Publication Cover
Catalysis Reviews
Science and Engineering
Volume 61, 2019 - Issue 1
1,670
Views
62
CrossRef citations to date
0
Altmetric
Review Article

Carbonaceous materials modified catalysts for simultaneous SO2/NOx removal from flue gas: A review

, ORCID Icon, & ORCID Icon
Pages 134-161 | Received 23 Mar 2018, Accepted 25 May 2018, Published online: 19 Jun 2018

References

  • Bwatanglang, I. B.; Faruq, M.; Gupta, A. K.; Yusof, N. A. Algae-Derived Biomass for Sustainable and Renewable Biofuel Production in Agricultural Biomass Based Potential Materials. In Agricultural Biomass Based Potential Materials; Khalid, R.H., Mohammad, J., Othman, Y.A., Eds.; Springer: Switzerland, 2015, pp 341–373.
  • Kampa, M.; Castanas, E. Human Health Effects of Air Pollution. Environ. Pollut. 2008, 2, 362–367.
  • Skalska, K.; Miller, J. S.; Ledakowicz, S. Trends in NOx Abatement: A Review. Sci. Total Environ. 2010, 19, 3976–3989.
  • Angel, M.; Pasidis, I.; Viladecans, E. The Fundamental Law of Highway Congestion and Air Pollution in Europe’s Cities. J. Regi. Sci. 2017, 2, 23–34.
  • Liu, Y.; Bisson, T. M.; Yang, H.; Xu, Z. Recent Developments in Novel Sorbents for Flue Gas Clean Up. Fuel Process. Technol. 2010, 10, 1175–1197.
  • Prabhansu, M. K.; Karmakar, P.; Chatterjee, P. K. Review on the Fuel Gas Cleaning Technologies in Gasification Process. J. Environ. Chem. Eng. 2015, 2, 689–702.
  • Matralis, H.; Fiasse, S.; Castillo, R.; Bastians, P.; Ruwet, M. A. Way to Inhibit SO2 Poisoning of SCR Catalysts by Fine Tuning of the Composition and the Preparation Method of the Support. Catal. Tod. 1993, 17, 141–150.
  • Sun, Y.; Zwolińska, E.; Chmielewski, A. G. Abatement Technologies for High Concentration of NOx and SO2 Removal from Exhaust Gases: A Review. Crit. Rev. Environ. Sci. Technol. 2015, 29, 5467–5487.
  • Rezaei, F.; Rownaghi, A.; Monjezi, S.; Lively, R. P.; Jones, C. W. SOx/NOx Removal from Flue Gas Streams by Solid Adsorbents: A Review of Current Challenges and Future Directions. Energy Fuels. 2015, 29, 5467–5486.
  • Ma, J.; Liu, Z.; Liu, Q.; Guo, S.; Huang, Z.; Xiao, Y. SO2 and NO Removal from Flue Gas over V2O5/AC at Lower Temperatures- Role of V2O5 on SO2 Removal. Fuel Process. Technol. 2008, 89, 242–248.
  • Bernstein, J. A.; Alexis, N.; Barnes, C. Health Effects of Air Pollution. J. Allergy Clin. Immunol. 2004, 5, 1116–1123.
  • Irfan, M. F.; Goo, J. H.; Kim, S. D. Co3O4 Based Catalysts for NO Oxidation and NOx Reduction in Fast SCR Process. Appl. Catal. B Environ. 2008, 78, 267–274.
  • Lázaro, M. J.; Ascaso, S.; Pérez-Rodríguez, S. Carbon-Based Catalysts: Synthesis and Applications. Comptes. Rendus. Chim. 2015, 11, 1229–1241.
  • Wu, Z.; Tang, N.; Xiao, L.; Liu, Y.; Wang, H. MnOx/TiO2 Composite Nanoxides Synthesized by Deposition-Precipitation Method as a Superior Catalyst for NO Oxidation. J. Colloid Interface Sci. 2010, 1, 143–148.
  • Guarnieri, M.; Balmes, J. R. Outdoor Air Pollution and Asthma. Lancet. 2014, 9928, 1581–1592.
  • George, M. P.; Kaur, B. J.; Sharma, A.; Mishra, S. Seasonal Variation of Air Pollutants of Delhi and Its Health Effects. NeBio. 2013, 4, 42–46.
  • Rokni, E.; Panahi, A.; Ren, X.; Levendis, Y. A. Curtailing the Generation of Sulfur Dioxide and Nitrogen Oxide Emissions by Blending and Oxy-Combustion of Coals. Fuel. 2016, 181, 772–784.
  • Wardencki, W. Problems with the Determination of Environmental Sulphur Compounds. J. Chromatogr. 1998, 513, 1–19.
  • Raghunath, C. V.; Mondal, M. K. Experimental Scale Multi Component Absorption of SO2 and NO by NH3/NaClO Scrubbing. Chem. Eng. J. 2017, 314, 537–547.
  • Bera, P.; Hegde, M. S. NO Reduction Over Noble Metal Ionic Catalysts. Catal. Surv. From Asia. 2011, 150, 181–199.
  • Dignon, J.; Hameed, S. Global Emissions of Nitrogen and Sulfur Oxides from 1860 to 1980. JAPCA. 1989, 2, 180–186.
  • Hassan, S. K.; Khoder, M. I. Chemical Characteristics of Atmospheric PM2.5 Loads during Air Pollution Episodes in Giza, Egypt. Atmos. Environ. 2016, 150, 346–355.
