Publication Cover
Catalysis Reviews
Science and Engineering
Volume 62, 2020 - Issue 2
1,180
Views
29
CrossRef citations to date
0
Altmetric
Articles

Magnetic core–shell nanocatalysts: promising versatile catalysts for organic and photocatalytic reactions

, &

References

  • Blaser, H.; Siegrist, U.; Steiner, H.; Studer, M.; Sheldon, R.; van Bekkum, H. Fine Chemicals through Heterogeneous Catalysis; Wiley/VCH: Weinheim, 2001; pp 389.
  • Liu, Y.; Zhao, G.; Wang, D.; Li, Y. Heterogeneous Catalysis for Green Chemistry Based on Nanocrystals. Natl. Sci. Rev. 2015, 2(2), 150–166. DOI: 10.1093/nsr/nwv014.
  • Henglein, A. J. C. R.;. Small-particle Research: Physicochemical Properties of Extremely Small Colloidal Metal and Semiconductor Particles. Chem. Rev. 1989, 89(8), 1861–1873. DOI: 10.1021/cr00098a010.
  • Hoener, C. F.; Allan, K. A.; Bard, A. J.; Campion, A.; Fox, M. A.; Mallouk, T. E.; Webber, S. E.; White, J. M. Demonstration of a Shell-core Structure in Layered Cadmium Selenide-zinc Selenide Small Particles by X-ray Photoelectron and Auger Spectroscopies. J. Phys. Chem. 1992, 96(9), 3812–3817. DOI: 10.1021/j100188a045.
  • Zhang, F.;. Photon Upconversion Nanomaterials; New York, NY: Springer, 2016.
  • Gawande, M. B.; Goswami, A.; Asefa, T.; Guo, H.; Biradar, A. V.; Peng, D.-L.; Zboril, R.; Varma, R. S. Core–shell Nanoparticles: Synthesis and Applications in Catalysis and Electrocatalysis. Chem. Soc. Rev. 2015, 44(21), 7540–7590. DOI: 10.1039/c5cs00343a.
  • Ghosh Chaudhuri, R.; Paria, S. Core/shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications. Chem. Rev. 2011, 112(4), 2373–2433. DOI: 10.1021/cr100449n.
  • Kumar, S. K.; Kumar, V. B.; Paik, P. Recent Advancement in Functional Core-shell Nanoparticles of Polymers: Synthesis, Physical Properties, and Applications in Medical Biotechnology. J. Nanopart. 2013, 2013, 1–24. DOI: 10.1155/2013/672059.
  • Lu, A. H.; Salabas, E.; Schüth, F. Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angew. Chem. Int. Ed. 2007, 46(8), 1222–1244. DOI: 10.1002/anie.200602866.
  • Cheng, T.; Zhang, D.; Li, H.; Liu, G. Magnetically Recoverable Nanoparticles as Efficient Catalysts for Organic Transformations in Aqueous Medium. Green Chem. 2014, 16(7), 3401–3427. DOI: 10.1039/C4GC00458B.
  • Wang, D.; Astruc, D. Fast-growing Field of Magnetically Recyclable Nanocatalysts. Chem. Rev. 2014, 114(14), 6949–6985. DOI: 10.1021/cr500134h.
  • Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Basset, J.-M. Magnetically Recoverable Nanocatalysts. Chem. Rev. 2011, 111(5), 3036–3075. DOI: 10.1021/cr100230z.
  • Wu, W.; Jiang, C. Z.; Roy, V. A. Designed Synthesis and Surface Engineering Strategies of Magnetic Iron Oxide Nanoparticles for Biomedical Applications. Nanoscale. 2016, 8(47), 19421–19474. DOI: 10.1039/c6nr07542h.
  • Wu, W.; Wu, Z.; Yu, T.; Jiang, C.; Kim, W.-S. Recent Progress on Magnetic Iron Oxide Nanoparticles: Synthesis, Surface Functional Strategies and Biomedical Applications. Sci. Technol. Adv. Mater. 2015, 16(2), 023501. DOI: 10.1088/1468-6996/16/2/023501.
  • Yamaura, M.; Camilo, R.; Sampaio, L.; Macedo, M.; Nakamura, M.; Toma, H. Preparation and Characterization of (3-aminopropyl) Triethoxysilane-coated Magnetite Nanoparticles. J. Magn. Magn. Mater. 2004, 279(2–3), 210–217. DOI: 10.1016/j.jmmm.2004.01.094.
  • Wu, W.; Xiao, X.; Ren, F.; Zhang, S.; Jiang, C. A Comparative Study of the Magnetic Behavior of Single and Tubular Clustered Magnetite Nanoparticles. J. Low Temp. Phys. 2012, 168(5–6), 306–313. DOI: 10.1007/s10909-012-0634-3.
