210
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A multi-criteria group decision-making method with fuzzy preference relations based on filtration-and-weighting-based triangular bounded consistency

&
Pages 1611-1623 | Received 12 Apr 2023, Accepted 28 Sep 2023, Published online: 13 Oct 2023

References

  • Barbato, G., Barini, E. M., Genta, G., & Levi, R. (2011). Features and performance of some outlier detection methods. Journal of Applied Statistics, 38(10), 2133–2149. https://doi.org/10.1080/02664763.2010.545119
  • Behret, H. (2014). Group decision making with intuitionistic fuzzy preference relations. Knowledge-Based Systems, 70, 33–43. https://doi.org/10.1016/j.knosys.2014.04.001
  • Chang, W., Fu, C., Xu, D., & Xue, M. (2019). Triangular bounded consistency of fuzzy preference relations. Information Sciences, 479, 355–371. https://doi.org/10.1016/j.ins.2018.12.029
  • Chauvenet, W., & Pierce, B. (1879). A treatise on the method of least squares: Or, the application of the theory of probabilities in the combination of observations. Lippincott & Company.
  • Chen, H., & Xu, G. (2019). Group decision making with incomplete intuitionistic fuzzy preference relations based on additive consistency. Computers & Industrial Engineering, 135, 560–567. https://doi.org/10.1016/j.cie.2019.06.033
  • Cheng, X., Wan, S., & Dong, J. (2021). A new consistency definition of interval multiplicative preference relation. Fuzzy Sets and Systems, 409, 55–84. https://doi.org/10.1016/j.fss.2020.06.010
  • Chiclana, F., Herrera-Viedma, E., Alonso, S., & Herrera, F. (2009). Cardinal consistency of reciprocal preference relations: A characterization of multiplicative transitivity. IEEE Transactions on Fuzzy Systems, 17(1), 14–23. https://doi.org/10.1109/TFUZZ.2008.2008028
  • Ding, K., Zhang, J., Ding, H., Liu, Y., Chen, F., & Li, Y. (2020). Fault detection of photovoltaic array based on Grubbs criterion and local outlier factor. IET Renewable Power Generation, 14(4), 551–559. https://doi.org/10.1049/iet-rpg.2019.0957
  • Dixon, W. J. (1950). Analysis of extreme values. The Annals of Mathematical Statistics, 21(4), 488–506. https://doi.org/10.1214/aoms/1177729747
  • Fan, Z., Ma, J., Jiang, Y., Sun, Y., & Ma, L. (2006). A goal programming approach to group decision making based on multiplicative preference relations and fuzzy preference relations. European Journal of Operational Research, 174(1), 311–321. https://doi.org/10.1016/j.ejor.2005.03.026
  • Fedrizzi, M., & Silvio, G. (2007). Incomplete pairwise comparison and consistency optimization. European Journal of Operational Research, 183(1), 303–313. https://doi.org/10.1016/j.ejor.2006.09.065
  • Fodor, J. C., & Roubens, M. R. (1994). Fuzzy preference modelling and multicriteria decision support. Springer.
