340
Views
2
CrossRef citations to date
0
Altmetric
Research Article

A Monte Carlo simulation framework for reject inference

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1133-1149 | Received 05 Apr 2021, Accepted 19 Mar 2022, Published online: 09 Apr 2022

References

  • Anderson, B. (2019). Using Bayesian networks to perform reject inference. Expert Systems with Applications, 137, 349–356. https://doi.org/10.1016/j.eswa.2019.07.011
  • Anderson, R. (2007). The credit scoring toolkit: Theory and practice for retail credit risk management and decision automation. Oxford University Press.
  • Baecke, P., & Van den Poel, D. (2011). Data augmentation by predicting spending pleasure using commercially available external data. Journal of Intelligent Information Systems, 36(3), 367–383. https://doi.org/10.1007/s10844-009-0111-x
  • Baesens, B. (2003). Developing intelligent systems for credit scoring using machine learning techniques [Unpublished doctoral dissertation]. Katholieke Universiteit Leuven.
  • Ballings, M., & Van den Poel, D. (2013). Kernel factory: An ensemble of kernel machines. Expert Systems with Applications, 40(8), 2904–2913. https://doi.org/10.1016/j.eswa.2012.12.007
  • Bellotti, T., & Crook, J. (2009). Support vector machines for credit scoring and discovery of significant features. Expert Systems with Applications, 36(2), 3302–3308. https://doi.org/10.1016/j.eswa.2008.01.005
  • Bucker, M., van Kampen, M., & Kramer, W. (2013). Reject inference in consumer credit scoring with nonignorable missing data. Journal of Banking & Finance, 37(3), 1040–1045. https://doi.org/10.1016/j.jbankfin.2012.11.002
  • Chen, G. G., & Astebro, T. (2012). Bound and collapse Bayesian reject inference for credit scoring. Journal of the Operational Research Society, 63(10), 1374–1387. https://doi.org/10.1057/jors.2011.149
  • Coussement, K., & Van den Poel, D. (2008). Churn prediction in subscription services. An application of support vector machines while comparing two parameter-selection techniques. Expert Systems with Applications, 34(1), 313–327. https://doi.org/10.1016/j.eswa.2006.09.038
  • Crone, S. F., & Finlay, S. (2012). Instance sampling in credit scoring: An empirical study of sample size and balancing. International Journal of Forecasting, 28(1), 224–238. https://doi.org/10.1016/j.ijforecast.2011.07.006
  • Crook, J., & Banasik, J. (2004). Does reject inference really improve the performance of application scoring models? Journal of Banking & Finance, 28(4), 857–874. https://doi.org/10.1016/S0378-4266(03)00203-6
  • Crook, J., Edelman, D. B., & Thomas, L. (2007). Recent developments in consumer credit risk assessment. European Journal of Operational Research, 183(3), 1447–1465. https://doi.org/10.1016/j.ejor.2006.09.100
  • Dastile, X., Celik, T., & Potsane, M. (2020). Statistical and machine learning models in credit scoring: A systematic literature survey. Applied Soft Computing, 91, 106263. https://doi.org/10.1016/j.asoc.2020.106263
  • Eisenbeis, R. A. (1978). Problems in applying discriminate analysis in credit scoring models. Journal of Banking & Finance, 2(3), 205–219. https://doi.org/10.1016/0378-4266(78)90012-2
  • Ehrhardt, A., Biernacki, C., Vandewalle, V., Heinrich, P., & Beben, S. (2021). Reject inference methods in credit scoring. Journal of Applied Statistics, 48(13–15), 2734–2754.
  • Enders, C. K., & Bandalos, D. L. (2001). The relative performance of full information maximum likelihood estimation for missing data in structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 8(3), 430–457. https://doi.org/10.1207/S15328007SEM0803_5
  • Feelders, A. J. (1999). Credit scoring and reject inference with mixture models. International Journal of Intelligent Systems in Accounting, Finance & Management, 8(4), 271–279. https://doi.org/10.1002/(SICI)1099-1174(199912)8:4<271::AID-ISAF170>3.0.CO;2-P
  • Goh, R. Y., & Lee, L. S. (2019). Credit scoring: A review on support vector machines and metaheuristic approaches. Advances in Operations Research, 2019, 1–30. https://doi.org/10.1155/2019/1974794
  • Hand, D. J. (2001). Modeling consumer credit. IMA Journal of Management Mathematics, 12(2), 139–155. https://doi.org/10.1093/imaman/12.2.139
  • Hand, D. J. (2006). Classifier technology and the illusion of progress (with discussion). Statistical Science, 21, 1–34.
  • Hand, D. J. (2012). Assessing the performance of classification methods. International Statistical Review, 80(3), 400–414. https://doi.org/10.1111/j.1751-5823.2012.00183.x
  • Hand, D. J., & Henley, W. (1994). Can reject inference ever work? IMA Journal of Mathematics Applied in Business & Industry, 5(4), 45–55.
  • Hand, D. J., Mannila, H., & Smyth, P. (2001). Principles of data mining. MIT Press.