  • Rotello, V. M.;. Nanoparticles: Building Blocks for Nanotechnology; New York, NY: Springer Science & Business Media, 2004.
  • Ali, A.; Hira Zafar, M. Z.; Ul Haq, I.; Phull, A. R.; Ali, J. S.; Hussain, A. Synthesis, Characterization, Applications, and Challenges of Iron Oxide Nanoparticles. Nanotechnol. Sci. Appl. 2016, 9, 49. DOI: 10.2147/NSA.S99986.
  • Bang, J. H.; Suslick, K. S. Sonochemical Synthesis of Nanosized Hollow Hematite. J. Am. Chem. Soc. 2007, 129(8), 2242–2243. DOI: 10.1021/ja0676657.
  • Bang, J. H.; Suslick, K. S. Applications of Ultrasound to the Synthesis of Nanostructured Materials. Adv. Mater. 2010, 22(10), 1039–1059. DOI: 10.1002/adma.200904093.
  • Lefort, J.; Seances, C. R. Magnetic Nanoparticles for Environmental and Biomedical Applications: A Review. Acad. Sci. Vie Acad. 1852, 34, 488–491.
  • Welo, L. A.; Baudisch, O. XXXIX. The Two-staye Transformation of Magnetite into Hematite. London Edinburgh Dublin Philos. Mag. J. Sci. 1925, 50(296), 399–408. DOI: 10.1080/14786442508634751.
  • Regazzoni, A.; Urrutia, G.; Blesa, M.; Maroto, A. Some Observations on the Composition and Morphology of Synthetic Magnetites Obtained by Different Routes. J. Inorg. Nucl. Chem. 1981, 43(7), 1489–1493. DOI: 10.1016/0022-1902(81)80322-3.
  • Massart, R.;. Preparation of Aqueous Ferrofluids without Using Surfactant-Behavior as a Function of the pH and the Counterions. Comptes Rendus Hebdomadaires des Seances de l Academie des Sci. Serie C. 1980, 291(1), 1–3.
  • Salavati-Niasari, M.; Mahmoudi, T.; Amiri, O. Easy Synthesis of Magnetite Nanocrystals via Coprecipitation Method. J. Clust. Sci. 2012, 23(2), 597–602. DOI: 10.1007/s10876-012-0451-5.
  • Khalil, M. I.;. Co-precipitation in Aqueous Solution Synthesis of Magnetite Nanoparticles Using Iron (III) Salts as Precursors. Arab. J. Chem. 2015, 8(2), 279–284. DOI: 10.1016/j.arabjc.2015.02.008.
  • Aphesteguy, J.; Kurlyandskaya, G.; De Celis, J.; Safronov, A.; Schegoleva, N. Magnetite Nanoparticles Prepared by Co-precipitation Method in Different Conditions. Mater. Chem. Phys. 2015, 161, 243–249. DOI: 10.1016/j.matchemphys.2015.05.044.
  • Blanco-Andujar, C.; Ortega, D.; Pankhurst, Q. A.; Thanh, N. T. K. Elucidating the Morphological and Structural Evolution of Iron Oxide Nanoparticles Formed by Sodium Carbonate in Aqueous Medium. J. Mater. Chem. 2012, 22(25), 12498–12506. DOI: 10.1039/c2jm31295f.
  • Shen, L.; Qiao, Y.; Guo, Y.; Meng, S.; Yang, G.; Wu, M.; Zhao, J. Facile Co-precipitation Synthesis of Shape-controlled Magnetite Nanoparticles. Ceram. Int. 2014, 40(1), 1519–1524. DOI: 10.1016/j.ceramint.2013.07.037.
  • Pereira, C.; Pereira, A. M.; Fernandes, C.; Rocha, M.; Mendes, R.; Fernández-García, M. P.; Guedes, A.; Tavares, P. B.; Grenèche, J.-M.; Araújo, J. Superparamagnetic MFe2O4 (M= Fe, Co, Mn) Nanoparticles: Tuning the Particle Size and Magnetic Properties through a Novel One-step Coprecipitation Route. Chem. Mater. 2012, 24(8), 1496–1504. DOI: 10.1021/cm300301c.
  • Salunkhe, A.; Khot, V.; Ruso, J.; Patil, S. Synthesis and Magnetostructural Studies of Amine Functionalized Superparamagnetic Iron Oxide Nanoparticles. RSC Adv. 2015, 5(24), 18420–18428. DOI: 10.1039/C5RA00049A.
  • Chen, D.; Xu, R. Hydrothermal Synthesis and Characterization of Nanocrystalline Fe3O4 Powders. Mater. Res. Bull. 1998, 33(7), 1015–1021. DOI: 10.1016/S0025-5408(98)00073-7.
  • Fan, R.; Chen, X.; Gui, Z.; Liu, L.; Chen, Z. A New Simple Hydrothermal Preparation of Nanocrystalline Magnetite Fe3O4. Mater. Res. Bull. 2001, 36(3–4), 497–502.
