325
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Probabilistic load forecasting using post-processed weather ensemble predictions

ORCID Icon, &
Pages 1008-1020 | Received 05 Jan 2021, Accepted 12 Aug 2022, Published online: 27 Aug 2022

References

  • Alley, R. B., Emanuel, K. A., & Zhang, F. (2019). Advances in weather prediction. Science (New York, N.Y.), 363(6425), 342–344.
  • Al-Yahyai, S., Charabi, Y., & Gastli, A. (2010). Review of the use of numerical weather prediction (nwp) models for wind energy assessment. Renewable and Sustainable Energy Reviews, 14(9), 3192–3198. https://doi.org/10.1016/j.rser.2010.07.001
  • Arora, S., & Taylor, J. W. (2016). Forecasting electricity smart meter data using conditional kernel density estimation. Omega, 59, 47–59. https://doi.org/10.1016/j.omega.2014.08.008
  • Arora, S., & Taylor, J. W. (2018). Rule-based autoregressive moving average models for forecasting load on special days: A case study for france. European Journal of Operational Research, 266(1), 259–268. https://doi.org/10.1016/j.ejor.2017.08.056
  • Atger, F. (2003). Spatial and interannual variability of the reliability of ensemble-based probabilistic forecasts: Consequences for calibration. Monthly Weather Review, 131(8), 1509–1523. https://doi.org/10.1175//1520-0493(2003)131<1509:SAIVOT>2.0.CO;2
  • Baran, Á., Lerch, S., El Ayari, M., & Baran, S. (2021). Machine learning for total cloud cover prediction. Neural Computing and Applications, 33(7), 2605–2620. https://doi.org/10.1007/s00521-020-05139-4
  • Baran, S., & Lerch, S. (2018). Combining predictive distributions for the statistical post-processing of ensemble forecasts. International Journal of Forecasting, 34(3), 477–496. http://www.sciencedirect.com/science/article/pii/S016920701830030X https://doi.org/10.1016/j.ijforecast.2018.01.005
  • Bauer, P., Thorpe, A., & Brunet, G. (2015). The quiet revolution of numerical weather prediction. Nature, 525(7567), 47–55.
  • Ben Bouallègue, Z., Heppelmann, T., Theis, S. E., & Pinson, P. (2016). Generation of scenarios from calibrated ensemble forecasts with a dual-ensemble copula-coupling approach. Monthly Weather Review, 144(12), 4737–4750. https://doi.org/10.1175/MWR-D-15-0403.1
  • Billinton, R., & Huang, D. (2008). Effects of load forecast uncertainty on bulk electric system reliability evaluation. IEEE Transactions on Power Systems, 23(2), 418–425. https://doi.org/10.1109/TPWRS.2008.920078
  • Bossavy, A., Girard, R., & Kariniotakis, G. (2013). Forecasting ramps of wind power production with numerical weather prediction ensembles. Wind Energy, 16(1), 51–63. https://doi.org/10.1002/we.526
  • Chen, P., Chen, Z., Bak-Jensen, B. (2008). Probabilistic load flow: A review. In Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, 2008. DRPT 2008 (pp. 1586–1591). IEEE/Institute of Electrical and Electronics Engineers Incorporated.
  • Clark, M., Gangopadhyay, S., Hay, L., Rajagopalan, B., & Wilby, R. (2004). The schaake shuffle: A method for reconstructing space–time variability in forecasted precipitation and temperature fields. Journal of Hydrometeorology, 5(1), 243–262. https://doi.org/10.1175/1525-7541(2004)005<0243:TSSAMF>2.0.CO;2
  • Diebold, F. X., Mariano, R. S., Diebold, F., & Mariano, R. (1995). Comparing predictive accuracy. Journal of Business & Economic Statistics, 13(3), 253–263.
  • Eckel, F. A., & Walters, M. K. (1998). Calibrated probabilistic quantitative precipitation forecasts based on themrf ensemble. Weather and Forecasting, 13(4), 1132–1147. https://doi.org/10.1175/1520-0434(1998)013<1132:CPQPFB>2.0.CO;2
  • Feldmann, K., Scheuerer, M., & Thorarinsdottir, T. L. (2015). Spatial postprocessing of ensemble forecasts for temperature using nonhomogeneous gaussian regression. Monthly Weather Review, 143(3), 955–971. https://doi.org/10.1175/MWR-D-14-00210.1
  • Gensler, A. (2019). Wind power ensemble forecasting.