  • Liu, S.; Wu, X.; Weng, D.; Ran, R. Ceria-Based Catalysts for Soot Oxidation: A Review. J. Rare Earths. 2015, 6, 567–590.
  • Artun, G. K.; Polat, N.; Yay, O. D.; Üzmez, O. O.; Ari, A. An Integrative Approach for Determination of Air Pollution and Its Health Effetcs in a Coal Fired Power Plant Area by Passive Sampling. Atmos. Environ. 2016, 150, 331–345.
  • Rahman, F. A.; Aziz, M. A.; Saidur, R.; Bakar, W. Pollution to Solution: Capture and Sequestration of Carbon Dioxide (CO2) and Its Utilization as a Renewable Energy Source for a Sustainable Future. Renew. Sustain. Energy Rev. 2017, 7, 112–126.
  • Tan, P.; Li, Y.; Hu, Z.; Lou, D. Investigation of Nitrogen Oxides, Particle Number, and Size Distribution on a Light-Duty Diesel Car with B10 and G10 Fuels. Fuel. 2017, 197, 373–387.
  • Neathery, J. K.; Rubel, M.; Stencel, J. M. Uptake of NOx by Activated Carbons: Bench-Scale and Pilot-Plant Testing. Carbon. 1997, 9, 1321–1327.
  • Dignon, J. NOx and SOx Emissions from Fossil Fuels: A Global Distribution. Atmos. Environ. Part A. Gen. Top. 1992, 6, 1157–1163.
  • Juntgen, H.; Richter, E.; Kuhl, H. Catalytic Activity of Carbon Catalysts Reaction of NO, with NH3. Fuels. 1988, 67, 775–780.
  • Yang, Y.; Chiang, K.; Burke, N. Porous Carbon-Supported Catalysts for Energy and Environmental Applications: A Short Review. Catal. Tod. 2011, 1, 197–205.
  • Abdedayem, A.; Guiza, M.; Ouederni, A. Copper Supported on Porous Activated Carbon Obtained by Wetness Impregnation: Effect of Preparation Conditions on the Ozonation Catalyst’s Characteristics. Comptes. Rendus. Chim. 2015, 1, 100–109.
  • Liu, Q.; Liu, Z. Carbon Supported Vanadia for Multi-Pollutants Removal from Flue Gas. Fuel. 2013, 4, 149–158.
  • Li, J.; Chang, H.; Ma, L.; Hao, J.; Yang, R. T. Low-Temperature Selective Catalytic Reduction of NOx with NH3 over Metal Oxide and Zeolite Catalysts- A Review. Catal. Tod. 2011, 1, 147–156.
  • Przepiórski, J. Activated Carbon Surfaces in Environmental Remediation. Interface Sci. Technol. 2006, 7, 421–474.
  • Vergunst, T.; Linders, M. J. G.; Kapteijn, F.; Moulijn, J. A. Carbon-Based Monolithic Structures. Catal. Rev. 2001, 3, 291–314.
  • Centi, G.; Ciambelli, P.; Perathoner, S.; Russo, P. Environmental Catalysis: Trends and Outlook. Catal. Tod. 2002, 1–4, 3–15.
  • Hu, Z.; Srinivasan, M. P.; Ni, Y. Novel Activation Process for Preparing Highly Microporous and Mesoporous Activated Carbons Novel Activation Process for Preparing Highly Microporous and Mesoporous Activated Carbons. Carbon. 2015, 39, 877–886.
  • Fujishige, M.; Yoshida, I.; Toya, Y.; Banba, Y. Preparation of Activated Carbon from Bamboo-Cellulose Fiber and Its Use for EDLC Electrode Material. J. Environ. Chem. Eng. 2017, 2, 1801–1808.
  • Meryemoglu, B.; Irmak, S.; Hasanoglu, A. Production of Activated Carbon Materials from Kenaf Biomass to Be Used as Catalyst Support in Aqueous-Phase Reforming Process. Fuel Process. Technol. 2016, 151, 59–63.
  • Plaza-Recobert, M.; Trautwein, G.; Pérez-Cadenas, M.; Alcañiz-Monge, J. Preparation of Binderless Activated Carbon Monoliths from Cocoa Bean Husk. Micro. Mesop. Mater. 2017, 243, 28–38.
  • Pal, A.; Thu, K.; Mitra, S.; El-Sharkawy, I.; Saha, B. B. Study on Biomass Derived Activated Carboation. Int. J. Heat Mass. Transf. 2017, 110, 7–19.
  • Botomé, M. L.; Poletto, P.; Junges, J.; Perondi, D.; Dettmer, A.; Godinho, M. Preparation and Characterization of a Metal-Rich Activated Carbon from CCA-Treated Wood for (CO2) Capture. Chem. Eng. J. 2017, 321, 614–621.
  • Tsuji, K.; Shiraishi, I. Combined Desulfurization, Denitrification and Reduction of Air Toxics Using Activated Coke: Activity of Activated Coke. Fuel. 1997, 6, 549–553.
  • Orfanoudaki, T.; Skodras, G.; Dolios, I.; Sakellaropoulos, G. P. Production of Carbon Molecular Sieves by Plasma Treated Activated Carbon Fibers. Fuel. 2003, 15–17, 2045–2049.
