160
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Modelling host population support for combat adversaries

ORCID Icon, , ORCID Icon, &
Pages 928-943 | Received 25 Oct 2020, Accepted 30 Aug 2022, Published online: 13 Oct 2022

References

  • Ahern, R., Zuparic, M., Hoek, K., & Kalloniatis, A. (2021). Unifying warfighting functions in mathematical modelling: Combat, manoeuvre, and C2. Journal of the Operational Research Society, 1–19. https://doi.org/10.1080/01605682.2021.1956379
  • Arató, M. (2003). A famous nonlinear stochastic equation (Lotka–Volterra model with diffusion). Mathematical and Computer Modelling, 38(7–9), 709–726. https://doi.org/10.1016/S0895-7177(03)90056-2
  • Atkinson, M., Gutfraind, A., & Kress, M. (2012). When do armed revolts succeed: Lessons from Lanchester theory. Journal of the Operational Research Society, 63(10), 1363–1373. https://doi.org/10.1057/jors.2011.146
  • Deitchman, S. (1962). A Lanchester model of guerrilla warfare. Operations Research, 10(6), 818–827. https://doi.org/10.1287/opre.10.6.818
  • Dorn, W., & Varey, M. (2009). Fatally flawed: The rise and demise of the three-block war concept in Canada. Canadian Military Journal, 10(1), 38–45.
  • Drapeau, M., Hurley, P., & Armstrong, R. (2008). So many zebras, so little time: Ecological models and counterinsurgency operations. Defense Horizons, 62, 1–8.
  • González, E., & Villena, M. (2011). Spatial Lanchester models. European Journal of Operational Research, 210(3), 706–715. https://doi.org/10.1016/j.ejor.2010.11.009
  • González-Avella, J., Cosenza, M., & San Miguel, M. (2014). Localized coherence in two interacting populations of social agents. Physica A: Statistical Mechanics and Its Applications, 399, 24–30. https://doi.org/10.1016/j.physa.2013.12.035
  • Hazelton, J. (2021, July 15). The hearts-and-minds myth: How America gets counterinsurgency wrong. Foreign Affairs. https://www.foreignaffairs.com/articles/united-states/2021-07-15/hearts-and-minds-myth
  • Hening, A., & Nguyen, D. (2018). Persistence in stochastic Lotka–Volterra food chains with intraspecific competition. Bulletin of Mathematical Biology, 80(10), 2527–2560. https://doi.org/10.1007/s11538-018-0468-5
  • Hening, A., Nguyen, D., & Yin, G. (2018). Stochastic population growth in spatially heterogeneous environments: The density-dependent case. Journal of Mathematical Biology, 76(3), 697–754. https://doi.org/10.1007/s00285-017-1153-2
  • Hoffman, F. (2007). Conflict in the 21st century: The rise of hybrid war. Potomac Institute for Policy Studies.
  • Holling, C. (1966). The functional response of invertebrate predators to prey density. Memoirs of the Entomological Society of Canada, 98(S48), 5–86. https://doi.org/10.4039/entm9848fv
  • Hosmer, S. (2007). Why the Iraqi resistance to the coalition invasion was so weak. RAND Corporation.
  • Hung, C., Yang, G., Deng, P., Tang, T., Lan, S., & Chu, P. (2005). Fitting Lanchester’s square law to the Ardennes Campaign. Journal of the Operational Research Society, 56(8), 942–946. https://doi.org/10.1057/palgrave.jors.2601878
  • Johnson, D., & Madin, J. (2008). Population models and counterinsurgency strategies. In R. D. Sagarin & T. Taylor (Eds.), Natural security: A Darwinian approach to a dangerous world (pp. 159–185). University of California Press.
  • Kalloniatis, A., Hoek, K., Zuparic, M., & Brede, M. (2021). Optimising structure in a networked Lanchester model for fires and manoeuvre in warfare. Journal of the Operational Research Society, 72(8), 1863–1878. https://doi.org/10.1080/01605682.2020.1745701
  • Kalloniatis, A., McLennan-Smith, T., & Roberts, D. (2020). Modelling distributed decision-making in command and control using stochastic network synchronisation. European Journal of Operational Research, 284(2), 588–603. https://doi.org/10.1016/j.ejor.2019.12.033
  • Keane, T. (2011). Combat modelling with partial differential equations. Applied Mathematical Modelling, 35(6), 2723–2735. https://doi.org/10.1016/j.apm.2010.11.057
  • Kilcullen, D. (2020). The dragons and the snakes: How the rest learned to fight the west. Scribe.
  • Kofman, M., Migacheva, K., Nichiporuk, B., Radin, A., Tkacheva, O., & Oberholtzer, J. (2017). Lessons from Russia’s operations in Crimea and Eastern Ukraine. RAND Corporation.
  • Kress, M., Lin, K., & MacKay, N. (2018). The attrition dynamics of multilateral war. Operations Research, 66(4), 950–956. https://doi.org/10.1287/opre.2018.1718
  • Kress, M., & MacKay, N. (2014). Bits or shots in combat? The generalized Deitchman model of guerrilla warfare. Operations Research Letters, 42(1), 102–108. https://doi.org/10.1016/j.orl.2013.08.004
  • Kress, M., & Szechtman, R. (2009). Why defeating insurgencies is hard: The effect of intelligence in counterinsurgency operations—A best-case scenario. Operations Research, 57(3), 578–585. https://doi.org/10.1287/opre.1090.0700
  • Lanchester, F. (1916). Aircraft in warfare: Dawn of the fourth arm. Constable Limited.