  • Ge, S.; Shi, X.; Sun, K.; Li, C.; Uher, C.; Baker, J. R., Jr; Banaszak Holl, M. M.; Orr, B. G. Facile Hydrothermal Synthesis of Iron Oxide Nanoparticles with Tunable Magnetic Properties. J. Phys. Chem. C. 2009, 113(31), 13593–13599. DOI: 10.1021/jp902953t.
  • Haw, C.; Mohamed, F.; Chia, C. H.; Radiman, S.; Zakaria, S.; Huang, N.; Lim, H. Hydrothermal Synthesis of Magnetite Nanoparticles as MRI Contrast Agents. Ceram. Int. 2010, 36(4), 1417–1422. DOI: 10.1016/j.ceramint.2010.02.005.
  • Wang, J.; Peng, Z.; Huang, Y.; Chen, Q. Growth of Magnetite Nanorods along Its Easy-magnetization Axis of [1 1 0]. J. Cryst. Growth. 2004, 263(1–4), 616–619. DOI: 10.1016/j.jcrysgro.2003.11.102.
  • Wu, W.; Xiao, X.; Zhang, S.; Zhou, J.; Fan, L.; Ren, F.; Jiang, C. Large-scale and Controlled Synthesis of Iron Oxide Magnetic Short Nanotubes: Shape Evolution, Growth Mechanism, and Magnetic Properties. J. Phys. Chem. C. 2010, 114(39), 16092–16103. DOI: 10.1021/jp1010154.
  • Jia, C.-J.; Sun, L.-D.; Luo, F.; Han, X.-D.; Heyderman, L. J.; Yan, Z.-G.; Yan, C.-H.; Zheng, K.; Zhang, Z.; Takano, M. Large-scale Synthesis of Single-crystalline Iron Oxide Magnetic Nanorings. J. Am. Chem. Soc. 2008, 130(50), 16968–16977. DOI: 10.1021/ja805152t.
  • Mizutani, N.; Iwasaki, T.; Watano, S.; Yanagida, T.; Kawai, T. Size Control of Magnetite Nanoparticles in Hydrothermal Synthesis by Coexistence of Lactate and Sulfate Ions. Curr. Appl. Phys. 2010, 10(3), 801–806. DOI: 10.1016/j.cap.2009.09.018.
  • Iwasaki, T.; Mizutani, N.; Watano, S.; Yanagida, T.; Kawai, T. Erratum to Hydrothermal Synthesis of Magnetite Nanoparticles via Sequential Formation of Iron Hydroxide Precipitates ((355–365), 10.1080/17458080.2010.515250). J. Exp. Nanosci. 2012, 7(6), 711–712.
  • Li, J.; Shi, X.; Shen, M. Hydrothermal Synthesis and Functionalization of Iron Oxide Nanoparticles for MR Imaging Applications. Part Part Syst. Char. 2014, 31(12), 1223–1237. DOI: 10.1002/ppsc.201400087.
  • Larrea, A.; Sebastian, V.; Ibarra, A.; Arruebo, M.; Santamaria, J. Gas Slug Microfluidics: a Unique Tool for Ultrafast, Highly Controlled Growth of Iron Oxide Nanostructures. Chem. Mater. 2015, 27(12), 4254–4260. DOI: 10.1021/acs.chemmater.5b00284.
  • Moon, J.-W.; Rawn, C. J.; Rondinone, A. J.; Love, L. J.; Roh, Y.; Everett, S. M.; Lauf, R. J.; Phelps, T. J. Large-scale Production of Magnetic Nanoparticles Using Bacterial Fermentation. J. Ind. Microbiol. Biotechnol. 2010, 37(10), 1023–1031. DOI: 10.1007/s10295-010-0749-y.
  • Luo, T.; Meng, -Q.-Q.; Gao, C.; Yu, X.-Y.; Jia, Y.; Sun, B.; Jin, Z.; Li, Q.-X.; Liu, J.-H.; Huang, X.-J. Sub-20 nm-Fe 3 O 4 Square and Circular Nanoplates: Synthesis and Facet-dependent Magnetic and Electrochemical Properties. Chem. Comm. 2014, 50(100), 15952–15955. DOI: 10.1039/c4cc06064d.
  • Morales, M.; Veintemillas-Verdaguer, S.; Montero, M.; Serna, C.; Roig, A.; Casas, L.; Martinez, B.; Sandiumenge, F. Surface and Internal Spin Canting in γ-Fe2O3 Nanoparticles. Chem. Mater. 1999, 11(11), 3058–3064. DOI: 10.1021/cm991018f.
  • Qi, H.; Chen, Q.; Wang, M.; Wen, M.; Xiong, J. Study of Self-assembly of Octahedral Magnetite under an External Magnetic Field. J. Phys. Chem. C. 2009, 113(40), 17301–17305. DOI: 10.1021/jp904928s.
