169
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Shot-noise cojumps: Exact simulation and option pricing

, & ORCID Icon
Pages 647-665 | Received 30 Jan 2020, Accepted 08 May 2022, Published online: 28 May 2022

References

  • Aït-Sahalia, Y., & Hurd, T. R. (2015). Portfolio choice in markets with contagion. Journal of Financial Econometrics, 14(1), 1–28. https://doi.org/10.1093/jjfinec/nbv024
  • Aït-Sahalia, Y., & Jacod, J. (2014). High-frequency financial econometrics. Princeton University Press.
  • Aït-Sahalia, Y., Cacho-Diaz, J., & Laeven, R. J. (2015). Modeling financial contagion using mutually exciting jump processes. Journal of Financial Economics, 117(3), 585–606. https://doi.org/10.1016/j.jfineco.2015.03.002
  • Aït-Sahalia, Y., Laeven, R. J., & Pelizzon, L. (2014). Mutual excitation in Eurozone sovereign CDS. Journal of Econometrics, 183(2), 151–167. https://doi.org/10.1016/j.jeconom.2014.05.006
  • Andersen, T. G., Fusari, N., & Todorov, V. (2015a). Parametric inference and dynamic state recovery from option panels. Econometrica, 83(3), 1081–1145. https://doi.org/10.3982/ECTA10719
  • Andersen, T. G., Fusari, N., & Todorov, V. (2015b). The risk premia embedded in index options. Journal of Financial Economics, 117(3), 558–584. https://doi.org/10.1016/j.jfineco.2015.06.005
  • Andersen, T. G., Fusari, N., & Todorov, V. (2017). Short-term market risks implied by weekly options. The Journal of Finance, 72(3), 1335–1386. https://doi.org/10.1111/jofi.12486
  • Asmussen, S., & Glynn, P. W. (2007). Stochastic simulation: Algorithms and analysis. Springer.
  • Bakshi, G., Cao, C., & Chen, Z. (1997). Empirical performance of alternative option pricing models. The Journal of Finance, 52(5), 2003–2049. https://doi.org/10.1111/j.1540-6261.1997.tb02749.x
  • Baldeaux, J. (2012). Exact simulation of the 3/2 model. International Journal of Theoretical and Applied Finance, 15(5), 1250032–1250013. https://doi.org/10.1142/S021902491250032X
  • Bandi, F. M., & Renò, R. (2012). Time-varying leverage effects. Journal of Econometrics, 169(1), 94–113. https://doi.org/10.1016/j.jeconom.2012.01.010
  • Bandi, F. M., & Renò, R. (2016). Price and volatility co-jumps. Journal of Financial Economics, 119(1), 107–146. https://doi.org/10.1016/j.jfineco.2015.05.007
  • Barndorff-Nielsen, O. E., & Shephard, N. (2001a). Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(2), 167–241. https://doi.org/10.1111/1467-9868.00282
  • Barndorff-Nielsen, O. E., & Shephard, N. (2001b). Normal modified stable processes. Theory of Probability and Mathematical Statistics, 65, 1–19.
  • Barndorff-Nielsen, O. E., & Shephard, N. (2002). Econometric analysis of realized volatility and its use in estimating stochastic volatility models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(2), 253–280. https://doi.org/10.1111/1467-9868.00336
  • Barndorff-Nielsen, O. E., Nicolato, E., & Shephard, N. (2002). Some recent developments in stochastic volatility modelling. Quantitative Finance, 2(1), 11–23. https://doi.org/10.1088/1469-7688/2/1/301
  • Bates, D. S. (2000). Post-’87 crash fears in the S&P 500 futures option market. Journal of Econometrics, 94(1–2), 181–238. https://doi.org/10.1016/S0304-4076(99)00021-4
  • Bates, D. S. (2012). U.S. stock market crash risk, 1926–2010. Journal of Financial Economics, 105(2), 229–259. https://doi.org/10.1016/j.jfineco.2012.03.004
  • Beskos, A., & Roberts, G. O. (2005). Exact simulation of diffusions. Annals of Applied Probability, 15(4), 2422–2444.
  • Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637–654. https://doi.org/10.1086/260062
  • Bookstaber, R. M., & Pomerantz, S. (1989). An information-based model of market volatility. Financial Analysts Journal, 45(6), 37–46. https://doi.org/10.2469/faj.v45.n6.37
  • Boswijk, H. P., Laeven, R. J., & Yang, X. (2018). Testing for self-excitation in jumps. Journal of Econometrics, 203(2), 256–266. https://doi.org/10.1016/j.jeconom.2017.11.007
  • Broadie, M., & Kaya, Ö. (2006). Exact simulation of stochastic volatility and other affine jump diffusion processes. Operations Research, 54(2), 217–231. https://doi.org/10.1287/opre.1050.0247
  • Broadie, M., & Yamamoto, Y. (2005). A double-exponential fast Gauss transform algorithm for pricing discrete path-dependent options. Operations Research, 53(5), 764–779. https://doi.org/10.1287/opre.1050.0219
  • Broadie, M., Chernov, M., & Johannes, M. (2007). Model specification and risk premia: Evidence from futures options. The Journal of Finance, 62(3), 1453–1490. https://doi.org/10.1111/j.1540-6261.2007.01241.x
  • Cai, N., Song, Y., & Chen, N. (2017). Exact simulation of the SABR model. Operations Research, 65(4), 931–951. https://doi.org/10.1287/opre.2017.1617
  • Campbell, J. Y., Lo, A. W.-C., & MacKinlay, A. C. (1997). The econometrics of financial markets. Princeton University Press.
  • Carr, P., & Wu, L. (2017). Leverage effect, volatility feedback, and self-exciting market disruptions. Journal of Financial and Quantitative Analysis, 52(5), 2119–2156. https://doi.org/10.1017/S0022109017000564
  • Carr, P., Geman, H., Madan, D. B., & Yor, M. (2002). The fine structure of asset returns: An empirical investigation. The Journal of Business, 75(2), 305–333. https://doi.org/10.1086/338705
  • Chen, N., & Huang, Z. (2013). Localization and exact simulation of Brownian motion-driven stochastic differential equations. Mathematics of Operations Research, 38(3), 591–616. https://doi.org/10.1287/moor.2013.0585
  • Corradi, V., Silvapulle, M. J., & Swanson, N. R. (2018). Testing for jumps and jump intensity path dependence. Journal of Econometrics, 204(2), 248–267. https://doi.org/10.1016/j.jeconom.2018.02.004
  • Cox, D. R., & Isham, V. (1980). Point processes. Chapman and Hall.
  • Dassios, A., & Jang, J. (2003). Pricing of catastrophe reinsurance and derivatives using the Cox process with shot noise intensity. Finance and Stochastics, 7(1), 73–95. https://doi.org/10.1007/s007800200079
  • Dassios, A., & Zhao, H. (2011). A dynamic contagion process. Advances in Applied Probability, 43(3), 814–846. https://doi.org/10.1239/aap/1316792671
  • Dassios, A., & Zhao, H. (2013). Exact simulation of Hawkes process with exponentially decaying intensity. Electronic Communications in Probability, 18, 1–13. https://doi.org/10.1214/ECP.v18-2717
  • Dassios, A., & Zhao, H. (2017). Efficient simulation of clustering jumps with CIR intensity. Operations Research, 65(6), 1494–1515. https://doi.org/10.1287/opre.2017.1640
  • Dassios, A., Qu, Y., & Zhao, H. (2018). Exact simulation for a class of tempered stable and related distributions. ACM Transactions on Modeling and Computer Simulation, 28(3), 1–20:21. https://doi.org/10.1145/3184453
  • Duffie, D., & Glynn, P. (1995). Efficient Monte Carlo simulation of security prices. Annals of Applied Probability, 5(4), 897–905.
