1,428
Views
3
CrossRef citations to date
0
Altmetric
Review Article

A critical review of planning and scheduling in steel-making and continuous casting in the steel industry

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1421-1455 | Received 30 Mar 2023, Accepted 24 Sep 2023, Published online: 07 Nov 2023

References

  • Ariyama, T., & Sato, M. (2006). Optimization of ironmaking process for reducing CO2 emissions in the integrated steel works. ISIJ International, 46(12), 1736–1744. https://doi.org/10.2355/isijinternational.46.1736
  • Armellini, D., Borzone, P., Ceschia, S., Di Gaspero, L., & Schaerf, A. (2020). Modeling and solving the steelmaking and casting scheduling problem. International Transactions in Operational Research, 27(1), 57–90. https://doi.org/10.1111/itor.12595
  • Atighehchian, A., Bijari, M., & Tarkesh, H. (2009). A novel hybrid algorithm for scheduling steel-making continuous casting production. Computers & Operations Research, 36(8), 2450–2461. https://doi.org/10.1016/j.cor.2008.10.010
  • Balakrishnan, A., & Geunes, J. (2003). Production planning with flexible product specifications: An application to specialty steel manufacturing. Operations Research, 51(1), 94–112. https://doi.org/10.1287/opre.51.1.94.12791
  • Bellabdaoui, A., & Teghem, J. (2006). A mixed-integer linear programming model for the continuous casting planning. International Journal of Production Economics, 104(2), 260–270. https://doi.org/10.1016/j.ijpe.2004.10.016
  • Box, R. E., & Herbe, D. G., Jr. (1988). A scheduling model for LTV Steel’s Cleveland Works’ twin strand continuous slab caster. Interfaces, 18(1), 42–56. https://doi.org/10.1287/inte.18.1.42
  • Branca, T. A., Fornai, B., Colla, V., Murri, M. M., Streppa, E., & Schröder, A. J. (2020). The challenge of digitalization in the steel sector. Metals, 10(2), 288. https://doi.org/10.3390/met10020288
  • Cao, J., Pan, R., Xia, X., Shao, X., & Wang, X. (2021). An efficient scheduling approach for an iron-steel plant equipped with self-generation equipment under time-of-use electricity tariffs. Swarm and Evolutionary Computation, 60, 100764. https://doi.org/10.1016/j.swevo.2020.100764
  • Casado, S., Laguna, M., Pacheco, J., & Puche, J. C. (2020). Grouping products for the optimization of production processes: A case in the steel manufacturing industry. European Journal of Operational Research, 286(1), 190–202. https://doi.org/10.1016/j.ejor.2020.03.010
  • Chakrabarti, A. K. (2006). Steel making. PHI Learning Pvt. Ltd.
  • Chang, S. Y., Chang, M.-R., & Hong, Y. (2000). A lot grouping algorithm for a continuous slab caster in an integrated steel mill. Production Planning & Control, 11(4), 363–368. https://doi.org/10.1080/095372800232090
  • Cowling, P., & Rezig, W. (2000). Integration of continuous caster and hot strip mill planning for steel production. Journal of Scheduling, 3(4), 185–208. https://doi.org/10.1002/1099-1425(200007/08)3:4<185::AID-JOS42>3.0.CO;2-G
  • Crévits, I., Hanaf I, A Ridha Mahjoub, S., Taktak, R., Wilbaut, C. (2019). A special case of variable-sized bin packing problem with color constraints. In 2019 6th International Conference on Control, Decision and Information Technologies (pp. 1150–1154). IEEE
  • Cui, H., & Luo, X. (2017). An improved Lagrangian relaxation approach to scheduling steelmaking-continuous casting process. Computers & Chemical Engineering, 106, 133–146. https://doi.org/10.1016/j.compchemeng.2017.05.026
  • Cui, H., Luo, X., & Wang, Y. (2020). Scheduling of steelmaking-continuous casting process using deflected surrogate Lagrangian relaxation approach and DC Algorithm. Computers & Industrial Engineering, 140, 106271. https://doi.org/10.1016/j.cie.2020.106271
  • Cui, H., Luo, X., & Wang, Y. (2022). Scheduling of steelmaking-continuous casting process with different processing routes using effective surrogate Lagrangian relaxation approach and improved concave-convex procedure. International Journal of Production Research, 60(11), 3435–3460. https://doi.org/10.1080/00207543.2021.1924408
  • Dash, S., Kalagnanam, J., Reddy, C., & Song, S. H. (2007). Production design for plate products in the steel industry. IBM Journal of Research and Development, 51(3.4), 345–362. https://doi.org/10.1147/rd.513.0345
  • Dawande, M., & Kalagnanam, J. (1998). The multiple knapsack problem with color constraints. IBM Technical Report RC21138.
  • Dawande, M., Kalagnanam, J., Lee, H. S., Reddy, C., Siegel, S., & Trumbo, M. (2004). The slab-design problem in the steel industry. Interfaces, 34(3), 215–225. https://doi.org/10.1287/inte.1040.0077
  • De Moerloose, P., & Maenhout, B. (2023). A two-stage local search heuristic for solving the steelmaking continuous casting scheduling problem with dual shared-resource and blocking constraints. Operational Research, 23(1), 2. https://doi.org/10.1007/s12351-023-00760-2
  • Dong, H., Huang, M., Ip, W. H., & Wang, X. (2010). On the integrated charge planning with flexible jobs in primary steelmaking processes. International Journal of Production Research, 48(21), 6499–6535. https://doi.org/10.1080/00207540903246656
  • Dong, H., Huang, M., Ip, W. H., & Wang, X. (2012). Improved variable neighbourhood search for integrated tundish planning in primary steelmaking processes. International Journal of Production Research, 50(20), 5747–5761. https://doi.org/10.1080/00207543.2011.624563
  • Dorn, J., Kerr, R., & Thalhammer, G. (1995). Reactive scheduling: Improving the robustness of schedules and restricting the effects of shop floor disturbances by fuzzy reasoning. International Journal of Human-Computer Studies, 42(6), 687–704. https://doi.org/10.1006/ijhc.1995.1031
  • Dutta, G., & Fourer, R. (2001). A survey of mathematical programming applications in integrated steel plants. Manufacturing & Service Operations Management, 3(4), 387–400. https://doi.org/10.1287/msom.3.4.387.9972
  • Fanti, M. P., Rotunno, G., Stecco, G., Ukovich, W., & Mininel, S. (2016). An integrated system for production scheduling in steelmaking and casting plants. IEEE Transactions on Automation Science and Engineering, 13(2), 1112–1128. https://doi.org/10.1109/TASE.2015.2477362
  • Fazel Zarandi, M. H., & Dorry, F. (2018). A hybrid fuzzy PSO algorithm for solving steelmaking-continuous casting scheduling problem. International Journal of Fuzzy Systems, 20(1), 219–235. https://doi.org/10.1007/s40815-017-0331-0
  • Fisher, M. L. (1981). The Lagrangian relaxation method for solving integer programming problems. Management Science, 27(1), 1–18. https://doi.org/10.1287/mnsc.27.1.1
  • Forrest, J. J., Kalagnanam, J., & Ladanyi, L. (2006). A column-generation approach to the multiple knapsack problem with color constraints. INFORMS Journal on Computing, 18(1), 129–134. https://doi.org/10.1287/ijoc.1040.0078
  • Fraizzoli, D., Ramin, D., Brusaferri, A. (2020). A new modeling approach to include EAF flexibility in the energy-aware scheduling of steelmaking process. In 2020 7th International Conference on Control, Decision and Information Technologies (vol. 1, pp. 1063–1068).