  • Lin, K., & MacKay, N. (2014). The optimal policy for the one-against-many heterogeneous Lanchester model. Operations Research Letters, 42(6–7), 473–477. https://doi.org/10.1016/j.orl.2014.08.008
  • Lotka, A. (1925). Elements of physical biology. Williams and Wilkins.
  • Lucas, T., & Turkes, T. (2004). Fitting Lanchester equations to the battles of Kursk and Ardennes. Naval Research Logistics, 51(1), 95–116. https://doi.org/10.1002/nav.10101
  • MacKay, N. (2006). Lanchester combat models. Mathematics Today, 42(5), 170–173.
  • MacKay, N. (2009). Lanchester models for mixed forces with semi-dynamical target allocation. Journal of the Operational Research Society, 60(10), 1421–1427. https://doi.org/10.1057/jors.2008.97
  • MacKay, N. (2012). Response to “Some comments on MacKay’s Lanchester mixed forces model”. Journal of the Operational Research Society, 63(11), 1633–1633. https://doi.org/10.1057/jors.2012.10
  • MacKay, N. (2015). When Lanchester met Richardson, the outcome was stalemate: A parable for mathematical models of insurgency. In: R. Forder (Ed.), OR, defence and security (pp. 124–147). Palgrave Macmillan.
  • McLennan-Smith, T., Kalloniatis, A., Jovanoski, Z., Sidhu, H., Roberts, D., Watt, S., & Towers, I. (2021). A mathematical model of humanitarian aid agencies in attritional conflict environments. Operations Research, 69(6), 1696–1714. https://doi.org/10.1287/opre.2021.2130
  • McLennan-Smith, T., Kalloniatis, A., Sidhu, H., Jovanoski, Z., Watt, S., & Towers, I. (2019, December). Exploiting ecological non-trophic models in representations of warfare. In S. Elsawah (Ed.), MODSIM2019, 23rd International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand (pp. 242–248).
  • Metz, S., & Millen, R. (2004). Insurgency and counter-insurgency in the 21st Century: Reconceptualizing threat and response. Strategic Studies Institute, US Army War College.
  • Osipov, M. (1995). The influence of the numerical strength of engaged forces on their casualties (translated by Helmbold R and Rehm A). In J. Bracken, M. Kress, & R. Rosenthal (Eds.), Warfare modelling (pp. 289–344). John Wiley and Sons.
  • Petraeus, D. (2009). The Petraeus doctrine: The field manual on counterinsurgency operations (pp. 3–24). Joint Chiefs of Staff Joint Publication.
  • Polyanin, A., & Zaitsev, V. (2003). Handbook of exact solutions for ordinary differential equations (2nd ed.). Chapman and Hall/CRC.
  • Protopopescu, V., Santoro, R., & Dockery, J. (1989). Combat modeling with partial differential equations. European Journal of Operational Research, 38(2), 178–183. https://doi.org/10.1016/0377-2217(89)90102-1
  • Richards, F. (1959). A flexible flexible growth function for empirical use. Journal of Experimental Botany, 10(2), 290–301. https://doi.org/10.1093/jxb/10.2.290
  • Royama, T. (1971). A comparative study of models for predation and parasitism. Population Ecology, 13(S1), 1–91. https://doi.org/10.1007/BF02511547
  • Schaffer, M. (1968). Lanchester models of guerrilla engagements. Operations Research, 16(3), 457–488. https://doi.org/10.1287/opre.16.3.457
  • Syms, R., & Solymar, L. (2015). A dynamic competition model of regime change. Journal of the Operational Research Society, 66(11), 1939–1947. https://doi.org/10.1057/jors.2015.28
  • Taylor, J. (1977). Determining the class of payoffs that yield force-level-independent optimal fire-support strategies. Operations Research, 25(3), 506–516. https://doi.org/10.1287/opre.25.3.506
  • Taylor, J. (1979). Optimal commitment of forces in some Lanchester-type combat models. Operations Research, 27(1), 96–114. https://doi.org/10.1287/opre.27.1.96
  • Taylor, J., & Brown, G. (1976). Canonical methods in the solution of variable-coefficient Lanchester-type equations of modern warfare. Operations Research, 24(1), 44–69. https://doi.org/10.1287/opre.24.1.44
  • Taylor, J., & Parry, S. (1975). Force-ratio considerations for some Lanchester-type models of warfare. Operations Research, 23(3), 522–533. https://doi.org/10.1287/opre.23.3.522
  • Verhulst, P. (1838). Notice sur la loi que la population suite dans son accroissement. Correspondence Mathematique, 10, 113–121.
  • Volterra, V. (1928). Variations and fluctuations of the number of individuals in animal species living together (translated by Wells, M). ICES Journal of Marine Science, 3(1), 3–51. https://doi.org/10.1093/icesjms/3.1.3
  • Williamson, J. (2011). Using humanitarian aid to win hearts and minds: A costly failure? International Review of the Red Cross, 93(884), 1035–1061. https://doi.org/10.1017/S1816383112000380
  • Zimmerman, D. W. (2016). Understanding the threat ecosystem: A concept for intelligence support to special warfare. School of Advanced Military Studies United States Army Command and General Staff College Fort Leavenworth.
  • Zuparic, M., Angelova, M., Zhu, Y., & Kalloniatis, A. (2021). Adversarial decision strategies in multiple network phased oscillators: The Blue-Green-Red Kuramoto-Sakaguchi model. Communications in Nonlinear Science and Numerical Simulation, 95, 105642. https://doi.org/10.1016/j.cnsns.2020.105642

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.