  • Duffie, D., & Singleton, K. (1999). Simulating correlated defaults. Working paper Stanford University.
  • Duffie, D., & Singleton, K. J. (2003). Credit risk: Pricing, measurement, and management. Princeton University Press.
  • Duffie, D., Filipovic, D., & Schachermayer, W. (2003). Affine processes and applications in finance. Annals of Applied Probability, 13(3), 984–1053.
  • Duffie, D., Pan, J., & Singleton, K. (2000). Transform analysis and asset pricing for affine jump-diffusions. Econometrica, 68(6), 1343–1376. https://doi.org/10.1111/1468-0262.00164
  • Dungey, M., Erdemlioglu, D., Matei, M., & Yang, X. (2018). Testing for mutually exciting jumps and financial flights in high frequency data. Journal of Econometrics, 202(1), 18–44. https://doi.org/10.1016/j.jeconom.2017.09.002
  • Embrechts, P., McNeil, A., & Straumann, D. (2002). Correlation and dependence in risk management: Properties and pitfalls. In M. A. H. Dempster (Ed.), Risk management: Value at risk and beyond (pp. 176–223). Cambridge University Press.
  • Eraker, B. (2004). Do stock prices and volatility jump? reconciling evidence from spot and option prices. The Journal of Finance, 59(3), 1367–1404. https://doi.org/10.1111/j.1540-6261.2004.00666.x
  • Eraker, B., Johannes, M., & Polson, N. (2003). The impact of jumps in volatility and returns. The Journal of Finance, 58(3), 1269–1300. https://doi.org/10.1111/1540-6261.00566
  • Feng, L., & Linetsky, V. (2008). Pricing discretely monitored barrier options and defaultable bonds in Lévy process models: A fast Hilbert transform approach. Mathematical Finance, 18(3), 337–384. https://doi.org/10.1111/j.1467-9965.2008.00338.x
  • Fulop, A., Li, J., & Yu, J. (2015). Self-exciting jumps, learning, and asset pricing implications. Review of Financial Studies, 28(3), 876–912. https://doi.org/10.1093/rfs/hhu078
  • Glasserman, P. (2003). Monte Carlo methods in financial engineering. Springer.
  • Grasselli, M. (2017). The 4/2 stochastic volatility model: A unified approach for the Heston and the 3/2 model. Mathematical Finance, 27(4), 1013–1034. https://doi.org/10.1111/mafi.12124
  • Hawkes, A. G. (1971). Point spectra of some mutually exciting point processes. Journal of the Royal Statistical Society. Series B (Methodological), 33(3), 438–443. https://doi.org/10.1111/j.2517-6161.1971.tb01530.x
  • Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies, 6(2), 327–343. https://doi.org/10.1093/rfs/6.2.327
  • Jacod, J., & Todorov, V. (2010). Do price and volatility jump together? Annals of Applied Probability, 20(4), 1425–1469.
  • Jacod, J., Klüppelberg, C., & Müller, G. (2012). Functional relationships between price and volatility jumps and their consequences for discretely observed data. Journal of Applied Probability, 49(4), 901–914. https://doi.org/10.1239/jap/1354716647
  • Jacod, J., Klüppelberg, C., & Müller, G. (2017). Testing for non-correlation between price and volatility jumps. Journal of Econometrics, 197(2), 284–297. https://doi.org/10.1016/j.jeconom.2016.11.007
  • Kang, C., Kang, W., & Lee, J. M. (2017). Exact simulation of the Wishart multidimensional stochastic volatility model. Operations Research, 65(5), 1190–1206. https://doi.org/10.1287/opre.2017.1636
  • Kou, S. G. (2002). A jump-diffusion model for option pricing. Management Science, 48(8), 1086–1101. https://doi.org/10.1287/mnsc.48.8.1086.166
  • Li, C., & Wu, L. (2019). Exact simulation of the Ornstein–Uhlenbeck driven stochastic volatility model. European Journal of Operational Research, 275(2), 768–779. https://doi.org/10.1016/j.ejor.2018.11.057
  • Li, L., & Linetsky, V. (2013). Optimal stopping and early exercise: An eigenfunction expansion approach. Operations Research, 61(3), 625–643. https://doi.org/10.1287/opre.2013.1167
  • Mendoza-Arriaga, R., & Linetsky, V. (2014). Time-changed CIR default intensities with two-sided mean-reverting jumps. Annals of Applied Probability, 24(2), 811–856.
  • Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics, 3(1–2), 125–144. https://doi.org/10.1016/0304-405X(76)90022-2
  • Nyström, K., & Zhang, C. (2021). Hawkes-based models for high frequency financial data. Journal of the Operational Research Society, 1–18. https://doi.org/10.1080/01605682.2021.1952116
  • Pan, J. (2002). The jump-risk premia implicit in options: Evidence from an integrated time-series study. Journal of Financial Economics, 63(1), 3–50. https://doi.org/10.1016/S0304-405X(01)00088-5
  • Patton, A. J. (2009). Copula–based models for financial time series. In T. Mikosch, J.-P. Kreiß, R. A. Davis, & T. G. Andersen (Eds.), Handbook of financial time series (pp. 767–785). Springer.
  • Peng, L., & Xiong, W. (2003). Time to digest and volatility dynamics. Working paper Duke University and Princeton University.
  • Petrella, G., & Kou, S. (2004). Numerical pricing of discrete barrier and lookback options via Laplace transforms. The Journal of Computational Finance, 8(1), 1–38. https://doi.org/10.21314/JCF.2004.114
  • Qu, Y., Dassios, A., & Zhao, H. (2021a). Exact simulation of gamma-driven Ornstein–Uhlenbeck processes with finite and infinite activity jumps. Journal of the Operational Research Society, 72(2), 471–484. https://doi.org/10.1080/01605682.2019.1657368
  • Qu, Y., Dassios, A., & Zhao, H. (2021b). Exact simulation of Ornstein-Uhlenbeck tempered stable processes. Journal of Applied Probability, 58(2), 347–371. https://doi.org/10.1017/jpr.2020.92
  • Qu, Y., Dassios, A., & Zhao, H. (2021c). Random variate generation for exponential and gamma tilted stable distributions. ACM Transactions on Modeling and Computer Simulation, 31(4), 1–21. forthcoming. https://doi.org/10.1145/3449357
  • Roberts, G. O., Papaspiliopoulos, O., & Dellaportas, P. (2004). Bayesian inference for non-Gaussian Ornstein-Uhlenbeck stochastic volatility processes. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 66(2), 369–393. https://doi.org/10.1111/j.1369-7412.2004.05139.x
  • Ross, S. A. (1989). Information and volatility: The no-arbitrage martingale approach to timing and resolution irrelevancy. The Journal of Finance, 44(1), 1–17. https://doi.org/10.1111/j.1540-6261.1989.tb02401.x
  • Shephard, N. (2005). Stochastic volatility: Selected readings. Oxford University Press.
  • Todorov, V. (2015). Jump activity estimation for pure-jump semimartingales via self-normalized statistics. Annals of Statistics, 43(4), 1831–1864.
  • Todorov, V., & Tauchen, G. (2011). Volatility jumps. Journal of Business & Economic Statistics, 29(3), 356–371. https://doi.org/10.1198/jbes.2010.08342
  • Todorov, V., Tauchen, G., & Grynkiv, I. (2014). Volatility activity: Specification and estimation. Journal of Econometrics, 178(Part 1), 180–193. https://doi.org/10.1016/j.jeconom.2013.08.015
  • Xiu, D. (2014). Hermite polynomial based expansion of European option prices. Journal of Econometrics, 179(2), 158–177. https://doi.org/10.1016/j.jeconom.2014.01.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.