  • Frisch, A. M., Miguel, I., & Walsh, T. (2001). Symmetry and implied constraints in the steel mill slab design problem. In Proc. CP’01 workshop on modelling and problem formulation.
  • Furini, F., & Malaguti, E. (2013). Models for the two-dimensional two-stage cutting stock problem with multiple stock size. Computers & Operations Research, 40(8), 1953–1962. https://doi.org/10.1016/j.cor.2013.02.026
  • Gajic, D., Hadera, H., Onofri, L., Harjunkoski, I., & Di Gennaro, S. (2017). Implementation of an integrated production and electricity optimization system in melt shop. Journal of Cleaner Production, 155, 39–46. https://doi.org/10.1016/j.jclepro.2016.09.170
  • García-Menéndez, D., Morán-Palacios, H., Ortega-Fernández, F., & Díaz-Piloñeta, M. (2020). Scheduling in continuous steelmaking casting: A systematic review. ISIJ International, 60(6), 1097–1107. https://doi.org/10.2355/isijinternational.ISIJINT-2019-574
  • Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP-completeness (1st ed.). W. H. Freeman.
  • Gargani, A., Refalo, P. (2007). An efficient model and strategy for the steel mill slab design problem. In International Conference on Principles and Practice of Constraint Programming (pp. 77–89). Springer.
  • Gay, S., Schaus, P., & Smedt, V. D. (2014). Continuous casting scheduling with constraint programming. In B. O’Sullivan (ed.), Principles and practice of constraint programming (vol. 8656, pp. 831–845). Springer International Publishing.
  • Glover, F., & Laguna, M. (1998). Tabu search. In Handbook of combinatorial optimization (pp. 2093–2229). Springer.
  • Goren, S., & Sabuncuoglu, I. (2008). Robustness and stability measures for scheduling: Single-machine environment. IIE Transactions, 40(1), 66–83. https://doi.org/10.1080/07408170701283198
  • Goren, S., & Sabuncuoglu, I. (2009). Optimization of schedule robustness and stability under random machine breakdowns and processing time variability. IIE Transactions, 42(3), 203–220. https://doi.org/10.1080/07408170903171035
  • Guo, D., & Li, T. (2007). Rescheduling algorithm for steelmaking-continuous casting [Paper presentation]. In 2007 2nd IEEE Conference on Industrial Electronics and Applications (pp. 1421–1425). IEEE. https://doi.org/10.1109/ICIEA.2007.4318640
  • Gupta, J. N. (1988). Two-stage, hybrid flowshop scheduling problem. Journal of the Operational Research Society, 39(4), 359–364. https://doi.org/10.1057/jors.1988.63
  • Hadera, H., & Harjunkoski, I. (2013). Continuous-time batch scheduling approach for optimizing electricity consumption cost. In A. Kraslawski, & I. Turunen (Eds.), Computer aided chemical engineering. Volume 32 of 23 European Symposium on Computer Aided Process Engineering (pp. 403–408). Elsevier.
  • Hadera, H., Harjunkoski, I., Sand, G., Grossmann, I. E., & Engell, S. (2015). Optimization of steel production scheduling with complex time-sensitive electricity cost. Computers & Chemical Engineering, 76, 117–136. https://doi.org/10.1016/j.compchemeng.2015.02.004
  • Hadera, H., Labrik, R., Sand, G., Engell, S., & Harjunkoski, I. (2016). An improved energy-awareness formulation for general precedence continuous-time scheduling models. Industrial & Engineering Chemistry Research, 55(5), 1336–1346. https://doi.org/10.1021/acs.iecr.5b03239
  • Hakimzadeh Abyaneh, S., & Zandieh, M. (2012). Bi-objective hybrid flow shop scheduling with sequence-dependent setup times and limited buffers. The International Journal of Advanced Manufacturing Technology, 58(1–4), 309–325. https://doi.org/10.1007/s00170-011-3368-5
  • Hamada, K., Baba, T., Sato, K., & Yufu, M. (1995). Hybridizing a genetic algorithm with rule-based reasoning for production planning. IEEE Expert, 10(5), 60–67. https://doi.org/10.1109/64.464934
  • Han, D., Tang, Q., Zhang, Z., & Cao, J. (2020). Energy-efficient integration optimization of production scheduling and ladle dispatching in steelmaking plants. IEEE Access, 8, 176170–176187. https://doi.org/10.1109/ACCESS.2020.3027018
  • Han, D., Tang, Q., Zhang, Z., & Li, Z. (2020). An improved migrating birds optimization algorithm for a hybrid flow shop scheduling within steel plants. Mathematics, 8(10), 1661. https://doi.org/10.3390/math8101661
  • Han, D., Tang, Q., Zhang, Z., Yuan, L., Rakovitis, N., Li, D., & Li, J. (2021). An efficient augmented Lagrange multiplier method for steelmaking and continuous casting production scheduling. Chemical Engineering Research and Design, 168, 169–192. https://doi.org/10.1016/j.cherd.2021.01.035
  • Hao, J., Liu, M., Jiang, S.-L., & Wu, C. (2015). A soft-decision based two-layered scheduling approach for uncertain steelmaking-continuous casting process. European Journal of Operational Research, 244(3), 966–979. https://doi.org/10.1016/j.ejor.2015.02.026
  • Harjunkoski, I., & Grossmann, I. E. (2001). A decomposition approach for the scheduling of a steel plant production. Computers & Chemical Engineering, 25(11–12), 1647–1660. https://doi.org/10.1016/S0098-1354(01)00729-3
  • Harjunkoski, I., & Sand, G. (2008). Flexible and configurable MILP-models for meltshop scheduling optimization. In B. Braunschweig, & X. Joulia (Eds.), Computer aided chemical engineering. Volume 25 of 18th European symposium on computer aided process engineering (pp. 677–682). Elsevier.
  • He, L., de Weerdt, M., & Yorke-Smith, N. (2020). Time/sequence-dependent scheduling: The design and evaluation of a general purpose tabu-based adaptive large neighbourhood search algorithm. Journal of Intelligent Manufacturing, 31(4), 1051–1078. https://doi.org/10.1007/s10845-019-01518-4
  • He, S., Li, D., Zhang, H., Gong, F., Chen, S., Ren, K. (2021). Research on modeling and solving algorithm of steelmaking continuous casting production scheduling. In 2021 7th International Symposium on Mechatronics and Industrial Informatics (pp. 188–192).
