 98, 240–250. https://doi.org/10.1016/j.cor.2018.06.006
  • Drezner, T., Drezner, Z., & Scott, C. H. (2009). Location of a facility minimizing nuisance to or from a planar network. Computers & Operations Research, 36(1), 135–148. https://doi.org/10.1016/j.cor.2007.08.004
  • Drezner, Z., Kalczynski, P., & Salhi, S. (2019). The planar multiple obnoxious facilities location problem: A voronoi based heuristic. Omega, 87, 105–116. https://doi.org/10.1016/j.omega.2018.08.013
  • Drezner, Z., & Wesolowsky, G. O. (1995). Obnoxious facility location in the interior of a planar network. Journal of Regional Science, 35(4), 675–688. https://doi.org/10.1111/j.1467-9787.1995.tb01299.x
  • Drezner, Z., Wesolowsky, G. O., & Drezner, T. (2004). The gradual covering problem. Naval Research Logistics (NRL), 51(6), 841–855. https://doi.org/10.1002/nav.20030
  • Dueck, G., & Scheuer, T. (1990). Threshold accepting: A general purpose optimization algorithm appearing superior to simulated annealing. Journal of Computational Physics, 90(1), 161–175. https://doi.org/10.1016/0021-9991(90)90201-B
  • Eiselt, H., & Marianov, V. (2009). Gradual location set covering with service quality. Socio-Economic Planning Sciences, 43(2), 121–130. https://doi.org/10.1016/j.seps.2008.02.010
  • Franzin, A., & Stützle, T. (2019). Revisiting simulated annealing: A component-based analysis. Computers & Operations Research, 104, 191–206. https://doi.org/10.1016/j.cor.2018.12.015
  • Goodchild, M. F. (2010). The aggregation problem in location-allocation. Geographical Analysis, 11(3), 240–255. https://doi.org/10.1111/j.1538-4632.1979.tb00692.x
  • Gurobi Optimization, L. (2018). Gurobi optimizer reference manual. Retrieved from http://www.gurobi.com
  • Hespe, D., Schulz, C., & Strash, D. (2019). Scalable kernelization for maximum independent sets. ACM Journal of Experimental Algorithmics, 24(1), 1–22. https://doi.org/10.1145/3355502
  • Hoek, M., Bracebridge, S., & Oliver, I. (2007). Health impact of the buncefield oil depot fire, December 2005. Journal of Public Health (Oxford, England), 29(3), 298–302.
  • Jang, H., & Lee, T. (2015). Demand point aggregation method for covering problems with gradual coverage. Computers & Operations Research, 60, 1–13. https://doi.org/10.1016/j.cor.2015.01.006
  • Kalczynski, P., & Drezner, Z. (2022). Extremely non-convex optimization problems: The case of the multiple obnoxious facilities location. Optimization Letters, 73(3), 598–607.
  • Kalczynski, P., Suzuki, A., & Drezner, Z. (2020). Multiple obnoxious facilities with weighted demand points. Journal of the Operational Research Society, 262(3), 1–10.
  • Karatas, M. (2017). A multi-objective facility location problem in the presence of variable gradual coverage performance and cooperative cover. European Journal of Operational Research, 262(3), 1040–1051. https://doi.org/10.1016/j.ejor.2017.04.001
  • Karatas, M., & Eriskin, L. (2021). The minimal covering location and sizing problem in the presence of gradual cooperative coverage. European Journal of Operational Research, 295(3), 838–856. https://doi.org/10.1016/j.ejor.2021.03.015
  • Khorjuvenkar, P. R., & Singh, A. (2019). A hybrid swarm intelligence approach for anti-covering location problem. In 2019 Innovations in Power and Advanced Computing Technologies (i-PACT), 1, 1–6.
  • Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science (New York, N.Y.), 220(4598), 671–680.
  • Lee, D. S., Vassiliadis, V. S., & Park, J. M. (2004). A novel threshold accepting meta-heuristic for the job-shop scheduling problem. Computers and Operations Research, 31(13), 2199–2213.
  • Lin, C. K. Y., Haley, K. B., & Sparks, C. (1995). A comparative study of both standard and adaptive versions of threshold accepting and simulated annealing algorithms in three scheduling problems. European Journal of Operational Research, 83(2), 330–346.
  • Murray, A. T., & Gottsegen, J. M. (2010). The influence of data aggregation on the stability of p-median location model solutions. Geographical Analysis, 29(3), 200–213. https://doi.org/10.1111/j.1538-4632.1997.tb00957.x
  • Plastria, F., & Carrizosa, E. (1999). Undesirable facility location with minimal covering objectives. European Journal of Operational Research, 119(1), 158–180. https://doi.org/10.1016/S0377-2217(98)00335-X
  • Reconstruction Agency. (n.d.). Retreived January 16, 2020 https://www.reconstruction.go.jp/english/topics/2013/03/the-status-in-fukushima.html.
  • ReVelle, C. (1993). Facility siting and integer-friendly programming. European Journal of Operational Research, 65(2), 147–158. https://doi.org/10.1016/0377-2217(93)90329-L
  • Tarantilis, C. D., Ioannou, G., Kiranoudis, C. T., & Prastacos, G. P. (2005). Solving the open vehicle routeing problem via a single parameter metaheuristic algorithm. Journal of the Operational Research Society, 56(5), 588–596. https://doi.org/10.1057/palgrave.jors.2601848
  • Tarantilis, C. D., Kiranoudis, C. T., & Vassiliadis, V. S. (2003). A list based threshold accepting metaheuristic for the heterogeneous fixed fleet vehicle routing problem. Journal of the Operational Research Society, 54(1), 65–71. https://doi.org/10.1057/palgrave.jors.2601443
  • Ting, C.-J., & Wang, H.-J. (2014). A threshold accepting algorithm for the uncapacitated single allocation hub location problem. Journal of the Chinese Institute of Engineers, 37(3), 300–312. https://doi.org/10.1080/02533839.2013.781797

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.