  • Cermakova, L.; Kopecka, I.; Pivokonsky, M.; Janda, L. V. Removal of Cyanobacterial Amino Acids in Water Treatment by Activated Carbon Adsorption. Sep. Purif. Technol. 2017, 173, 330–338.
  • Gao, X.; Liu, S.; Zhang, Y.; Luo, Z.; Cen, K. Physicochemical Properties of Metal-Doped Activated Carbons and Relationship with Their Performance in the Removal of SO2 and NO. J. Hazard. Mater. 2011, 188, 58–66.
  • Bai, B. C.; Lee, C. W.; Lee, Y. S.; Im, J. S. Metal Impregnate on Activated Carbon Fiber for SO2 Gas Removal: Assessment of Pore Structure, Cu Supporter, Breakthrough, and Bed Utilization. Colloids Surfaces Physicochem. Eng. Asp. 2016, 509, 73–79.
  • Rodríguez-Reinoso, F.; Sepúlveda-Escribano, A. Porous Carbons in Adsorption and Catalysis. Surf.Interf. Mater. 2005, 36, 309–355.
  • Richter, E.;. Carbon Catalyst for Pollution Control. Catal. Today. 1990, 7, 93–112.
  • Wang, L.; Cheng, X.; Wang, Z.; Ma, C.; Qin, Y. Investigation on Fe-CO Binary Metal Oxides Supported on Activated Semi-Coke for NO Reduction by CO. Appl. Catal. B Environ. 2017, 201, 636–651.
  • Matos, I.; Bernardo, M.; Silva, I. F. Porous Carbon : A Versatile Material for Catalysis. Catalysis Tod. 2017, 285, 1–10.
  • Mathieu, Y.; Tzanis, L.; Soulard, M.; Patarin, J.; Vierling, M.; Moli, M. Adsorption of SOx by Oxide Materials: A Review. Fuel Process. Technol. 2013, 114, 81–100.
  • Bagheri, S.; Julkapli, N. M. Effect of Hybridization on the Value-Added Activated Carbon Materials. Int. J. Ind. Chem. 2016, 3, 249–264.
  • Vergunst, T.; Kapteijn, F.; Moulijn, J. A. Preparation of Carbon-Coated Monolithic Supports. Carbon. 2002, 40, 1891–1902.
  • Aghili, F.; Ghoreyshi, A. A.; Rahimpour, A.; Rahimnejad, M. Coating of Mixed-Matrix Membranes with Powdered Activated Carbon for Fouling Control and Treatment of Dairy Effluent. Process Saf. Environ. Prot. 2017, 107, 528–539.
  • Gangupomu, R. H.; Sattler, M. L.; Ramirez, D. Comparative Study of Carbon Nanotubes and Granular Activated Carbon: Physicochemical Properties and Adsorption Capacities. J. Hazard. Mater. 2016, 302, 362–374.
  • Matsumoto, S.; Ikeda, Y.; Suzuki, H.; Miyoshi, M. N. NO(x) Storage-Reduction Catalyst for Automotive Exhaust with Improved Tolerance against Sulfur Poisoning. Appl. Catal. B Environ. 2000, 2–3, 115–124.
  • Avila, P.; Montes, M.; Miró, E. E. Monolithic Reactors for Environmental Applications: A Review on Preparation Technologies. Chem. Eng. J. 2005, 109, 11–36.
  • Tomašić, V.; Jović, F. State-Of-The-Art in the Monolithic Catalysts/Reactors. Appl. Catal. A Gen. 2006, 311, 112–121.
  • Vergunst, T.; Kapteijn, F.; Moulijn, J. A. Monolithic Catalysts Non-Uniform Active Phase Distribution by Impregnation. Appl. Catal. A Gen. 2001, 2, 179–187.
  • Roy, S.; Bauer, T.; Al-Dahhan, M.; Lehner, P.; Turek, T. Monoliths as Multiphase Reactors: A Review. AIChE J. 2004, 11, 2918–2938.
  • Heck, R. M.; Gulati, S.; Farrauto, R. J. The Application of Monoliths for Gas Phase Catalytic Reactions. Chem. Eng. J. 2001, 82, 149–156.
  • Nijhuis, T. A.; Beers, A. E. W.; Vergunst, T.; Hoek, I.; Kapteijn, F.; Moulijn, J. Preparation of Monolithic Catalysts. Catal. Rev. 2001, 4, 345–380.
  • Cybulski, A.; Moulijn, J. A. Monoliths in Heterogeneous Catalysis. Catal. Rev. Sci. Eng. 1994, 2, 179–270.
  • Hosseini, S.; Rashid, S. A.; Abbasi, A.; Babadi, F. E.; Abdullah, L. C.; Choong, T. S. Y. Effect of Catalyst and Substrate on Growth Characteristics of Carbon Nanofiber onto Honeycomb Monolith. Rev. Mex. Urol. 2016, 59, 440–449.
  • Rodrigues, C. P.; Kraleva, E.; Ehrich, H.; Noronha, F. L. Structured Reactors as an Alternative to Fixed-Bed Reactors: Influence of Catalyst Preparation Methodology on the Partial Oxidation of Ethanol. Catal. Tod. 2016, 273, 12–24.
  • Guiotto, M.; Pacella, M.; Perin, G.; Iovino, A. Washcoating Vs. Direct Synthesis of LaCoO3 on Monoliths for Environmental Applications. Appl. Catal. A Gen. 2015, 499, 146–157.