  • Heinz, S., Schlechte, T., Stephan, R., & Winkler, M. (2012). Solving steel mill slab design problems. Constraints, 17(1), 39–50. https://doi.org/10.1007/s10601-011-9113-8
  • Hnich, B., Kiziltan, Z., Miguel, I., & Walsh, T. (2004). Hybrid modelling for robust solving. Annals of Operations Research, 130(1–4), 19–39. https://doi.org/10.1023/B:ANOR.0000032568.51115.0d
  • Hong, J., Moon, K., Lee, K., Lee, K., & Pinedo, M. L. (2022). An iterated greedy matheuristic for scheduling in steelmaking-continuous casting process. International Journal of Production Research, 60(2), 623–643. https://doi.org/10.1080/00207543.2021.1975839
  • Huegler, P. A., & Hartman, J. C. (2007). Fulfilling orders for steel plates from existing inventory. Journal of the Operational Research Society, 58(9), 1156–1166. https://doi.org/10.1057/palgrave.jors.2602274
  • Huimin, G., Jianchao, Z. (2007). Cooperative particle swarm optimization for steel making scheduling. In Third international conference on natural computation (vol. 4, pp. 522–526). IEEE.
  • Iglesias-Escudero, M., Villanueva-Balsera, J., Ortega-Fernandez, F., & Rodriguez-Montequín, V. (2019). Planning and scheduling with uncertainty in the steel sector: A review. Applied Sciences, 9(13), 2692. https://doi.org/10.3390/app9132692
  • Iori, M., De Lima, V. L., Martello, S., Miyazawa, F. K., & Monaci, M. (2021). Exact solution techniques for two-dimensional cutting and packing. European Journal of Operational Research, 289(2), 399–415. https://doi.org/10.1016/j.ejor.2020.06.050
  • Jansen, B. J. (1998). The graphical user interface. ACM SIGCHI Bulletin, 30(2), 22–26. https://doi.org/10.1145/279044.279051
  • Jiang, S.-L., Liu, M., & Hao, J. (2017). A two-phase soft optimization method for the uncertain scheduling problem in the steelmaking industry. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(3), 416–431. https://doi.org/10.1109/TSMC.2015.2503388
  • Jiang, S.-L., Liu, M., Hao, J., & Qian, W. (2015). A bi-layer optimization approach for a hybrid flow shop scheduling problem involving controllable processing times in the steelmaking industry. Computers & Industrial Engineering, 87, 518–531. https://doi.org/10.1016/j.cie.2015.06.002
  • Jiang, S.-L., Liu, M., Lin, J., & Zhong, H. (2016). A prediction-based online soft scheduling algorithm for the real-world steelmaking-continuous casting production. Knowledge-Based Systems, 111, 159–172. https://doi.org/10.1016/j.knosys.2016.08.010
  • Jiang, S.-L., & Liu, Q. (2017). An adaptive sampling-estimation of distribution algorithm for robust scheduling in the steelmaking-continuous casting process [Paper presentation]. In 2017 13th IEEE conference on automation science and engineering (pp. 440–445).
  • Jiang, S.-L., Liu, Q., Bogle, I. D. L., & Zheng, Z. (2023). A self-learning based dynamic multi-objective evolutionary algorithm for resilient scheduling problems in steelmaking plants. IEEE Transactions on Automation Science and Engineering, 20(2), 832–845. https://doi.org/10.1109/TASE.2022.3168385
  • Jiang, S.-L., Zheng, Z., & Liu, M. (2017). A multi-stage dynamic soft scheduling algorithm for the uncertain steelmaking-continuous casting scheduling problem. Applied Soft Computing, 60, 722–736. https://doi.org/10.1016/j.asoc.2017.07.016
  • Jiang, S.-L., Zheng, Z., & Liu, M. (2018). A preference-inspired multi-objective soft scheduling algorithm for the practical steelmaking-continuous casting production. Computers & Industrial Engineering, 115, 582–594. https://doi.org/10.1016/j.cie.2017.10.028
  • Jin, Y., Niu, D., Li, Q., & Shi, H. (2021). Research on scheduling method of steelmaking-continuous casting production with limited waiting time and stage skipping. In 2021 36th youth academic annual conference of Chinese association of automation (pp. 604–609). IEEE.
  • Kadlec, P., Gabrys, B., & Strandt, S. (2009). Data-driven soft sensors in the process industry. Computers & Chemical Engineering, 33(4), 795–814. https://doi.org/10.1016/j.compchemeng.2008.12.012
  • Kalagnanam, J. R., Dawande, M. W., Trumbo, M., & Lee, H. S. (1998). Inventory matching problems in the steel industry. IBM Technical Report, Computer Science/Mathematics, 21171.
  • Kalagnanam, J. R., Dawande, M. W., Trumbo, M., & Lee, H. S. (2000). The surplus inventory matching problem in the process industry. Operations Research, 48(4), 505–516. https://doi.org/10.1287/opre.48.4.505.12425
  • Kammammettu, S., & Li, Z. (2018). Multistage adaptive optimization for steelmaking and continuous casting scheduling under processing time uncertainty. IFAC-PapersOnLine, 51(21), 262–267. https://doi.org/10.1016/j.ifacol.2018.09.429
  • Kasapinov, L., Jovanov, M., & Trajanov, D. (2014). A new approach for maximum utilization of the mother steel plates for rectangular steel plates orders. In 2014 37th international convention on information and communication technology, electronics and microelectronics (pp. 959–965). IEEE.
  • Kikuchi, N. (2020). Development and prospects of refining techniques in steelmaking process. ISIJ International, 60(12), 2731–2744. https://doi.org/10.2355/isijinternational.ISIJINT-2020-186
  • Kim, J. H., Yi, H.-S., & Han, C. (2003). A novel MILP model for plantwide multiperiod optimization of byproduct gas supply system in the iron-and steel-making process. Chemical Engineering Research and Design, 81(8), 1015–1025. https://doi.org/10.1205/026387603322482248
  • Kovacs, A. A., Parragh, S. N., Doerner, K. F., & Hartl, R. F. (2012). Adaptive large neighborhood search for service technician routing and scheduling problems. Journal of Scheduling, 15(5), 579–600. https://doi.org/10.1007/s10951-011-0246-9
  • Kumar, V., Kumar, S., Tiwari, M. K., & Chan, F. T. S. (2006). Auction-based approach to resolve the scheduling problem in the steel making process. International Journal of Production Research, 44(8), 1503–1522. https://doi.org/10.1080/00207540500434713
  • Lee, K., Chang, S. Y., & Hong, Y. (2004). Continuous slab caster scheduling and interval graphs. Production Planning & Control, 15(5), 495–501. https://doi.org/10.1080/09537280410001714279
  • Lee, M., Hong, J., Kim, H., Bang, I., Lee, K., Kim, B.-I., & Kim, J. (2023). An integrated batching problem for steel plate manufacturing with bi-strand casting. International Journal of Production Research, 61(3), 955–975. https://doi.org/10.1080/00207543.2021.2021456
  • Li, C., Yuan, B., Ren, J., Sun, L., & Wang, J. (2019). Research on optimization of charge batch planning based on augmented Lagrangian relaxation algorithm. IFAC-PapersOnLine, 52(1), 814–819. https://doi.org/10.1016/j.ifacol.2019.06.162
  • Li, J., Xiao, X., Tang, Q., & Floudas, C. A. (2012). Production scheduling of a large-scale steelmaking continuous casting process via unit-specific event-based continuous-time models: Short-term and medium-term scheduling. Industrial & Engineering Chemistry Research, 51(21), 7300–7319. https://doi.org/10.1021/ie2015944
  • Li, J-q., Pan, Q-k., Mao, K., & Suganthan, P. N. (2014). Solving the steelmaking casting problem using an effective fruit fly optimisation algorithm. Knowledge-Based Systems, 72, 28–36. https://doi.org/10.1016/j.knosys.2014.08.022
  • Li, J., Duan, P., Sang, H., Wang, S., Liu, Z., & Duan, P. (2018). An efficient optimization algorithm for resource-constrained steelmaking scheduling problems. IEEE Access, 6, 33883–33894. https://doi.org/10.1109/ACCESS.2018.2840512
  • Li, J., Pan, Q-k., & Mao, K. (2016). A hybrid fruit fly optimization algorithm for the realistic hybrid flowshop rescheduling problem in steelmaking systems. IEEE Transactions on Automation Science and Engineering, 13(2), 932–949. https://doi.org/10.1109/TASE.2015.2425404
  • Li, T., Li, Y., Zhang, Q., Gao, X., & Dai, S. (2005). Constraint programming approach to steelmaking-making process scheduling. Communications of the IIMA, 5(3), 9.