  • Bomatí‐Miguel, O.; Tartaj, P.; Morales, M. P.; Bonville, P.; Golla‐Schindler, U.; Zhao, X. Q.; Veintemillas‐Verdaguer, S. J. S. Core–Shell Iron–Iron Oxide Nanoparticles Synthesized by Laser‐Induced Pyrolysis. Small. 2006, 2(12), 1476–1483. DOI: 10.1002/smll.200600209.
  • Chen, Z.; Sun, Y.; Zhang, W.; Yang, T.; Chen, L.; Yang, R.; Zhou, N. Controllable Synthesis of Amine-functionalized Fe 3 O 4 Polyhedra for Lipase Immobilization. CrystEngComm. 2016, 18(17), 3124–3129. DOI: 10.1039/C6CE00269B.
  • Zeng, Y.; Hao, R.; Xing, B.; Hou, Y.; Xu, Z. One-pot Synthesis of Fe 3 O 4 Nanoprisms with Controlled Electrochemical Properties. Chem. Comm. 2010, 46(22), 3920–3922. DOI: 10.1039/c0cc00246a.
  • Li, C.; Wei, R.; Xu, Y.; Sun, A.; Wei, L. Synthesis of Hexagonal and Triangular Fe 3 O 4 Nanosheets via Seed-mediated Solvothermal Growth. Nano Res. 2014, 7(4), 536–543. DOI: 10.1007/s12274-014-0421-3.
  • Chaleawlert-umpon, S.; Pimpha, N. Morphology-controlled Magnetite Nanoclusters via Polyethyleneimine-mediated Solvothermal Process. Mater. Chem. Phys. 2012, 135(1), 1–5. DOI: 10.1016/j.matchemphys.2012.03.111.
  • Fievet, F.; Lagier, J.; Figlarz, M. Preparing Monodisperse Metal Powders in Micrometer and Submicrometer Sizes by the Polyol Process. MRS. Bull. 1989, 14(12), 29–34. DOI: 10.1557/S0883769400060930.
  • Sun, S.; Zeng, H. Size-controlled Synthesis of Magnetite Nanoparticles. J. Am. Chem. Soc. 2002, 124(28), 8204–8205. DOI: 10.1021/ja026501x.
  • Caruntu, D.; Caruntu, G.; Chen, Y.; O’Connor, C. J.; Goloverda, G.; Kolesnichenko, V. L. Synthesis of Variable-sized Nanocrystals of Fe3O4 with High Surface Reactivity. Chem. Mater. 2004, 16(25), 5527–5534. DOI: 10.1021/cm0487977.
  • Cai, W.; Wan, J. Facile Synthesis of Superparamagnetic Magnetite Nanoparticles in Liquid Polyols. J. Colloid Interface Sci. 2007, 305(2), 366–370. DOI: 10.1016/j.jcis.2006.10.023.
  • Deng, H.; Li, X.; Peng, Q.; Wang, X.; Chen, J.; Li, Y. Monodisperse Magnetic Single‐crystal Ferrite Microspheres. Angew. Chem. Int. Ed. 2005, 117(18), 2842–2845. DOI: 10.1002/ange.200462551.
  • Dai, L.; Liu, Y.; Wang, Z.; Guo, F.; Shi, D.; Zhang, B. One-pot Facile Synthesis of PEGylated Superparamagnetic Iron Oxide Nanoparticles for MRI Contrast Enhancement. Mater. Sci. Eng C. 2014, 41, 161–167. DOI: 10.1016/j.msec.2014.04.041.
  • Lak, A.; Dieckhoff, J.; Ludwig, F.; Scholtyssek, J. M.; Goldmann, O.; Lünsdorf, H.; Eberbeck, D.; Kornowski, A.; Kraken, M.; Litterst, F. Highly Stable Monodisperse PEGylated Iron Oxide Nanoparticle Aqueous Suspensions: a Nontoxic Tracer for Homogeneous Magnetic Bioassays. Nanoscale. 2013, 5(23), 11447–11455. DOI: 10.1039/c3nr02197a.
  • Liu, D.; Wu, W.; Ling, J.; Wen, S.; Gu, N.; Zhang, X. Effective PEGylation of Iron Oxide Nanoparticles for High Performance in Vivo Cancer Imaging. Adv. Funct. Mater. 2011, 21(8), 1498–1504. DOI: 10.1002/adfm.v21.8.
  • Hyeon, T.; Lee, S. S.; Park, J.; Chung, Y.; Na, H. B. Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-selection Process. J. Am. Chem. Soc. 2001, 123(51), 12798–12801. DOI: 10.1021/ja016812s.