  • Simescu-Lazar, F.; Chaieb, T.; Pallier, S.; Veyre, L.; Philippe, R.; Meille, V. Direct Coating of Carbon-Supported Catalysts on Monoliths and Foams-Singular Behaviour of Pd/MWCNT. Appl. Catal. A Gen. 2015, 508, 45–51.
  • Sanz, O.; Velasco, I.; Reyero, I.; Legorburu, G. Effect of the Thermal Conductivity of Metallic Monoliths on Methanol Steam Reforming. Catal. Tod. 2016, 273, 131–139.
  • Rezaei, F.; Webley, P. Structured Adsorbents in Gas Separation Processes. Sep. Purif. Technol. 2010, 3, 243–256.
  • Govender, S.; Friedrich, H. Monoliths: A Review of the Basics, Preparation Methods and Their Relevance to Oxidation. Catalysts. 2017, 7, 1–29.
  • Samojeden, B.; Motak, M.; Grzybek, T. The Influence of the Modification of Carbonaceous Materials on Their Catalytic Properties in SCR-NH3. A Short Review. Comptes Rendus Chim. 2015, 10, 1049–1073.
  • Thiruvenkatachari, R.; Su, S.; An, H.; Yu, X. Post Combustion CO2 Capture by Carbon Fibre Monolithic Adsorbents. Prog. Energy Combust. Sci. 2009, 5, 438–455.
  • Meille, V.;. Review on Methods to Deposit Catalysts on Structured Surfaces. Appl. Catal. A Gen. 2006, 315, 1–17.
  • Manfe, M.; Kulkarni, K.; Kulkarni, A. Review Article on Industrial Application of Monolith Catalysts. Int. J. Adv. Eng. Res. Stud. 2011, 1, 5–7.
  • Fechete, I.; Wang, Y.; Vadrine, J. C. The Past, Present and Future of Heterogeneous Catalysis. Catal. Today. 2012, 189, 2–27.
  • Kreutzer, M. T.; Du, P.; Heiszwolf, J. J.; Kapteijn, F.; Moulijn, J. A. Mass Transfer Characteristics of Three-Phase Monolith Reactors. Chem. Eng. Sci. 2005, 21–22, 6015–6023.
  • Nova, I.; Beretta, A.; Groppi, G.; Lietti, L.; Tronconi, E.; Forzatti, P. Monolithic Catalysts for NOx Removal from Stationary Sources. In Structured Catalysts and Reactors, 2nd ed.; Cybulski, A., Moulijn, J. A., Eds.; Taylor and Francis, 2006; pp 171–214.
  • Vald, T.; Marb, G.; Fuertes, B. Preparation of Microporous Carbon ± Ceramic Cellular Monoliths. Micro. Mesop. Mater. 2001, 43, 113–126.
  • Nascimento, L. F.; Serra, O. A. Washcoating of Cordierite Honeycomb with Ceria-Copper Mixed Oxides for Catalytic Diesel Soot Combustion. Process Saf. Environ. Prot. 2016, 101, 134–143.
  • Lee, D. W.; Yoo, B. R. Advanced Metal Oxide (Supported) Catalysts: Synthesis and Applications. J. Ind. Eng. Chem. 2014, 6, 3947–3959.
  • Rashidi, N. A.; Yusup, S. An Overview of Activated Carbons Utilization for the Post-Combustion Carbon Dioxide Capture. J. CO2 Util. 2016, 13, 1–16.
  • Tan, K. L.; Hameed, B. H. Insight into the Adsorption Kinetics Models for the Removal of Contaminants from Aqueous Solutions. J. Tai. Inst. Chem. Eng. 2017, 74, 25–48.
  • Zuo, Y.; Yi, H.; Tang, X. Metal-Modified Active Coke for Simultaneous Removal of SO2 and NOx from Sintering Flue Gas. Energy Fuels. 2015, 29, 377–383.
  • Liu, Q.; Liu, Z.; Huang, Z.; Liu, T.; Zhang, J. Regeneration of Al2O3-Coated Cordierite Supported CuO for Simultaneous SO2 and NO Removal. J. Fuel Chem. Technol. 2005, 44, 651–657.
  • García-Bordejé, E.; Pinilla, J. L.; Lázaro, M. J.; Moliner, R.; Fierro, J. L. G. Vanadium Supported on Carbon Coated Honeycomb Monoliths for the Selective Catalytic Reduction of NO at Low Temperatures: Influence of the Oxidation Pre-Treatment. Carbon. 2006, 3, 407–417.
  • Boyano, A.; Herrera, C.; Larrubia, M. A.; Alemany, L. J.; Moliner, R.; Lázaro, M. J. Vanadium Loaded Carbon-Based Monoliths for the On-Board NO Reduction: Influence of Temperature and Period of the Oxidation Treatment. Chem. Eng. J. 2010, 160, 623–633.
  • Ho, T. M.; Howes, T.; Bhandari, B. R. Encapsulation of Gases in Powder Solid Matrices and Their Applications: A Review. Powder Technol. 2014, 259, 87–108.
  • Halit, E. F.; Sema, Z. B. Effect of Ruthenium Addition on Molybdenum Catalysts for Syngas Production via Catalytic Partial Oxidation of Methane in a Monolithic Reactor. Int. J. Hydrogen Energ. 2018, 43, 1129–1138.