  • Lian, X., Zheng, Z., & Gao, X. (2022). Steel plant rescheduling considering the balance of oxygen supply and demand under converter failure. Computers & Chemical Engineering, 168, 108064. https://doi.org/10.1016/j.compchemeng.2022.108064
  • Lian, X., Zheng, Z., Wang, C., & Gao, X. (2021). An energy-efficient hybrid flow shop scheduling problem in steelmaking plants. Computers & Industrial Engineering, 162, 107683. https://doi.org/10.1016/j.cie.2021.107683
  • Lin, J., Liu, M., Hao, J., & Jiang, S.-L. (2016). A multi-objective optimization approach for integrated production planning under interval uncertainties in the steel industry. Computers & Operations Research, 72, 189–203. https://doi.org/10.1016/j.cor.2016.03.002
  • Linn, R., & Zhang, W. (1999). Hybrid flow shop scheduling: A survey. Computers & Industrial Engineering, 37(1-2), 57–61. https://doi.org/10.1016/S0360-8352(99)00023-6
  • Liu, L., Gu, H-y., & Xi, Y-g (2007). Robust and stable scheduling of a single machine with random machine breakdowns. The International Journal of Advanced Manufacturing Technology, 31(7–8), 645–654. https://doi.org/10.1007/s00170-005-0237-0
  • Liu, W., Pang, X., Li, H., & Sun, L. (2022). Ladle intelligent re-scheduling method in steelmaking–refining–continuous casting production process based on BP neural network working condition estimation. The International Journal of Advanced Manufacturing Technology, 122(1), 65–85. https://doi.org/10.1007/s00170-021-08327-1
  • Lodi, A., Martello, S., & Monaci, M. (2002). Two-dimensional packing problems: A survey. European Journal of Operational Research, 141(2), 241–252. https://doi.org/10.1016/S0377-2217(02)00123-6
  • Long, J., Hong, Y., Bai, Y., Zhang, S., & Sun, Z. (2018a). Practical production scheduling for hot metal pretreatment-steelmaking-continuous casting process involving preventive maintenance consideration. IEEE Access, 6, 57017–57029. https://doi.org/10.1109/ACCESS.2018.2873422
  • Long, J., Sun, Z., Chen, H., Bai, Y., & Hong, Y. (2018b). Variable neighborhood search for integrated determination of charge batching and casting start time in steel plants. Journal of Intelligent & Fuzzy Systems, 34(6), 3821–3832. https://doi.org/10.3233/JIFS-169554
  • Long, J., Sun, Z., Pardalos, P. M., Bai, Y., Zhang, S., & Li, C. (2020). A robust dynamic scheduling approach based on release time series forecasting for the steelmaking-continuous casting production. Applied Soft Computing, 92, 106271. https://doi.org/10.1016/j.asoc.2020.106271
  • Long, J., Zheng, Z., & Gao, X. (2017). Dynamic scheduling in steelmaking-continuous casting production for continuous caster breakdown. International Journal of Production Research, 55(11), 3197–3216. https://doi.org/10.1080/00207543.2016.1268277
  • Long, J., Zheng, Z., Gao, X., & Pardalos, P. M. (2016). A hybrid multi-objective evolutionary algorithm based on NSGA-II for practical scheduling with release times in steel plants. Journal of the Operational Research Society, 67(9), 1184–1199. https://doi.org/10.1057/jors.2016.17
  • Long, J., Zheng, Z., Gao, X., & Pardalos, P. M. (2018c). Scheduling a realistic hybrid flow shop with stage skipping and adjustable processing time in steel plants. Applied Soft Computing, 64, 536–549. https://doi.org/10.1016/j.asoc.2017.12.044
  • Lu, H., & Qiao, F. (2022). An efficient adaptive genetic algorithm for energy saving in the hybrid flow shop scheduling with batch production at last stage. Expert Systems, 39(2), e12678. https://doi.org/10.1111/exsy.12678
  • Luo, J., & Tang, L. (2005). Slab matching problem: A tabu search approach [Paper presentation]. In 2005 ICSC Congress on computational intelligence methods and applications. IEEE.
  • Lv, Y., Qian, B., Hu, R., Jin, H.-P., & Zhang, Z.-Q. (2022). An enhanced cross-entropy algorithm for the green scheduling problem of steelmaking and continuous casting with uncertain processing time. Computers & Industrial Engineering, 171, 108445. https://doi.org/10.1016/j.cie.2022.108445
  • Ma, T., Luo, X., & Chai, T. (2014). Modeling and hybrid optimization of batching planning system for steelmaking-continuous casting process. IEEE/CAA Journal of Automatica Sinica, 1(2), 113–126.
  • Mao, K., Pan, Q-k., Chai, T., & Luh, P. B. (2015). An effective subgradient method for scheduling a steelmaking-continuous casting process. IEEE Transactions on Automation Science and Engineering, 12(3), 1140–1152. https://doi.org/10.1109/TASE.2014.2332511
  • Mao, K., Pan, Q.-K., Pang, X., & Chai, T. (2014a). An effective Lagrangian relaxation approach for rescheduling a steelmaking-continuous casting process. Control Engineering Practice, 30, 67–77. https://doi.org/10.1016/j.conengprac.2014.06.003
  • Mao, K., Pan, Q-k., Pang, X., & Chai, T. (2014b). A novel Lagrangian relaxation approach for a hybrid flowshop scheduling problem in the steelmaking-continuous casting process. European Journal of Operational Research, 236(1), 51–60. https://doi.org/10.1016/j.ejor.2013.11.010
  • Maravelias, C. T. (2021). Chemical production scheduling: Mixed-integer programming models and methods. Cambridge University Press.