  • Fu, C., Chang, W., Xue, M., & Yang, S. (2019). Multiple criteria group decision making with belief distributions and distributed preference relations. European Journal of Operational Research, 273(2), 623–633. https://doi.org/10.1016/j.ejor.2018.08.012
  • Grubbs, F. E. (1969). Procedures for detecting outlying observations in samples. Technometrics, 11(1), 1–21. https://doi.org/10.1080/00401706.1969.10490657
  • Herrera-Viedma, E., Chiclana, F., Herrera, F., & Alonso, S. (2007). Group decision-making model with incomplete fuzzy preference relations based on additive consistency. IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics: A Publication of the IEEE Systems, Man, and Cybernetics Society, 37(1), 176–189. https://doi.org/10.1109/tsmcb.2006.875872
  • Herrera-Viedma, E., Herrera, F., Chiclana, F., & Luque, M. (2004). Some issues on consistency of fuzzy preference relations. European Journal of Operational Research, 154(1), 98–109. https://doi.org/10.1016/S0377-2217(02)00725-7
  • Kaliszewski, I., & Podkopaev, D. (2016). Simple additive weighting—A metamodel for multiple criteria decision analysis methods. Expert Systems with Applications, 54, 155–161. https://doi.org/10.1016/j.eswa.2016.01.042
  • Krejčí, J. (2017). On additive consistency of interval fuzzy preference relations. Computers & Industrial Engineering, 107, 128–140. https://doi.org/10.1016/j.cie.2017.03.002
  • Kruschke, J. K. (2013). Bayesian estimation supersedes the t test. Journal of Experimental Psychology. General, 142(2), 573–603. https://doi.org/10.1037/a0029146
  • Li, C., Rodriguez, R. M., Martinez, L., Dong, Y., & Herrera, F. (2019). Consensus building with individual consistency control in group decision making. IEEE Transactions on Fuzzy Systems, 27(2), 319–332. https://doi.org/10.1109/TFUZZ.2018.2856125
  • Liu, P., Ali, A., Rehman, N., & Shah, S. I. A. (2020). Another view on intuitionistic fuzzy preference relation-based aggregation operators and their applications. International Journal of Fuzzy Systems, 22(6), 1786–1800. https://doi.org/10.1007/s40815-020-00882-1
  • Liu, H., Cai, J., & Jiang, L. (2014). On improving the additive consistency of the fuzzy preference relations based on comparative linguistic expressions. International Journal of Intelligent Systems, 29(6), 544–559. https://doi.org/10.1002/int.21656
  • Liu, J., Song, J., Xu, Q., Tao, Z., & Chen, H. (2019). Group decision making based on DEA cross-efficiency with intuitionistic fuzzy preference relations. Fuzzy Optimization and Decision Making, 18(3), 345–370. https://doi.org/10.1007/s10700-018-9297-0
  • Li, Z., Zhang, Z., & Yu, W. (2022). Consensus reaching with consistency control in group decision making with incomplete hesitant fuzzy linguistic preference relations. Computers & Industrial Engineering, 170, 108311. https://doi.org/10.1016/j.cie.2022.108311
  • Ma, Z. M., Xu, Z. S., Fu, Z. W., & Yang, W. (2023). Deriving priorities based on representable uninorms from fuzzy preference relations. Fuzzy Sets and Systems, 458, 201–220. https://doi.org/10.1016/j.fss.2022.05.022
  • Meng, F., Tang, J., & Fujita, H. (2019). Consistency-based algorithms for decision-making with interval fuzzy preference relations. IEEE Transactions on Fuzzy Systems, 27(10), 2052–2066. https://doi.org/10.1109/TFUZZ.2019.2893307
  • Ölçer, A. I., & Odabaşi, A. Y. (2005). A new fuzzy multiple attributive group decision making methodology and its application to propulsion/manoeuvring system selection problem. European Journal of Operational Research, 166(1), 93–114. https://doi.org/10.1016/j.ejor.2004.02.010
  • Orlovsky, S. A. (1978). Decision-making with a fuzzy preference relation. Fuzzy Sets and Systems, 1(3), 155–167. https://doi.org/10.1016/0165-0114(78)90001-5
  • Pukelsheim, F. (1994). The three sigma rule. The American Statistician, 48(2), 88–91. https://doi.org/10.2307/2684253
  • Rodríguez, R. M., Labella, Á., Dutta, B., & Martínez, L. (2021). Comprehensive minimum cost models for large scale group decision making with consistent fuzzy preference relations. Knowledge-Based Systems, 215, 106780. https://doi.org/10.1016/j.knosys.2021.106780
  • Saaty, T. L. (1977). A scaling method for priorities in hierarchy structures. Journal of Mathematical Psychology, 15(3), 234–281. https://doi.org/10.1016/0022-2496(77)90033-5
  • Simon, H. A. (1982). Models of bounded rationality: Empirically grounded economic reason. MIT Press.