  • Iyer, R., Khwaja, A. I., Luttmer, E. F. P., & Shue, K. (2016). Screening peers softly: Inferring the quality of small borrowers. Management Science, 62(6), 1554–1577. https://doi.org/10.1287/mnsc.2015.2181
  • Joannes, D. N. (1993). Reject inference applied to logistic regression for credit scoring. IMA Journal of Mathematics Applied in Business & Industry, 5(1), 35–43.
  • Lai, P., Liu, Y., Liu, Z., & Wan, Y. (2017). Model free feature screening for ultrahigh dimensional data with responses missing at random. Computational Statistics & Data Analysis, 105, 201–216. https://doi.org/10.1016/j.csda.2016.08.008
  • Lessman, S., Baesens, B., Seow, H.-V., & Thomas, L. C. (2015). Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research. European Journal of Operational Research, 247(1), 124–136. https://doi.org/10.1016/j.ejor.2015.05.030
  • Levatic, J., Ceci, M., Kocev, D., & Dzeroski, S. (2017). Semi-supervised classification trees. Journal of Intelligent Information Systems, 49(3), 461–486. https://doi.org/10.1007/s10844-017-0457-4
  • Li, Y., & Chen, W. (2020). A comparative performance assessment of ensemble learning for credit scoring. Mathematics, 8(10), 1756. https://doi.org/10.3390/math8101756
  • Li, Q., & Racine, J. (2003). Nonparametric estimation of distributions with categorical and continuous data. Journal of Multivariate Analysis, 86(2), 266–292. https://doi.org/10.1016/S0047-259X(02)00025-8
  • Li, Z., Tian, Y., Li, K., Zhou, F., & Yang, W. (2017). Reject inference in credit scoring using semi-supervised support vector machines. Expert Systems with Applications, 74, 105–114. https://doi.org/10.1016/j.eswa.2017.01.011
  • Liu, F. G., & Kost, J. (2017). Applications of simulations for missing data issues in longitudinal clinal trials. In D. Chen & J.D. Chen (Eds.), Monte-Carlo simulation-based statistical modeling (pp. 211–232). Springer.
  • Liu, Y., Li, X., & Zhang, Z. (2020). A new approach in reject inference of using ensemble learning based on global semi-supervised framework. Future Generation Computer Systems, 109, 382–391. https://doi.org/10.1016/j.future.2020.03.047
  • Mancisidor, R. A., Kampffmeyer, M., Aas, K., & Jenssen, R. (2020). Deep generative models for reject inference in credit scoring. Knowledge-Based Systems, 196, 105758. https://doi.org/10.1016/j.knosys.2020.105758
  • Mays, E. (2001). Handbook of credit scoring. Glenlake Publishing Company.
  • Nikolaidis, D., Doumpos, D., & Zopounidis, C. (2017). Exploring population drift on consumer credit behavioral scoring. In E. Grigoroudis & M. Doumpos (Eds.), Operations research in business and economics (pp.145–165). Springer.
  • Oskarsdottir, M., Bravo, C., Sarraute, C., Vanthienen, J., & Baesens, B. (2019). The value of big data for credit scoring: Enhancing financial inclusion using mobile phone data and social network analysis. Applied Soft Computing, 74, 26–39. https://doi.org/10.1016/j.asoc.2018.10.004
  • Shen, F., Zhao, X., & Kou, G. (2020). Three-stage reject inference learning framework for credit scoring using unsupervised transfer learning and three-way decision theory. Decision Support Systems, 137, 113366. https://doi.org/10.1016/j.dss.2020.113366
  • Siddiqi, N. (2017). Intelligent credit scoring: Building and implementing better credit risk scorecards (2nd ed.). Wiley.
  • Teles, G., Rodrigues, J. J. P. C., Rabelo, R. A. L., & Kozlov, S. A. (2020). Comparative study of support vector machines and random forests machine learning algorithms on credit operations. Journal of Software: Practice and Experience. https://doi.org/10.1002/spe.2842.
  • Tian, Y., Yong, Z., & Luo, J. (2018). A new approach for reject inference in credit scoring using kernel-free fuzzy quadratic surface support vector machines. Applied Soft Computing, 73, 96–105. https://doi.org/10.1016/j.asoc.2018.08.021
  • Vallee, B., & Zeng, Y. (2019). Marketplace lending: A new paradigm? The Review of Financial Studies, 32(5), 1939–1982. https://doi.org/10.1093/rfs/hhy100
  • van Engelen, J. E., & Hoos, H. H. (2020). A survey on semi-supervised learning. Machine Learning, 109(2), 373–440. https://doi.org/10.1007/s10994-019-05855-6
  • Verstraeten, G., & Van den Poel, D. (2005). The impact of sample bias on consumer credit scoring and profitability. Journal of the Operational Research Society, 56(8), 981–992. https://doi.org/10.1057/palgrave.jors.2601920
  • Xia, Y., Yang, X., & Zhang, Y. (2018). A reject inference technique based on contrastive pessimistic likelihood estimation for P2P lending. Electronic Commerce Research and Applications, 30, 111–124. https://doi.org/10.1016/j.elerap.2018.05.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.