  • Mehdi, M. M., Wang, L., & Willems, S. P. (2022). Developing a maximum inscribed rectangle heuristic to satisfy rush orders for heavy plate steel. INFORMS Journal on Applied Analytics, 52(3), 283–294. https://doi.org/10.1287/inte.2021.1086
  • Merten, D. C., Hütt, M.-T., & Uygun, Y. (2022). A network analysis of decision strategies of human experts in steel manufacturing. Computers & Industrial Engineering, 168, 108120. https://doi.org/10.1016/j.cie.2022.108120
  • Missbauer, H., Hauber, W., & Stadler, W. (2009). A scheduling system for the steelmaking-continuous casting process. A case study from the steel-making industry. International Journal of Production Research, 47(15), 4147–4172. https://doi.org/10.1080/00207540801950136
  • Naderi, B., Ruiz, R., & Roshanaei, V. (2023). Mixed-Integer programming vs. Constraint programming for shop scheduling problems: New results and outlook. INFORMS Journal on Computing, 35(4), 817–843. https://doi.org/10.1287/ijoc.2023.1287
  • Nakhaeinejad, M. (2019). Production scheduling optimization algorithm for the steel-making continuous casting processes. Advances in Industrial Engineering, 53(4), 127–147.
  • Neufeld, J. S., Schulz, S., & Buscher, U. (2023). A systematic review of multi-objective hybrid flow shop scheduling. European Journal of Operational Research, 309(1), 1–23. https://doi.org/10.1016/j.ejor.2022.08.009
  • Niu, S., Song, S., & Chiong, R. (2022). A distributionally robust scheduling approach for uncertain steelmaking and continuous casting processes. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52(6), 3900–3914. https://doi.org/10.1109/TSMC.2021.3079133
  • Numao, M., & Morishita, S.-I. (1991). Cooperative scheduling and its application to steelmaking processes. IEEE Transactions on Industrial Electronics, 38(2), 150–155. https://doi.org/10.1109/41.88909
  • Ogata, T., Okubo, T., Nagai, H., Yamamoto, M., Sugi, M., & Ota, J. (2015). A novel algorithm for continuous steel casting scheduling with focus on quality property constraint and slab width maximization. International Journal of Automation Technology, 9(3), 235–247. https://doi.org/10.20965/ijat.2015.p0235
  • Oĝuz, C., & Ercan, M. F. (2005). A genetic algorithm for hybrid flow-shop scheduling with multiprocessor tasks. Journal of Scheduling, 8(4), 323–351. https://doi.org/10.1007/s10951-005-1640-y
  • Ouelhadj, D., Cowling, P. I., Petrovic, S. (2003). Utility and stability measures for agent-based dynamic scheduling of steel continuous casting. In 2003 IEEE international conference on robotics and automation (Cat. No.03CH37422), (vol. 1, pp. 175–180).
  • Ouelhadj, D., & Petrovic, S. (2009). A survey of dynamic scheduling in manufacturing systems. Journal of Scheduling, 12(4), 417–431. https://doi.org/10.1007/s10951-008-0090-8
  • Ovacik, I. M., & Uzsoy, R. (1994). Rolling horizon algorithms for a single-machine dynamic scheduling problem with sequence-dependent setup times. International Journal of Production Research, 32(6), 1243–1263. https://doi.org/10.1080/00207549408956998
  • Ozturk, O. (2022). When serial batch scheduling involves parallel batching decisions: A branch and price scheme. Computers & Operations Research, 137, 105514. https://doi.org/10.1016/j.cor.2021.105514
  • Pacciarelli, D. (2002). Alternative graph formulation for solving complex factory-scheduling problems. International Journal of Production Research, 40(15), 3641–3653. https://doi.org/10.1080/00207540210136478
  • Pacciarelli, D., & Pranzo, M. (2004). Production scheduling in a steelmaking-continuous casting plant. Computers & Chemical Engineering, 28(12), 2823–2835. https://doi.org/10.1016/j.compchemeng.2004.08.031
  • Pacino, D., & Van Hentenryck, P. (2011). Large neighborhood search and adaptive randomized decompositions for flexible jobshop scheduling [Paper presentation]. In Twenty-second international joint conference on artificial intelligence.
  • Pan, Q-k. (2016). An effective co-evolutionary artificial bee colony algorithm for steelmaking-continuous casting scheduling. European Journal of Operational Research, 250(3), 702–714. https://doi.org/10.1016/j.ejor.2015.10.007
  • Pan, Q.-K., Wang, L., Mao, K., Zhao, J.-H., & Zhang, M. (2013). An effective artificial bee colony algorithm for a real-world hybrid flowshop problem in steelmaking process. IEEE Transactions on Automation Science and Engineering, 10(2), 307–322. https://doi.org/10.1109/TASE.2012.2204874
  • Pan, R., Wang, Q., Li, Z., Cao, J., & Zhang, Y. (2022). Steelmaking-continuous casting scheduling problem with multi-position refining furnaces under time-of-use tariffs. Annals of Operations Research, 310(1), 119–151. https://doi.org/10.1007/s10479-021-04217-7
  • Pang, X-f., Gao, L., Pan, Q-k., Tian, W-h., & Yu, S-p (2017). A novel Lagrangian relaxation level approach for scheduling steelmaking-refining-continuous casting production. Journal of Central South University, 24(2), 467–477. https://doi.org/10.1007/s11771-017-3449-1
  • Park, H. (2002). Production scheduling in integrated steel mills. PhD diss., Pohang University of Science and Technology.
  • Park, S. (2007). Two-dimensional bin packing problems in steel industry. PhD diss., Pohang University of Science and Technology.