  • Wenjie, Q.; Jingyu, R.; Zhien, Z.; Juntian, N.; Peng, Z.; Lijuan, F.; Bo, H.; Qilai, L. Key Laboratory of low-Grade Methane Combustion Reactivity during the Metal-Metallic Oxide Transformation of Pd-Pt Catalysts: Effect of Oxygen Pressure. Appl. Surf. Sci. 2018, 435, 776–785.
  • Liu, Y.; Deng, J.; Xie, S.; Wang, Z.; Dai, H. Catalytic Removal of Volatile Organic Compounds Using Ordered Porous Transition Metal Oxide and Supported Noble Metal Catalysts. Chinese J. Catal. 2016, 8, 1193–1205.
  • Xiong, S.; Chen, J. S.; Lou, X. W.; Zeng, H. C. Mesoporous Co3O4 and CoO Topotactically Transformed from Chrysanthemum-Like Co(CO3) 0.5(OH)0.11H2O and Their Lithium-Storage Properties. Adv. Funct. Mater. 2012, 4, 861–871.
  • Portela, R.; García-Sánchez, V. E.; Villarroel, M.; Rasmussen, S. B.; Ávila, P. Influence of the Pore Generation Method on the Metal Dispersion and Oxidation Activity of Supported Pt in Monolithic Catalysts. Appl. Catal. A Gen. 2016, 510, 49–56.
  • Issa, M.; Petit, C.; Brillard, A.; Brilhac, J. F. Oxidation of Carbon by CeO2: Effect of the Contact between Carbon and Catalyst Particles. Fuel. 2008, 68, 740–750.
  • Cameron, D.; Cooper, S.; Dodgson, I.; Harrison, B.; Jenkins, J. Carbons as Supports for Precious Metal Catalysts. Catalyst Tod. 1990, 7, 113–137.
  • Qiao, L.; Swihart, M. T. Solution-Phase Synthesis of Transition Metal Oxide Nanocrystals: Morphologies, Formulae, and Mechanisms. Adv.Colloid Interface Sci. 2016, 244, 199–266.
  • Sollier, B. M.; Gómez, L. E.; Boix, A. V.; Miró, E. E. Oxidative Coupling of Methane on Sr/La2O3 Catalysts: Improving the Catalytic Performance Using Cordierite Monoliths and Ceramic Foams as Structured Substrates. Appl. Catal. A Gen. 2017, 235, 65–76.
  • Yu-Jie, J. I. A.; Jian-Chun, J.; Kang, S. U.; Chao, C. Oxidation of Formic Acid over Palladium Catalyst Supported on Activated Carbon Derived from Polyaniline and Modified Lignosulfonate Composite. J. Fuel Chem. Technol. 2017, 45, 100–105.
  • Raaijmakers, I. Apparatus and Method for Growth of a Thin Film. United States Patent Patent No.: US 6,511,539 B1, 2003.
  • Trovarelli, A.; De Leitenburg, C.; Boaro, M.; Dolcetti, G. The Utilization of Ceria in Industrial Catalysis. Catal. Today. 1999, 50, 353–367.
  • Athappan, A.; Sattler, M. L.; Sethupathi, S. Selective Catalytic Reduction of Nitric Oxide over Cerium-Doped Activated Carbons. J. Environ. Chem. Eng. 2005, 3, 2502–2513.
  • Sumathi, S.; Bhatia, S.; Lee, K. T.; Mohamed, A. R. Cerium Impregnated Palm Shell Activated Carbon (Ce/Psac) Sorbent for Simultaneous Removal of SO2 and NO-Process Study. Chem. Eng. J. 2010, 1, 51–57.
  • An, Q.; Zhang, P.; Xiong, F.; Wei, Q.; Sheng, J.; Wang, Q. Three-Dimensional Porous V2O5 Hierarchical Octahedrons with Adjustable Pore Architectures for Long-Life Lithium Batteries. Nano. Res. 2015, 2, 481–490.
  • Rodriguez, J. A.;. Environmental Catalysis. Appl. Catal. B Environ. 1992, 95, 221–256.
  • Wen, J.; Ya-Qin, H. O.; Qian-Qian, G. U.; Zhang-Gen, H.; Xiao-Jin, H. A. Using Vanadyl Sulfate to Prepare Carbon-Supported Vanadium Catalyst for Flue Gas Desulfurization. J. Fuel Chem. Technol. 2013, 41, 1223–1233.
  • Lu, C. Y.; Rau, J. Y.; Chen, J. C.; Huang, S. T.; Wey, M. Y. Removal of NO and Fly Ash over a Carbon Supported Catalyst: Effects of Fly Ash Concentration and Operating Time. Powder Technol. 2013, 239, 239–247.
  • Wang, W.; Xu, J. Structure and Visible Light Luminescence of 3D Flower-Like Co3O4 Hierarchical Microstructures Assembled by Hexagonal Porous Nanoplates. ACS Appl. Mater. Interfaces. 2015, 7, 415–421.
  • Alvim-Ferraz, M. D.; Gaspar, C. M. Catalytic Activity of Active Carbons Impregnated before Activation of Pinewood Sawdust and Nutshells to Be Used on the Control of Atmospheric Emissions. J. Hazard. Mater. 2005, 119, 135–143.