  • Rockenberger, J.; Scher, E. C.; Alivisatos, A. P. A New Nonhydrolytic Single-precursor Approach to Surfactant-capped Nanocrystals of Transition Metal Oxides. J. Am. Chem. Soc. 1999, 121(49), 11595–11596. DOI: 10.1021/ja993280v.
  • Woo, K.; Hong, J.; Choi, S.; Lee, H.-W.; Ahn, J.-P.; Kim, C. S.; Lee, S. W. Easy Synthesis and Magnetic Properties of Iron Oxide Nanoparticles. Chem. Mater. 2004, 16(14), 2814–2818. DOI: 10.1021/cm049552x.
  • Park, J.; An, K.; Hwang, Y.; Park, J.-G.; Noh, H.-J.; Kim, J.-Y.; Park, J.-H.; Hwang, N.-M.; Hyeon, T. Ultra-large-scale Syntheses of Monodisperse Nanocrystals. Nature Mater. 2004, 3(12), 891. DOI: 10.1038/nmat1251.
  • Chen, R.; Christiansen, M. G.; Sourakov, A.; Mohr, A.; Matsumoto, Y.; Okada, S.; Jasanoff, A.; Anikeeva, P. High-performance Ferrite Nanoparticles through Nonaqueous Redox Phase Tuning. Nano Lett. 2016, 16(2), 1345–1351. DOI: 10.1021/acs.nanolett.5b04761.
  • Demortiere, A.; Panissod, P.; Pichon, B.; Pourroy, G.; Guillon, D.; Donnio, B.; Begin-Colin, S. Size-dependent Properties of Magnetic Iron Oxide Nanocrystals. Nanoscale. 2011, 3(1), 225–232. DOI: 10.1039/c0nr00521e.
  • Harris, R. A.; Shumbula, P. M.; van der Walt, H. Analysis of the Interaction of Surfactants Oleic Acid and Oleylamine with Iron Oxide Nanoparticles through Molecular Mechanics Modeling. Langmuir. 2015, 31(13), 3934–3943. DOI: 10.1021/acs.langmuir.5b00671.
  • Kemp, S. J.; Ferguson, R. M.; Khandhar, A. P.; Krishnan, K. M. Monodisperse Magnetite Nanoparticles with Nearly Ideal Saturation Magnetization. RSC Adv. 2016, 6(81), 77452–77464. DOI: 10.1039/C6RA12072E.
  • Salado, J.; Insausti, M.; Lezama, L.; Gil de Muro, I.; Goikolea, E.; Rojo, T. Preparation and Characterization of Monodisperse Fe3O4 Nanoparticles: an Electron Magnetic Resonance Study. Chem. Mater. 2011, 23(11), 2879–2885. DOI: 10.1021/cm200253k.
  • Lynch, J.; Zhuang, J.; Wang, T.; LaMontagne, D.; Wu, H.; Cao, Y. C. Gas-bubble Effects on the Formation of Colloidal Iron Oxide Nanocrystals. J. Am. Chem. Soc. 2011, 133(32), 12664–12674. DOI: 10.1021/ja2032597.
  • Hufschmid, R.; Arami, H.; Ferguson, R. M.; Gonzales, M.; Teeman, E.; Brush, L. N.; Browning, N. D.; Krishnan, K. M. Synthesis of Phase-pure and Monodisperse Iron Oxide Nanoparticles by Thermal Decomposition. Nanoscale. 2015, 7(25), 11142–11154. DOI: 10.1039/c5nr01651g.
  • Lassenberger, A.; Grünewald, T.; Van Oostrum, P.; Rennhofer, H.; Amenitsch, H.; Zirbs, R.; Lichtenegger, H.; Reimhult, E. Monodisperse Iron Oxide Nanoparticles by Thermal Decomposition: Elucidating Particle Formation by Second-resolved in Situ Small-angle X-ray Scattering. Chem. Mater. 2017, 29(10), 4511–4522. DOI: 10.1021/acs.chemmater.7b01207.
  • Unni, M.; Uhl, A. M.; Savliwala, S.; Savitzky, B. H.; Dhavalikar, R.; Garraud, N.; Arnold, D. P.; Kourkoutis, L. F.; Andrew, J. S.; Rinaldi, C. Thermal Decomposition Synthesis of Iron Oxide Nanoparticles with Diminished Magnetic Dead Layer by Controlled Addition of Oxygen. ACS Nano. 2017, 11(2), 2284–2303. DOI: 10.1021/acsnano.7b00609.
  • Schulman, J. H.; Stoeckenius, W.; Prince, L. M. Mechanism of Formation and Structure of Micro Emulsions by Electron Microscopy. J. Phys. Chem. 1959, 63(10), 1677–1680. DOI: 10.1021/j150580a027.
  • Inouye, K.; Endo, R.; Otsuka, Y.; Miyashiro, K.; Kaneko, K.; Ishikawa, T. Oxygenation of Ferrous Ions in Reversed Micelle and Reversed Microemulsion. J. Phys. Chem. 1982, 86(8), 1465–1469. DOI: 10.1021/j100397a051.