  • Peng, K., Deng, X., Zhang, C., Pan, Q-k., Ren, L., & Pang, X. (2020). An improved imperialist competitive algorithm for hybrid flowshop rescheduling in steelmaking-refining-continuous casting process. Measurement and Control, 53(9–10), 1920–1928. https://doi.org/10.1177/0020294020960187
  • Peng, K., Deng, X., Zhang, C., Shen, W., Song, Y., Mou, J., & Liu, A. (2022). Elite solutions and tabu assisted variable neighbourhood descent for rescheduling problems in the steelmaking-refining-continuous casting process. Flexible Services and Manufacturing Journal. https://doi.org/10.1007/s10696-022-09465-8
  • Peng, K., Pan, Q-k., Gao, L., Zhang, B., & Pang, X. (2018). An improved artificial bee colony algorithm for real-world hybrid flowshop rescheduling in steelmaking-refining-continuous casting process. Computers & Industrial Engineering, 122, 235–250. https://doi.org/10.1016/j.cie.2018.05.056
  • Peng, K., Pan, Q., & Zhang, B. (2018). An improved artificial bee colony algorithm for steelmaking- refining-continuous casting scheduling problem. Chinese Journal of Chemical Engineering, 26(8), 1727–1735. https://doi.org/10.1016/j.cjche.2018.06.008
  • Rahal, S., Li, Z., & Papageorgiou, D. J. (2020). Proactive and reactive scheduling of the steelmaking and continuous casting process through adaptive robust optimization. Computers & Chemical Engineering, 133, 106658. https://doi.org/10.1016/j.compchemeng.2019.106658
  • Ribas, I., Leisten, R., & Framiñan, J. M. (2010). Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective. Computers & Operations Research, 37(8), 1439–1454. https://doi.org/10.1016/j.cor.2009.11.001
  • Ruf, C., Bard, J. F., & Kolisch, R. (2022). Workforce capacity planning with hierarchical skills, long-term training, and random resignations. International Journal of Production Research, 60(2), 783–807. https://doi.org/10.1080/00207543.2021.2017058
  • Ruiz, R., & Vázquez-Rodríguez, J. A. (2010). The hybrid flow shop scheduling problem. European Journal of Operational Research, 205(1), 1–18. https://doi.org/10.1016/j.ejor.2009.09.024
  • Sahai, Y. (2016). Tundish technology for casting clean steel: A review. Metallurgical and Materials Transactions B, 47(4), 2095–2106. https://doi.org/10.1007/s11663-016-0648-3
  • Hornig, S., & Javier, E. (2013). Scheduling multi-stage batch production systems with continuity constraints: The steelmaking and continuous casting system. PhD diss, Publikationsserver der RWTH Aachen University.
  • Sbihi, A., Bellabdaoui, A., & Teghem, J. (2014). Solving a mixed integer linear program with times setup for the steel-continuous casting planning and scheduling problem. International Journal of Production Research, 52(24), 7276–7296. https://doi.org/10.1080/00207543.2014.919421
  • Sbihi, A., & Chemangui, M. (2018). A genetic algorithm for the steel continuous casting with inter-sequence dependent setups and dedicated machines. RAIRO - Operations Research, 52(4–5), 1351–1376. https://doi.org/10.1051/ro/2018023
  • Schaus, P., Van Hentenryck, P., Monette, J.-N., Coffrin, C., Michel, L., & Deville, Y. (2011). Solving steel mill slab problems with constraint-based techniques: CP, LNS, and CBLS. Constraints, 16(2), 125–147. https://doi.org/10.1007/s10601-010-9100-5
  • Shaw, P. (1998). Using constraint programming and local search methods to solve vehicle routing problems. In International conference on principles and practice of constraint programming (pp. 417–431). Springer.
  • Shuang-Ping, W., & An-Jun, X. (2022). An improved elitist GA-based solution for integrated batch planning problem in a steelmaking plant. ISIJ International, 62(6), 1227–1238. https://doi.org/10.2355/isijinternational.ISIJINT-2021-137
  • Song, S. H. (2009). A nested column generation algorithm to the meta slab allocation problem in the steel making industry. International Journal of Production Research, 47(13), 3625–3638. https://doi.org/10.1080/00207540801968625
  • Song, S. H. (2014). An integrated formulation for hierarchical cast design problems in the steel making industry. International Journal of Production Research, 52(5), 1443–1454. https://doi.org/10.1080/00207543.2013.844374
  • Sun, L., Jin, H., & Li, Y. (2018). Research on scheduling of iron and steel scrap steelmaking and continuous casting process aiming at power saving and carbon emissions reducing. IEEE Robotics and Automation Letters, 3(4), 3105–3112. https://doi.org/10.1109/LRA.2018.2849500
  • Sun, L., Liu, W., Xu, B., Chai, T. (2010). The scheduling of steel-making and continuous casting process using branch and cut method via CPLEX optimization. In 5th international conference on computer sciences and convergence information technology (pp. 716–721).
  • Sun, L., & Luan, F. (2015). Near optimal scheduling of steel-making and continuous casting process based on charge splitting policy. IFAC-PapersOnLine, 48(3), 1610–1615. https://doi.org/10.1016/j.ifacol.2015.06.316
  • Sun, L., Luan, F., Ying, Y., & Mao, K. (2017). Rescheduling optimization of steelmaking-continuous casting process based on the Lagrangian heuristic algorithm. Journal of Industrial & Management Optimization, 13(3), 1431–1448. https://doi.org/10.3934/jimo.2016081
  • Sun, L., & Wang, X. (2013). Application of mix optimization scheduling approach for steelmaking-continuous casting process based on actual steelmaking industry. Journal of Iron and Steel Research International, 20(10), 1–9. https://doi.org/10.1016/S1006-706X(13)60168-5
  • Sun, L., & Yu, S. (2015). Scheduling a real-world hybrid flow shop with variable processing times using Lagrangian relaxation. The International Journal of Advanced Manufacturing Technology, 78(9-12), 1961–1970. https://doi.org/10.1007/s00170-014-6754-y
  • Sun, L., Yu, Y., Li, C., Stephen Cloete, D., & Bai, S. (2020). Research on decision support method for charge batch planning of steelmaking-continuous casting under Lagrangian framework. IFAC-PapersOnLine, 53(2), 11138–11143. https://doi.org/10.1016/j.ifacol.2020.12.278
  • Sun, W., Wang, Q., Zheng, Z., & Cai, J. (2020). Material–energy–emission nexus in the integrated iron and steel industry. Energy Conversion and Management, 213, 112828. https://doi.org/10.1016/j.enconman.2020.112828
  • Sun, W., Wang, Q., Zhou, Y., & Wu, J. (2020). Material and energy flows of the iron and steel industry: Status quo, challenges and perspectives. Applied Energy, 268, 114946. https://doi.org/10.1016/j.apenergy.2020.114946
  • Takahashi, T., Konishi, M., Tamura, S., Hanaoka, H., & Nakagawa, H. (1989). Scheduling for steel making process using mathematical programming method. IFAC Proceedings Volumes, 22(11), 129–134. https://doi.org/10.1016/S1474-6670(17)53099-2
  • Tan, Y., Huang, Y., & Liu, S. (2013). Two-stage mathematical programming approach for steelmaking process scheduling under variable electricity price. Journal of Iron and Steel Research International, 20(7), 1–8. https://doi.org/10.1016/S1006-706X(13)60118-1
  • Tan, Y., & Liu, S. (2014). Models and optimisation approaches for scheduling steelmaking–refining–continuous casting production under variable electricity price. International Journal of Production Research, 52(4), 1032–1049. https://doi.org/10.1080/00207543.2013.828179
  • Tan, Y., Zhou, M., Zhang, Y., Guo, X., Qi, L., & Wang, Y. (2020). Hybrid scatter search algorithm for optimal and energy-efficient steelmaking-continuous casting. IEEE Transactions on Automation Science and Engineering, 17(4), 1814–1828. https://doi.org/10.1109/TASE.2020.2979079
  • Tang, L., & Jiang, S. (2009). The charge batching planning problem in steelmaking process using Lagrangian relaxation algorithm. Industrial & Engineering Chemistry Research, 48(16), 7780–7787. https://doi.org/10.1021/ie801454k
  • Tang, L., Liu, J., Rong, A., & Yang, Z. (2000). A mathematical programming model for scheduling steelmaking-continuous casting production. European Journal of Operational Research, 120(2), 423–435. https://doi.org/10.1016/S0377-2217(99)00041-7
  • Tang, L., Liu, J., Rong, A., & Yang, Z. (2001). A review of planning and scheduling systems and methods for integrated steel production. European Journal of Operational Research, 133(1), 1–20. https://doi.org/10.1016/S0377-2217(00)00240-X
  • Tang, L., Luh, P. B., Liu, J., & Fang, L. (2002). Steel-making process scheduling using Lagrangian relaxation. International Journal of Production Research, 40(1), 55–70. https://doi.org/10.1080/00207540110073000
  • Tang, L., & Luo, J. (2007). A new ILS algorithm for cast planning problem in steel industry. ISIJ International, 47(3), 443–452. https://doi.org/10.2355/isijinternational.47.443
  • Tang, L., Meng, Y., Wang, G., Chen, Z.-L., Liu, J., Hu, G., Chen, L., & Zhang, B. (2014). Operations research transforms Baosteel’s operations. Interfaces, 44(1), 22–38. https://doi.org/10.1287/inte.2013.0719
  • Tang, L., & Wang, G. (2008). Decision support system for the batching problems of steelmaking and continuous-casting production. Omega, 36(6), 976–991. https://doi.org/10.1016/j.omega.2007.11.002
  • Tang, L., Wang, G., & Chen, Z.-L. (2014). Integrated charge batching and casting width selection at Baosteel. Operations Research, 62(4), 772–787. https://doi.org/10.1287/opre.2014.1278
  • Tang, L., Wang, G., Liu, J., & Liu, J. (2011). A combination of Lagrangian relaxation and column generation for order batching in steelmaking and continuous-casting production. Naval Research Logistics (NRL), 58(4), 370–388. https://doi.org/10.1002/nav.20452
  • Tang, L., Yang, Z., & Wang, M. (1996). Model and algorithm of the furnace charge plan for steelmaking continuous casting production scheduling. Journal of Northeastern University, 17(4), 440–445.