  • Hu, P.; Long, M.; Bai, X.; Wang, C.; Cai, C.; Fu, J. Monolithic Cobalt-Doped Carbon Aerogel for Efficient Catalytic Activation of Peroxymonosulfate in Water. J. Hazard. Mater. 2017, 332, 195–204.
  • Piumetti, M.; Bensaid, S.; Andana, T.; Russo, N.; Pirone, R.; Fino, D. Cerium-Copper Oxides Prepared by Solution Combustion Synthesis for Total Oxidation Reactions: From Powder Catalysts to Structured Reactors. Appl. Catal. B, Environ. 2016, 205, 455–468.
  • Xu, J.; Lu, G.; Guo, Y.; Guo, Y.; Gong, Q. A. Highly Effective Catalyst of Co-CeO2 for the Oxidation of Diesel Soot: The Excellent NO Oxidation Activity and NOx Storage Capacity. Appl. Catal. A Gen. 2017, 535, 1–8.
  • Yan, Q.; Nie, Y.; Yang, R.; Cui, Y.; Hare, D. O.; Wang, Q. Highly Dispersed CuyAlOx Mixed Oxides as Superior Low-Temperature Alkali Metal and SO2 Resistant NH3-SCR Catalysts. Appl. Catal. A Gen. 2017, 538, 37–50.
  • Bitsch-Larsen, A.; Degenstein, N. J.; Schmidt, L. D. Effect of Sulfur in Catalytic Partial Oxidation of Methane over Rh-Ce Coated Foam Monoliths. Appl. Catal. B Environ. 2008, 78, 364–370.
  • Xing, X.; Liu, Z.; Yang, J. Mo and Co Doped V2O5/AC Catalyst-Sorbents for Flue Gas SO2 Removal and Elemental Sulfur Production. Fuel. 2008, 8–9, 1705–1710.
  • Assebban, M.; Tian, Z. Y.; El Kasmi, A.; Bahlawane, N.; Harti, S.; Chafik, T. Catalytic Complete Oxidation of Acetylene and Propene over Clay versus Cordierite Honeycomb Monoliths without and with Chemical Vapor Deposited Cobalt Oxide. Chem. Eng. J. 2008, 262, 1252–1259.
  • Grzybek, G.; Wójcik, S.; Ciura, K.; Gryboś, J.; Indyka, P. Influence of Preparation Method on Dispersion of Cobalt Spinel over Alumina Extrudates and the Catalyst DeNO2 Activity. Appl. Catal. B Environ. 2017, 44, 34–44.
  • Dawson, W. J. Hydrothermal Synthesis of Advanced Ceramic Powders. Am. Ceram. Soc. Bull. 1988, 10, 1673–1678.
  • Villegas, L.; Masset, F.; Guilhaume, N. Wet Impregnation of Alumina-Washcoated Monoliths: Effect of the Drying Procedure on Ni Distribution and on Autothermal Reforming Activity. Appl. Catal. A Gen. 2007, 320, 43–55.
  • Liu, X.; Khinast, J. G.; Glasser, B. J. A Parametric Investigation of Impregnation and Drying of Supported Catalysts. Chem. Eng. Sci. 2008, 63, 4517–4530.
  • Wey, M. Y.; Fu, C. H.; Tseng, H. H.; Chen, K. H. Catalytic Oxidization of SO2 from Incineration Flue Gas over Bimetallic Cu-Ce Catalysts Supported on Pre-Oxidized Activated Carbon. Fuel. 2003, 82, 2285–2290.
  • Boissel, V.; Tahir, S.; Koh, C. A. Catalytic Decomposition of N2O over Monolithic Supported Noble Metal-Transition Metal Oxides. Appl. Catal. B Environ. 2006, 64, 234–242.
  • Guo-Jun, D.; Yuan, Z.; Zhang, Y. F. Preparation and Performance of V-Wreparation and Performance of V-W/x(Mn-Ce-Ti)/y(Cu-Ce-Ti)/Cordierite Catalyst by Impregnation Method in Sequence for SCR Reaction with Urea. J. Fuel Chem. Technol. 2004, 429, 1093–1101.
  • Banús, E. D.; Milt, V. G.; Miró, E. E.; Ulla, M. A. Catalytic Coating Synthesized onto Cordierite Monolith Walls. Its Application to Diesel Soot Combustion. Appl. Catal. B Environ. 2013, 132–133, 479–486.
  • García-Bordejé, E.; Pinilla, J. L.; Lázaro, M. J.; Moliner, R.; Fierro, J. L. G. Vanadium Supported on Carbon-Coated Monoliths for the SCR of NO at Low Temperature: Effect of Pore Structure. Appl. Catal. B Environ. 2004, 50, 235–242.
  • Japke, E.; Casapu, M.; Trouillet, V.; Deutschmann, O.; Grunwaldt, J. Soot and Hydrocarbon Oxidation over Vanadia-Based SCR Catalysts. Catal. Tod. 2005, 258, 461–469.
  • Balzarotti, R.; Italiano, C.; Pino, L.; Cristiani, C.; Vita, A. Ni/CeO2-Thin Ceramic Layer Depositions on Ceramic Monoliths for Syngas Production by Oxy Steam Reforming of Biogas. Fuel Process. Technol. 2016, 149, 40–48.
  • Vedyagin, A. A.; Volodin, A. M.; Kenzhin, R. M. Effect of Metal-Metal and Metal-Support Interaction on Activity and Stability of Pd-Rh/Alumina in CO Oxidation. Catal. Tod. 2016, 6, 1–9.