  • Lopez Perez, J.; Lopez Quintela, M.; Mira, J.; Rivas, J.; Charles, S. Advances in the Preparation of Magnetic Nanoparticles by the Microemulsion Method. J. Phys. Chem. B. 1997, 101(41), 8045–8047. DOI: 10.1021/jp972046t.
  • Darbandi, M.; Stromberg, F.; Landers, J.; Reckers, N.; Sanyal, B.; Keune, W.; Wende, H. Nanoscale Size Effect on Surface Spin Canting in Iron Oxide Nanoparticles Synthesized by the Microemulsion Method. J. Phys. D. 2012, 45(19), 195001. DOI: 10.1088/0022-3727/45/19/195001.
  • Han, L.-H.; Liu, H.; Wei, Y. In Situ Synthesis of Hematite Nanoparticles Using a Low-temperature Microemulsion Method. Powder Technol. 2011, 207(1–3), 42–46. DOI: 10.1016/j.powtec.2010.10.008.
  • Ladj, R.; Bitar, A.; Eissa, M.; Mugnier, Y.; Le Dantec, R.; Fessi, H.; Elaissari, A. Individual Inorganic Nanoparticles: Preparation, Functionalization and in Vitro Biomedical Diagnostic Applications. J. Mater. Chem. B. 2013, 1(10), 1381–1396. DOI: 10.1039/c2tb00301e.
  • Nassar, N.; Husein, M. Preparation of Iron Oxide Nanoparticles from FeCl3 Solid Powder Using Microemulsions. Phys. Status Solidi A. 2006, 203(6), 1324–1328. DOI: 10.1002/pssa.200566154.
  • Wongwailikhit, K.; Horwongsakul, S. The Preparation of Iron (III) Oxide Nanoparticles Using W/O Microemulsion. Mater. Lett. 2011, 65(17–18), 2820–2822. DOI: 10.1016/j.matlet.2011.05.063.
  • Vidal-Vidal, J.; Rivas, J.; López-Quintela, M. Synthesis of Monodisperse Maghemite Nanoparticles by the Microemulsion Method. Colloids Surf. A Physicochem. Eng. Asp. 2006, 288(1–3), 44–51. DOI: 10.1016/j.colsurfa.2006.04.027.
  • Okoli, C.; Boutonnet, M.; Mariey, L.; Järås, S.; Rajarao, G. Application of Magnetic Iron Oxide Nanoparticles Prepared from Microemulsions for Protein Purification. J. Chem. Technol. Biotechnol. 2011, 86(11), 1386–1393. DOI: 10.1002/jctb.v86.11.
  • Okoli, C.; Sanchez-Dominguez, M.; Boutonnet, M.; Järås, S.; Civera, C.; Solans, C.; Kuttuva, G. R. Comparison and Functionalization Study of Microemulsion-prepared Magnetic Iron Oxide Nanoparticles. Langmuir. 2012, 28(22), 8479–8485. DOI: 10.1021/la300599q.
  • Sreeja, V.; Joy, P. Microwave–hydrothermal Synthesis of γ-Fe2O3 Nanoparticles and Their Magnetic Properties. Mater. Res. Bull. 2007, 42(8), 1570–1576. DOI: 10.1016/j.materresbull.2006.11.014.
  • Hu, L.; Percheron, A.; Chaumont, D.; Brachais, C.-H. Microwave-assisted One-step Hydrothermal Synthesis of Pure Iron Oxide Nanoparticles: Magnetite, Maghemite and Hematite. J. Sol. Gel. Sci. Technol. 2011, 60(2), 198. DOI: 10.1007/s10971-011-2579-4.
  • Jiang, F.; Wang, C. M.; Fu, Y.; Liu, R. Synthesis of Iron Oxide Nanocubes via Microwave-assisted Solvolthermal Method. J. Alloy. Compd. 2010, 503(2), L31–L33. DOI: 10.1016/j.jallcom.2010.05.020.
  • Blanco-Andujar, C.; Ortega, D.; Southern, P.; Pankhurst, Q.; Thanh, N. High Performance Multi-core Iron Oxide Nanoparticles for Magnetic Hyperthermia: Microwave Synthesis, and the Role of Core-to-core Interactions. Nanoscale. 2015, 7(5), 1768–1775. DOI: 10.1039/c4nr06239f.
  • Gonzalez-Moragas, L.; Yu, S.-M.; Murillo-Cremaes, N.; Laromaine, A.; Roig, A. Scale-up Synthesis of Iron Oxide Nanoparticles by Microwave-assisted Thermal Decomposition. Chem. Eng. J. 2015, 281, 87–95. DOI: 10.1016/j.cej.2015.06.066.