  • Tang, L., Zhao, Y., & Liu, J. (2014). An improved differential evolution algorithm for practical dynamic scheduling in steelmaking-continuous casting production. IEEE Transactions on Evolutionary Computation, 18(2), 209–225. https://doi.org/10.1109/TEVC.2013.2250977
  • Unlu, Y., & Mason, S. J. (2010). Evaluation of mixed integer programming formulations for non-preemptive parallel machine scheduling problems. Computers & Industrial Engineering, 58(4), 785–800. https://doi.org/10.1016/j.cie.2010.02.012
  • van Beek, M. (2018). A review of mathematical programming in integrated iron-and steelmaking. Chemie Ingenieur Technik, 90(10), 1568–1575. https://doi.org/10.1002/cite.201800027
  • Van Hentenryck, P., Michel, L. (2008). The steel mill slab design problem revisited. In International conference on integration of artificial intelligence (AI) and operations research (or) techniques in constraint programming (pp. 377–381). Springer.
  • Vasko, F. J., Cregger, M. L., Stott, K. L., & Richard Woodyatt, L. (1994). Assigning slabs to orders: An example of appropriate model formulation. Computers & Industrial Engineering, 26(4), 797–800. https://doi.org/10.1016/0360-8352(94)90015-9
  • Vasko, F. J., Newhart, D. D., & Stott, K. L., Jr. (1999). A hierarchical approach for one-dimensional cutting stock problems in the steel industry that maximizes yield and minimizes overgrading. European Journal of Operational Research, 114(1), 72–82. https://doi.org/10.1016/S0377-2217(98)00035-6
  • Vasko, F. J., Wolf, F. E., & Pflugrad, J. A. (1991). An efficient heuristic for planning mother plate requirements at Bethlehem Steel. Interfaces, 21(2), 1–7. https://doi.org/10.1287/inte.21.2.1
  • Vasko, F. J., Wolf, F. E., & Stott, K. L. (1989). A practical solution to a fuzzy two-dimensional cutting stock problem. Fuzzy Sets and Systems, 29(3), 259–275. https://doi.org/10.1016/0165-0114(89)90039-0
  • Wang, G., Guo, Q., Xu, W., & Tang, L. (2022). A graph partitioning based cooperative coevolution for the batching problem in steelmaking production. International Journal of Production Research, 60(19), 5876–5891. https://doi.org/10.1080/00207543.2021.1973137
  • Wang, G-r., Li, Q-q., & Wang, L-h (2015). An improved cross entropy algorithm for steelmaking-continuous casting production scheduling with complicated technological routes. Journal of Central South University, 22(8), 2998–3007. https://doi.org/10.1007/s11771-015-2836-8
  • Wang, Q., Wang, H., & Huang, M. (2021). An effective evolutionary algorithm for steelmaking and continuous casting scheduling [Paper presentation]. In 2021 33rd Chinese Control and Decision Conference (pp. 4039–4044).
  • Wang, X., Chai, T., Zheng, B., Wang, H. (2010). Two-stage optimized scheduling method and application for steelmaking and continuous casting. In Proceedings of the 2010 American control conference (pp. 6109–6114).