  • Gneiting, T. (2011). Quantiles as optimal point forecasts. International Journal of Forecasting, 27(2), 197–207. https://doi.org/10.1016/j.ijforecast.2009.12.015
  • Gneiting, T. (2014). Calibration of medium-range weather forecasts (tech. rep.). ECMWF Technical Memoranda, No. 719. https://www.ecmwf.int/sites/default/files/elibrary/2014/9607-calibration-medium-range-weather-forecasts.pdf.
  • Gneiting, T., Balabdaoui, F., & Raftery, A. E. (2007). Probabilistic forecasts, calibration and sharpness. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(2), 243–268. https://doi.org/10.1111/j.1467-9868.2007.00587.x
  • Gneiting, T., & Katzfuss, M. (2014). Probabilistic forecasting. Annual Review of Statistics and Its Application, 1(1), 125–151. https://doi.org/10.1146/annurev-statistics-062713-085831
  • Gneiting, T., Raftery, A. E., Westveld, A. H., & Goldman, T. (2005). Calibrated probabilistic forecasting using ensemble model output statistics and minimum crps estimation. Monthly Weather Review, 133(5), 1098–1118. https://doi.org/10.1175/MWR2904.1
  • Gneiting, T., & Ranjan, R. (2011). Comparing density forecasts using thresholdand quantile-weighted scoring rules. Journal of Business & Economic Statistics, 29(3), 411–422. https://doi.org/10.1198/jbes.2010.08110
  • Guo, Z., Zhou, K., Zhang, X., & Yang, S. (2018). A deep learning model for short-term power load and probability density forecasting. Energy, 160, 1186–1200. https://doi.org/10.1016/j.energy.2018.07.090
  • Haben, S., Giasemidis, G., Ziel, F., & Arora, S. (2019). Short term load forecasting and the effect of temperature at the low voltage level. International Journal of Forecasting, 35(4), 1469–1484. https://doi.org/10.1016/j.ijforecast.2018.10.007
  • Hagedorn, R., Buizza, R., Hamill, T. M., Leutbecher, M., & Palmer, T. N. (2012). Comparing tigge multimodel forecasts with reforecast-calibrated ecmwf ensemble forecasts. Quarterly Journal of the Royal Meteorological Society, 138(668), 1814–1827. https://doi.org/10.1002/qj.1895
  • Hamill, T. M., & Colucci, S. J. (1997). Verification of eta–rsm short-range ensemble forecasts. Monthly Weather Review, 125(6), 1312–1327. https://doi.org/10.1175/1520-0493(1997)125<1312:VOERSR>2.0.CO;2
  • Hastie, T. J., Tibshirani, R. J., & Friedman, J. H. (2013). The elements of statistical learning: data mining, inference, and prediction (2nd ed., corr. at 7th printing). Springer.
  • Haupt, S. E., Garcia Casado, M., Davidson, M., Dobschinski, J., Du, P., Lange, M., Miller, T., Mohrlen, C., Motley, A., Pestana, R., & Zack, J. (2019). The use of probabilistic forecasts: Applying them in theory and practice. IEEE Power and Energy Magazine, 17(6), 46–57. https://doi.org/10.1109/MPE.2019.2932639
  • Hemri, S., Haiden, T., & Pappenberger, F. (2016). Discrete postprocessing of total cloud cover ensemble forecasts. Monthly Weather Review, 144(7), 2565–2577. https://doi.org/10.1175/MWR-D-15-0426.1
  • Heppelmann, T., Ben Bouallegue, Z., & Theis, S. (2015). Exploring the calibration of a wind forecast ensemble for energy applications. In EGU General Assembly Conference Abstracts, Vienna, Austria, 12-17 April, 11897.
  • Heppelmann, T., Steiner, A., & Vogt, S. (2017). Application of numerical weather prediction in wind power forecasting: Assessment of the diurnal cycle. Meteorologische Zeitschrift, 26(3), 319–331. https://doi.org/10.1127/metz/2017/0820
  • Hu, Y., Schmeits, M. J., Jan van Andel, S., Verkade, J. S., Xu, M., Solomatine, D. P., & Liang, Z. (2016). A stratified sampling approach for improved sampling from a calibrated ensemble forecast distribution. Journal of Hydrometeorology, 17(9), 2405–2417. https://doi.org/10.1175/JHM-D-15-0205.1
  • Hu, Y.-C. (2017). Electricity consumption prediction using a neural-network-based grey forecasting approach. Journal of the Operational Research Society, 68(10), 1259–1264. https://doi.org/10.1057/s41274-016-0150-y
  • Hu, Y.-C., & Jiang, P. (2017). Forecasting energy demand using neural-network-based grey residual modification models. Journal of the Operational Research Society, 68(5), 556–565. https://doi.org/10.1057/s41274-016-0130-2
  • Ludwig, N., Feuerriegel, S., & Neumann, D. (2015). Putting big data analytics to work: Feature selection for forecasting electricity prices using the lasso and random forests. Journal of Decision Systems, 24(1), 19–36. https://doi.org/10.1080/12460125.2015.994290
  • Mass, C. F. (2003). Ifps and the future of the national weather service. Weather and Forecasting, 18(1), 75–79. https://doi.org/10.1175/1520-0434(2003)018<0075:IATFOT>2.0.CO;2
  • Möller, A., Thorarinsdottir, T. L., Lenkoski, A., Gneiting, T. (2015). Spatially adaptive, Bayesian estimation for probabilistic temperature forecasts. http://arxiv.org/pdf/1507.05066v3
  • Nielsen, H. A., Madsen, H., Nielsen, T. S., Badger, J., Giebel, G., Landberg, L. (2004). Wind power ensemble forecasting. In Proceedings of the 2004 Global Windpower Conference and Exhibition, Chicago, 28–31 March.