  • Putluru, S. S.; Schill, L.; Godiksen, A.; Poreddy, R. Promoted V2O5/TiO2 Catalysts for Selective Catalytic Reduction of NO with NH3 at Low Temperatures. Appl. Catal. B Environ. 2016, 183, 282–290.
  • Shrestha, S.; Harold, M. P.; Kamasamudram, K. Experimental and Modeling Study of Selective Ammonia Oxidation on Multi-Functional Washcoated Monolith Catalysts. Chem. Eng. J. 2015, 278, 24–35.
  • Colussi, S.; Boaro, M.; De Rogatis, L.; Pappacena, A. Room Temperature Oxidation of Formaldehyde on Pt-Based Catalysts: A Comparison between Ceria and Other Supports (Tio2, Al2O3 and ZrO2). Catal. Today 2015, 253, 163–171.
  • Hernández, W. Y.; Hadjar, A.; Klotz, M.; Leloup, J. Environmental NOx Storage Capacity of Ceria-Stabilized Zirconia-Based Catalysts. Appl. Catal. B, Environ. 2013, 130–131, 54–64.
  • Chen, J.; Zhang, Y.; Tan, L.; Zhang, Y. A Simple Method for Preparing the Highly Dispersed Supported Co3O4 on Silica Support. Ind. Eng. Chem. Res. 2011, 50, 4212–4215.
  • Burattin, P.; Che, M.; Louis, C. Ni/SiO2 Materials Prepared by Deposition-Precipitation: Influence of the Reduction Conditions and Mechanism of Formation of Metal Particles. J. Phys. Chem. B. 2000, 45, 10482–40489.
  • Bitter, J. H.; Van, D. L.; Slotboom, G. T.; Van Dillen, J.; De Jong, K. P. Synthesis of Highly Loaded Highly Dispersed Nickel on Carbon Nanofibers by Homogeneous Deposition – Precipitation. Catal. Lett. 2003, 89, 139–142.
  • Nares, R.; Ramírez, J.; Gutiérrez, A.; Cuevas, R. Characterization and Hydrogenation Activity of Ni/Si (Al) - MCM-41 Catalysts. Ind.Eng. Chem.Res. 2009, 48, 1154–1162.
  • Liang, D. T.; Du, L. Development of Nano-NiO/Al2O3 Catalyst to Be Used for Tar Removal in Biomass Gasification. Environ. Sci. Technol. 2008, 16, 6224–6229.
  • Van Der Lee, M. K.; Van Dillen, J.; Bitter, J. H.; De Jong, K. P. Deposition Precipitation for the Preparation of Carbon Nanofiber Supported Nickel Catalysts. J. Am. Chem. Soc. 2005, 39, 13573–13582.
  • Ferrandon, M.; Carnö, J.; Järås, S. G.; Björnbom, E. Total Oxidation Catalysts Based on Manganese or Copper Oxides and Platinum or Palladium I: Characterisation. Appl. Catal. A Gen. 1999, 1–2, 141–151.
  • Chang, Y.; Zeng, H. C. Manipulative Synthesis of Multipod Frameworks for Self-Organization and Self-Amplification of Cu2O Microcrystals. Cryst. Growth Des. 2004, 2, 273–278.
  • Xia, X.; Tu, J.; Zhang, Y.; Mai, Y.; Wang, X.; Gu, C.; Zhao, X. Free Standing Co3O4 Nanowire Array for High Performance Supercapacitors. RSC Adv. 2012, 2, 1835–1841.
  • Chang, Y.; Zeng, H. C. Controlled Synthesis and Self-Assembly of Single-Crystalline CuO Nanorods and Nanoribbons. Cryst. Growth Design. 2004, 2, 397–402.
  • Sondej, F.; Bück, A.; Tsotsas, E. Comparative Analysis of the Coating Thickness on Single Particles Using X-Ray Micro-Computed Tomography and Confocal Laser-Scanning Microscopy. Powder Technol. 2016, 287, 330–340.
  • Ngo, S.; Lowe, C.; Lewis, O.; Greenfield, D. Development and Optimisation of Focused Ion Beam/Scanning Electron Microscopy as a Technique to Investigate Cross-Sections of Organic Coatings. Prog. Org. Coatings. 2017, 106, 33–40.
  • Zhao, F.; Gong, M.; Zhang, G.; Li, J. Effect of the Loading Content of CuO on the Activity and Structure of CuO/Ce-Mn-O Catalysts for CO Oxidation. J. Rare Earths. 2015, 6, 604–610.
  • Figueiredo, J. L.; Pereira, M. F.; Freitas, M. M.; Orfao, J. J. Modification of the Surface Chemistry of Activated Carbons. Appl. Catal. A: Gen. 1999, 37, 1379–1389.
  • Stakheev, A. Y.; Kustov, L. Effects of the Support on the Morphology and Electronic Properties of Supported Metal Clusters: Modern Concepts and Progress in 1990s. Appl. Catal. A Gen. 1999, 188, 3–35.
  • Plummer, H. K.; Baird, R. J.; Hammerle, R. H.; Adamczyk, A. A.; Pakko, J. D. Measurement of Automotive Catalyst Washcoat Loading Parameters by Microscopy Techniques. Microsc. Microanal. 2003, 5, 267–281.