  • Tu, J., & Wu, Z. (2022). H-rank consensus models for fuzzy preference relations considering eliminating rank violations. IEEE Transactions on Fuzzy Systems, 30(6), 2004–2018. https://doi.org/10.1109/TFUZZ.2021.3073238
  • Wang, Y., & Fan, Z. (2007). Fuzzy preference relations: Aggregation and weight determination. Computers & Industrial Engineering, 53(1), 163–172. https://doi.org/10.1016/j.cie.2007.05.001
  • Wan, S., Wang, F., & Dong, J. (2017a). Additive consistent interval-valued Atanassov intuitionistic fuzzy preference relation and likelihood comparison algorithm based group decision making. European Journal of Operational Research, 263(2), 571–582. https://doi.org/10.1016/j.ejor.2017.05.022
  • Wan, S., Wang, F., Xu, G., Dong, J., & Tang, J. (2017b). An intuitionistic fuzzy programming method for group decision making with interval-valued fuzzy preference relations. Fuzzy Optimization and Decision Making, 16(3), 269–295. https://doi.org/10.1007/s10700-016-9250-z
  • Wu, Q., Liu, X., Qin, J., & Zhou, L. (2021). Multi-criteria group decision-making for portfolio allocation with consensus reaching process under interval type-2 fuzzy environment. Information Sciences, 570, 668–688. https://doi.org/10.1016/j.ins.2021.04.096
  • Xu, Y., Da, Q., & Liu, L. (2009). Normalizing rank aggregation method for priority of a fuzzy preference relation and its effectiveness. International Journal of Approximate Reasoning, 50(8), 1287–1297. https://doi.org/10.1016/j.ijar.2009.06.008
  • Xu, Y., Li, M., Cabrerizo, F. J., Chiclana, F., & Herrera-Viedma, E. (2021). Algorithms to detect and rectify multiplicative and ordinal inconsistencies of fuzzy preference relations. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(6), 3498–3511. https://doi.org/10.1109/TSMC.2019.2931536
  • Xu, Y., Patnayakuni, R., & Wang, H. (2013). The ordinal consistency of a fuzzy preference relation. Information Sciences, 224, 152–164. https://doi.org/10.1016/j.ins.2012.10.035
  • Zhang, H. (2016). Group decision making based on incomplete multiplicative and fuzzy preference relations. Applied Soft Computing, 48, 735–744. https://doi.org/10.1016/j.asoc.2016.07.046
  • Zhang, Z., Chen, S. M., & Wang, C. (2020). Group decision making with incomplete intuitionistic multiplicative preference relations. Information Sciences, 516, 560–571. https://doi.org/10.1016/j.ins.2020.07.024
  • Zhang, G., Dong, Y., & Xu, Y. (2012). Linear optimization modeling of consistency issues in group decision making based on fuzzy preference relations. Expert Systems with Applications, 39(3), 2415–2420. https://doi.org/10.1016/j.eswa.2011.08.090
  • Zhang, Z., & Guo, C. (2017). Deriving priority weights from intuitionistic multiplicative preference relations under group decision-making settings. Journal of the Operational Research Society, 68(12), 1582–1599. https://doi.org/10.1057/s41274-016-0171-6
  • Zhang, Z., & Li, Z. (2022). Personalized individual semantics-based consistency control and consensus reaching in linguistic group decision making. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52(9), 5623–5635. https://doi.org/10.1109/TSMC.2021.3129510
  • Zhou, L., He, Y., Chen, H., & Liu, J. (2014). On compatibility of uncertain multiplicative linguistic preference relations based on the linguistic COWGA. Applied Intelligence, 40(2), 229–243. https://doi.org/10.1007/s10489-013-0454-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.