  • Nowotarski, J., & Weron, R. (2018). Recent advances in electricity price forecasting: A review of probabilistic forecasting. Renewable and Sustainable Energy Reviews, 81, 1548–1568. https://doi.org/10.1016/j.rser.2017.05.234
  • Raftery, A. E., Gneiting, T., Balabdaoui, F., & Polakowski, M. (2005). Using bayesian model averaging to calibrate forecast ensembles. Monthly Weather Review, 133(5), 1155–1174. https://doi.org/10.1175/MWR2906.1
  • Schefzik, R. (2017). Ensemble calibration with preserved correlations: Unifying and comparing ensemble copula coupling and member-by-member postprocessing. Quarterly Journal of the Royal Meteorological Society, 143(703), 999–1008. https://doi.org/10.1002/qj.2984
  • Schefzik, R., Thorarinsdottir, T. L., & Gneiting, T. (2013). Uncertainty quantification in complex simulation models using ensemble copula coupling. Statistical Science, 28(4), 616–640. https://doi.org/10.1214/13-STS443
  • Scheuerer, M., & Buermann, L. (2014). Spatially adaptive post-processing of ensemble forecasts for temperature. Journal of the Royal Statistical Society: Series C (Applied Statistics), 63(3), 405–422.
  • Taieb, S. B., Taylor, J. W., & Hyndman, R. J. (2021). Hierarchical probabilistic forecasting of electricity demand with smart meter data. Journal of the American Statistical Association, 116(533), 27–43.
  • Taylor, J. W. (2003). Short-term electricity demand forecasting using double seasonal exponential smoothing. Journal of the Operational Research Society, 54(8), 799–805. https://doi.org/10.1057/palgrave.jors.2601589
  • Taylor, J. W., & Buizza, R. (2002). Neural network load forecasting with weather ensemble predictions. IEEE Transactions on Power Systems, 17(3), 626–632. https://doi.org/10.1109/TPWRS.2002.800906
  • Taylor, J. W., & Buizza, R. (2003). Using weather ensemble predictions in electricity demand forecasting. International Journal of Forecasting, 19(1), 57–70. https://doi.org/10.1016/S0169-2070(01)00123-6
  • Thorey, J., Chaussin, C., & Mallet, V. (2018). Ensemble forecast of photovoltaic power with online crps learning. International Journal of Forecasting, 34(4), 762–773. https://doi.org/10.1016/j.ijforecast.2018.05.007
  • Tibshirani, R. (1996). Regression shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society. Series B (Methodological), 58(1), 267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
  • van der Meer, D. W., Shepero, M., Svensson, A., Widén, J., & Munkhammar, J. (2018). Probabilistic forecasting of electricity consumption, photovoltaic power generation and net demand of an individual building using gaussian processes. Applied Energy, 213, 195–207. https://doi.org/10.1016/j.apenergy.2017.12.104
  • Wang, Y., Xia, Q., & Kang, C. (2011). Unit commitment with volatile node injections by using interval optimization. IEEE Transactions on Power Systems, 26(3), 1705–1713. https://doi.org/10.1109/TPWRS.2010.2100050
  • Wilks, D. S., & Hamill, T. M. (2007). Comparison of ensemble-mos methods using gfs reforecasts. Monthly Weather Review, 135(6), 2379–2390. https://doi.org/10.1175/MWR3402.1
  • Zamo, M., Mestre, O., Arbogast, P., & Pannekoucke, O. (2014). A benchmark of statistical regression methods for short-term forecasting of photovoltaic electricity production. Part II: Probabilistic forecast of daily production. Solar Energy, 105, 804–816. https://doi.org/10.1016/j.solener.2014.03.026

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.