  • Lastovina, T. A.; Budnyk, A. P.; Soldatov, M. A.; Rusalev, Y. V.; Guda, A. A.; Bogdan, A. S.; Soldatov, A. V. Microwave-assisted Synthesis of Magnetic Iron Oxide Nanoparticles in Oleylamine–oleic Acid Solutions. Mendeleev Commun. 2017, 27(5), 487–489. DOI: 10.1016/j.mencom.2017.09.019.
  • Spepi, A.; Duce, C.; Ferrari, C.; González-Rivera, J.; Jagličić, Z.; Domenici, V.; Pineider, F.; Tiné, M. R. A Simple and Versatile Solvothermal Configuration to Synthesize Superparamagnetic Iron Oxide Nanoparticles Using A Coaxial Microwave Antenna. RSC Adv. 2016, 6(106), 104366–104374. DOI: 10.1039/C6RA17513A.
  • Liang, Y. J.; Zhang, Y.; Guo, Z.; Xie, J.; Bai, T.; Zou, J.; Gu, N. Ultrafast Preparation of Monodisperse Fe3O4 Nanoparticles by Microwave‐Assisted Thermal Decomposition. Chem. Eur. J. 2016, 22(33), 11807–11815. DOI: 10.1002/chem.201601434.
  • Liu, S.; Lu, F.; Jia, X.; Cheng, F.; Jiang, L.-P.; Zhu, -J.-J. Microwave-assisted Synthesis of a Biocompatible Polyacid-conjugated Fe 3 O 4 Superparamagnetic Hybrid. CrystEngComm. 2011, 13(7), 2425–2429. DOI: 10.1039/c0ce00491j.
  • Pascu, O.; Carenza, E.; Gich, M.; Estradé, S.; Peiró, F.; Herranz, G.; Roig, A. Surface Reactivity of Iron Oxide Nanoparticles by Microwave-assisted Synthesis; Comparison with the Thermal Decomposition Route. J. Phys. Chem. C. 2012, 116(28), 15108–15116. DOI: 10.1021/jp303204d.
  • Tartaj, P.; Del Puerto Morales, M.; Veintemillas-Verdaguer, S.; González-Carreño, T.; Serna, C. J. The Preparation of Magnetic Nanoparticles for Applications in Biomedicine. J. Phys. D. 2003, 36(13), R182. DOI: 10.1088/0022-3727/36/13/202.
  • Suslick, K. S.; Fang, M.; Hyeon, T. Sonochemical Synthesis of Iron Colloids. J. Am. Chem. Soc. 1996, 118(47), 11960–11961. DOI: 10.1021/ja961807n.
  • Hassanjani-Roshan, A.; Vaezi, M. R.; Shokuhfar, A.; Rajabali, Z. Synthesis of Iron Oxide Nanoparticles via Sonochemical Method and Their Characterization. Particuology. 2011, 9(1), 95–99. DOI: 10.1016/j.partic.2010.05.013.
  • Shafi, K. V.; Ulman, A.; Yan, X.; Yang, N.-L.; Estournes, C.; White, H.; Rafailovich, M. Sonochemical Synthesis of Functionalized Amorphous Iron Oxide Nanoparticles. Langmuir. 2001, 17(16), 5093–5097.
  • Feng, J.; Mao, J.; Wen, X.; Tu, M. Ultrasonic-assisted in Situ Synthesis and Characterization of Superparamagnetic Fe3O4 Nanoparticles. J. Alloy. Compd. 2011, 509(37), 9093–9097. DOI: 10.1016/j.jallcom.2011.06.053.
  • Dolores, R.; Raquel, S.; Adianez, G.-L. Sonochemical Synthesis of Iron Oxide Nanoparticles Loaded with Folate and Cisplatin: Effect of Ultrasonic Frequency. Ultrason. Sonochem. 2015, 23, 391–398. DOI: 10.1016/j.ultsonch.2014.08.005.
  • Teo, B. M.; Chen, F.; Hatton, T. A.; Grieser, F.; Ashokkumar, M. Novel One-pot Synthesis of Magnetite Latex Nanoparticles by Ultrasound Irradiation. Langmuir. 2009, 25(5), 2593–2595. DOI: 10.1021/la804278w.
  • Seabra, A. B.; Haddad, P.; Duran, N. Biogenic Synthesis of Nanostructured Iron Compounds: Applications and Perspectives. IET Nanobiotechnol. 2013, 7(3), 90–99. DOI: 10.1049/iet-nbt.2012.0047.
  • Bharde, A.; Wani, A.; Shouche, Y.; Joy, P. A.; Prasad, B. L.; Sastry, M. Bacterial Aerobic Synthesis of Nanocrystalline Magnetite. J. Am. Chem. Soc. 2005, 127(26), 9326–9327. DOI: 10.1021/ja0508469.