  • Wang, Y.-Z., Zheng, Z., Zhu, M.-M., Zhang, K.-T., & Gao, X.-Q. (2022). An integrated production batch planning approach for steelmaking-continuous casting with cast batching plan as the core. Computers & Industrial Engineering, 173, 108636. https://doi.org/10.1016/j.cie.2022.108636
  • Wang, K., Che, A., & Feng, J. (2022). Energy-efficient unrelated parallel machine scheduling with general position-based deterioration. International Journal of Production Research, 61(17), 5886–5900. https://doi.org/10.1080/00207543.2022.2118887
  • Whitley, D. (1994). A genetic algorithm tutorial. Statistics and Computing, 4(2), 65–85. https://doi.org/10.1007/BF00175354
  • Worapradya, K., & Thanakijkasem, P. (2015). Proactive scheduling for steelmaking-continuous casting plant with uncertain machine breakdown using distribution-based robustness and decomposed artificial neural network. Asia-Pacific Journal of Operational Research, 32(02), 1550010. https://doi.org/10.1142/S0217595915500104
  • Wu, X., & Che, A. (2020). Energy-efficient no-wait permutation flow shop scheduling by adaptive multi-objective variable neighborhood search. Omega, 94, 102117. https://doi.org/10.1016/j.omega.2019.102117
  • Wy, J., & Kim, B.-I. (2010). Two-staged guillotine cut, two-dimensional bin packing optimisation with flexible bin size for steel mother plate design. International Journal of Production Research, 48(22), 6799–6820. https://doi.org/10.1080/00207540903317523
  • Xiong, J., Xing, L-n., & Chen, Y-w (2013). Robust scheduling for multi-objective flexible job-shop problems with random machine breakdowns. International Journal of Production Economics, 141(1), 112–126. https://doi.org/10.1016/j.ijpe.2012.04.015
  • Xu, C., Sand, G., Harjunkoski, I., & Engell, S. (2012). A new heuristic for plant-wide schedule coordination problems: The intersection coordination heuristic. Computers & Chemical Engineering, 42, 152–167. https://doi.org/10.1016/j.compchemeng.2011.12.014
  • Xu, W., Tang, L., & Pistikopoulos, E. N. (2018). Modeling and solution for steelmaking scheduling with batching decisions and energy constraints. Computers & Chemical Engineering, 116, 368–384. https://doi.org/10.1016/j.compchemeng.2018.03.010
  • Xu, Z-j., Zheng, Z., & Gao, X-q (2021). Operation optimization of the steel manufacturing process: A brief review. International Journal of Minerals, Metallurgy and Materials, 28(8), 1274–1287. https://doi.org/10.1007/s12613-021-2273-7
  • Xu, Z., Zheng, Z., & Gao, X. (2020). Energy-efficient steelmaking-continuous casting scheduling problem with temperature constraints and its solution using a multi-objective hybrid genetic algorithm with local search. Applied Soft Computing, 95, 106554. https://doi.org/10.1016/j.asoc.2020.106554
  • Xuan, H., & Li, B. (2013). Scheduling dynamic hybrid flowshop with serial batching machines. Journal of the Operational Research Society, 64(6), 825–832. https://doi.org/10.1057/jors.2012.64
  • Xuan, H., & Tang, L. (2007). Scheduling a hybrid flowshop with batch production at the last stage. Computers & Operations Research, 34(9), 2718–2733. https://doi.org/10.1016/j.cor.2005.10.014
  • Xue, Y-c., Mei, Z-q., & Yang, Q. (2006). Optimum steelmaking cast plan with unknown cast number based on the pseudo TSP model [Paper presentation]. In 2006 IEEE international conference on systems, man and cybernetics (vol. 5, pp. 3721–3726). IEEE. https://doi.org/10.1109/ICSMC.2006.384708
  • Xue, Y.-C., Wang, X., & Li, S.-Y. (2005). Improved genetic algorithm for integrated steelmaking optimum charge plan. IFAC Proceedings Volumes, 38(1), 61–66. https://doi.org/10.3182/20050703-6-CZ-1902.01494
  • Yadollahpour, M. R., & ArbabShirani, B. (2016). A comprehensive solution for continuous casting production planning and scheduling. The International Journal of Advanced Manufacturing Technology, 82(1-4), 211–226. https://doi.org/10.1007/s00170-015-7314-9
  • Yang, F., & Li, Q. (2014). Improved cross entropy algorithm for the optimum of charge planning problem. Abstract and Applied Analysis, 2014(7), 1–5. https://doi.org/10.1155/2014/857521
  • Yang, J-p., Wang, B-l., Liu, Q., Guan, M., Li, T-k., Gao, S., Guo, W-d., & Liu, Q. (2020). “Scheduling model for the practical steelmaking-continuous casting production and heuristic algorithm based on the optimization of “Furnace-caster Matching” mode. ISIJ International, 60(6), 1213–1224. https://doi.org/10.2355/isijinternational.ISIJINT-2019-423
  • Yang, J., Wang, B., Zou, C., Li, X., Li, T., & Liu, Q. (2018). Optimal charge planning model of steelmaking based on multi-objective evolutionary algorithm. Metals, 8(7), 483. https://doi.org/10.3390/met8070483
  • Ye, Y., Li, J., Li, Z., Tang, Q., Xiao, X., & Floudas, C. A. (2014). Robust optimization and stochastic programming approaches for medium-term production scheduling of a large-scale steelmaking continuous casting process under demand uncertainty. Computers & Chemical Engineering, 66, 165–185. https://doi.org/10.1016/j.compchemeng.2014.02.028
  • Yi, J., Jia, S-j., & Du, B. (2021). Hybrid optimization for charge planning problem in twin strands continuous casting production. Journal of Iron and Steel Research International, 28(5), 520–529. https://doi.org/10.1007/s42243-021-00578-2
  • Yi, J., Jia, S-j., Du, B., & Liu, Q. (2019). Multi-objective model and optimization algorithm based on column generation for continuous casting production planning. Journal of Iron and Steel Research International, 26(3), 242–250. https://doi.org/10.1007/s42243-018-0143-y
  • Yu, G., & Qi, X. (2004). Disruption management: Framework, models and applications. World Scientific.
  • Yu, S-p., & Pan, Q-k (2012). A rescheduling method for operation time delay disturbance in steelmaking and continuous casting production process. Journal of Iron and Steel Research International, 19(12), 33–41. https://doi.org/10.1016/S1006-706X(13)60029-1
  • Yu, S., Chai, T., & Tang, Y. (2016). An effective heuristic rescheduling method for steelmaking and continuous casting production process with multirefining modes. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46(12), 1675–1688. https://doi.org/10.1109/TSMC.2016.2604081
  • Yu, S., Chai, T., Wang, H., Pang, X., & Zheng, B. (2011). Dynamic optimal scheduling method and its application for converter fault in steelmaking and continuous casting production process. IFAC Proceedings Volumes, 44(1), 9506–9511. https://doi.org/10.3182/20110828-6-IT-1002.01793
  • Yuan, F., Wu, S., Song, W., & Xu, A. (2020). Charge plan model for steelmaking-continuous casting section. Metals, 10(9), 1196. https://doi.org/10.3390/met10091196
  • Zhang, Q., Liu, S., Zhang, R., & Qin, S. (2021). Column generation algorithms for mother plate design in steel plants. Or Spectrum, 43(1), 127–153. https://doi.org/10.1007/s00291-020-00610-z
  • Zhang, R., Lu, J., & Zhang, G. (2011). A knowledge-based multi-role decision support system for ore blending cost optimization of blast furnaces. European Journal of Operational Research, 215(1), 194–203. https://doi.org/10.1016/j.ejor.2011.05.037
  • Zhang, R., Lu, K., Huang, K., & Wang, D. (2011). Graph-based model of cast planning problem and its optimization [Paper presentation]. In 2011 Chinese control and decision conference (pp. 1606–1611). IEEE.
  • Zhang, X., Hug, G., & Harjunkoski, I. (2017). Cost-effective scheduling of steel plants with flexible EAFs. IEEE Transactions on Smart Grid, 8(1), 239–249. https://doi.org/10.1109/TSG.2016.2575000
  • Zhao, S., Meng, Y., Su, L., Liu, J., & Tang, L. (2023). Optimal plate design problem in steel production. International Journal of Production Research, 61(5), 1575–1590. https://doi.org/10.1080/00207543.2022.2043566
  • Zhao, Y., Jia, F. Y., Wang, G. S., Wang, L. J. (2011). A hybrid tabu search for steelmaking-continuous casting production scheduling problem. In 2011 International Symposium on Advanced Control of Industrial Processes (pp. 535–540). IEEE
  • Zhu, W., Li, Y., Sun, L., Hou, T., Bai, S., Yuan, B., Zhao, L. (2021). Research on batch planning method of steelmaking-continuous casting tundish. In 2021 3rd international conference on industrial artificial intelligence (pp. 1–6). IEEE

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.