  • Xu, T.; Wu, X.; Gao, Y.; Lin, Q.; Hu, J.; Weng, D. Comparative Study on Sulfur Poisoning of V2O5-Sb2O3/TiO2 and V2O5-WO3/TiO2 Monolithic Catalysts for Low-Temperature NH3-SCR. Catal. Commun. 2017, 93, 33–36.
  • Hamzehlouyan, T.; Sampara, C. S.; Li, J.; Kumar, A.; Epling, W. S. Kinetic Study of Adsorption and Desorption of SO2 over γ -Al2o3 and Pt/γ-Al2o3. Appl. Catal. B Environ. 2016, 181, 587–598.
  • Winkler, A.; Ferri, D.; Aguirre, M. The Influence of Chemical and Thermal Aging on the Catalytic Activity of a Monolithic Diesel Oxidation Catalyst. Appl. Catal. B Environ. 2009, 93, 177–184.
  • Hernández-Garrido, J. C.; Gaona, D.; Gómez, D. M. Combined (S) TEM-FIB Insight into the Influence of the Preparation Method on the Final Surface Structure of a Co3O4/La-Modified-CeO2 Washcoated Monolithic Catalyst. J. Phys. Chem. C. 2013, 25, 13028–13036.
  • Andonova, S.; Tamm, S.; Montreuil, C.; Lambert, C.; Olsson, L. The Effect of Iron Loading and Hydrothermal Aging on One-Pot Synthesized Fe/SAPO-34 for Ammonia SCR. Appl. Catal. B Environ. 2016, 180, 775–787.
  • Hernández-Garrido, J. C.; Gaona, D.; Gómez, D. M. Comparative Study of the Catalytic Performance and Final Surface Structure of Co3O4/La-Ceo2Washcoated Ceramic and Metallic Honeycomb Monoliths. Catal. Tod. 2015, 253, 190–198.
  • Garcia-Bordeje, E.; Kapteijn, F.; Moulijn, J. A. Preparation and Characterisation of Carbon-Coated Monoliths for Catalyst Supports. Carbon. 2002, 7, 1079–1088.
  • García-Bordejé, E.; Lázaro, M. J.; Moliner, R.; Galindo, J. F.; Sotres, J.; Baró, A. M. Structure of Vanadium Oxide Supported on Mesoporous Carbon-Coated Monoliths and Relationship with Its Catalytic Performance in the SCR of NO at Low Temperatures. J. Catal. 2004, 2, 395–403.
  • Ola, O.; Maroto-Valer, M. M. Synthesis, Characterization and Visible Light Photocatalytic Activity of Metal Based TiO2 Monoliths for CO2 Reduction. Chem. Eng. J. 2006, 283, 1244–1253.
  • El-Hendawy, A. N.;. Influence of HNO3 Oxidation on the Structure and Adsorptive Properties of Corncob-Based Activated Carbon. Carbon. 2003, 41, 713–722.
  • Tan, M.; Wang, X.; Zou, X.; Ding, W.; Lu, X. Influence of Calcination Temperature on Textural and Structural Properties, Reducibility, and Catalytic Behavior of Mesoporous γ-Alumina-Supported Ni–Mg Oxides by One-Pot Template-Free Route. J. Catal. 2015, 329, 151–166.
  • Dey, S.; Dhal, G. C.; Prasad, R.; Mohan, D. Effect of Nitrate Metal (Ce, Cu, Mn and Co) Precursors for the Total Oxidation of Carbon Monoxide. Resour. Technol. 2017, 3, 293–302.
  • Kiełtyka, M.; Soares, A. P.; Kubiczek, H.; Sarapata, B.; Grzybek, T. The Influence of Poisoning on the Deactivation of DeNOx Catalysts. Comptes. Rendus. Chim. 2015, 10, 1036–1048.
  • Huang, Y.; Gao, D.; Tong, Z.; Zhang, J.; Luo, H. Oxidation of NO over Cobalt Oxide Supported on Mesoporous Silica. J. Nat. Gas Chem. 2009, 18, 421–428.
  • Phil, H. H.; Reddy, M. P.; Kumar, P. A.; Ju, L. K.; Hyo, J. S. SO2 Resistant Antimony Promoted V2O5/TiO2 Catalyst for NH3-SCR of NOx at Low Temperatures. Appl. Catal. B Environ. 2008, 3–4, 301–308.
  • Kasaoka, S.; Sasaoka, E.; Iwasaki, H. Vanadium Oxides (V2ox) Catalysts for Dry-Type and Simultaneous Removal of Sulfur Oxides and Nitrogen Oxides with Ammonia at Low Temperature. Bull. Chem. Soc. Japan. 1989, 62, 1226–1232.
  • Singoredjo, L.; Slagt, M.; Wees, J.; Kapteijn, F.; Moulijn, A. Selective Catalyst Reduction of NO with NH3 over Carbon Supported Copper Catalysts. Catal. Tod. 1990, 7, 157–165.
  • Hajari, A.; Marktus, A.; Jeremy, L. H.; Ali, A. R.; Fateme, R. Combined Flue Gas Cleanup Process for Simultaneous Removal of SOx, NOx, and CO2-A Techno-Economic Analysis. Energ. Fuels 2017, 31, 4165–4172.
  • Lei, Z.; Long, A.; Jia, M.; Liu, X. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst. Chin. J. Chem. Eng. 2010, 18, 721–729.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.