  • Fdez-Gubieda, M. L.; Muela, A.; Alonso, J.; García-Prieto, A.; Olivi, L.; Fernández-Pacheco, R.; Barandiarán, J. M. Magnetite Biomineralization in Magnetospirillum Gryphiswaldense: Time-resolved Magnetic and Structural Studies. ACS Nano. 2013, 7(4), 3297–3305. DOI: 10.1021/nn3059983.
  • Fazlzadeh, M.; Rahmani, K.; Zarei, A.; Abdoallahzadeh, H.; Nasiri, F.; Khosravi, R. A Novel Green Synthesis of Zero Valent Iron Nanoparticles (NZVI) Using Three Plant Extracts and Their Efficient Application for Removal of Cr (VI) from Aqueous Solutions. Adv. Powder Technol. 2017, 28(1), 122–130. DOI: 10.1016/j.apt.2016.09.003.
  • Xin, H.; Yang, X.; Liu, X.; Tang, X.; Weng, L.; Han, Y. Biosynthesis of Iron Nanoparticles Using Tie Guanyin Tea Extract for Degradation of Bromothymol Blue. J. Nanotechnol. 2016, 2016.
  • Yew, Y. P.; Shameli, K.; Miyake, M.; Kuwano, N.; Khairudin, N. B. B. A.; Mohamad, S. E. B.; Lee, K. X. Green Synthesis of Magnetite (fe 3 O 4) Nanoparticles Using Seaweed (kappaphycus Alvarezii) Extract. Nanoscale Res. Lett. 2016, 11(1), 276. DOI: 10.1186/s11671-016-1498-2.
  • Athanassiou, E. K.; Grass, R. N.; Stark, W. J. Chemical Aerosol Engineering as a Novel Tool for Material Science: from Oxides to Salt and Metal Nanoparticles. Aerosol. Sci. Tech. 2010, 44(2), 161–172. DOI: 10.1080/02786820903449665.
  • Dumitrache, F.; Morjan, I.; Alexandrescu, R.; Ciupina, V.; Prodan, G.; Voicu, I.; Fleaca, C.; Albu, L.; Savoiu, M.; Sandu, I. Iron–iron Oxide Core–shell Nanoparticles Synthesized by Laser Pyrolysis Followed by Superficial Oxidation. Appl. Surf. Sci. 2005, 247(1–4), 25–31. DOI: 10.1016/j.apsusc.2005.01.037.
  • Salazar-Alvarez, G.; Muhammed, M.; Zagorodni, A. A. Novel Flow Injection Synthesis of Iron Oxide Nanoparticles with Narrow Size Distribution. Chem. Eng. Sci. 2006, 61(14), 4625–4633. DOI: 10.1016/j.ces.2006.02.032.
  • Parkinson, G. S.;. Iron Oxide Surfaces. Surf. Sci. Rep. 2016, 71(1), 272–365. DOI: 10.1016/j.surfrep.2016.02.001.
  • Jiao, M.; Zeng, J.; Jing, L.; Liu, C.; Gao, M. Flow Synthesis of Biocompatible Fe3O4 Nanoparticles: Insight into the Effects of Residence Time, Fluid Velocity, and Tube Reactor Dimension on Particle Size Distribution. Chem. Mater. 2015, 27(4), 1299–1305. DOI: 10.1021/cm504313c.
  • Sun, Z.; Zhou, X.; Luo, W.; Yue, Q.; Zhang, Y.; Cheng, X.; Li, W.; Kong, B.; Deng, Y.; Zhao, D. Interfacial Engineering of Magnetic Particles with Porous Shells: Towards Magnetic core–Porous Shell Microparticles. Nano Today. 2016, 11(4), 464–482. DOI: 10.1016/j.nantod.2016.07.003.
  • Behrens, S.;. Preparation of Functional Magnetic Nanocomposites and Hybrid Materials: Recent Progress and Future Directions. Nanoscale. 2011, 3(3), 877–892. DOI: 10.1039/c0nr00634c.
  • Philipse, A. P.; Van Bruggen, M. P.; Pathmamanoharan, C. Magnetic Silica Dispersions: Preparation and Stability of Surface-modified Silica Particles with a Magnetic Core. Langmuir. 1994, 10(1), 92–99. DOI: 10.1021/la00013a014.
  • Zhao, W.; Gu, J.; Zhang, L.; Chen, H.; Shi, J. Fabrication of Uniform Magnetic Nanocomposite Spheres with a Magnetic Core/mesoporous Silica Shell Structure. J. Am. Chem. Soc. 2005, 127(25), 8916–8917. DOI: 10.1021/ja051113r.
  • Deng, Y.; Qi, D.; Deng, C.; Zhang, X.; Zhao, D. Superparamagnetic High-magnetization Microspheres with an Fe3O4@ SiO2 Core and Perpendicularly Aligned Mesoporous SiO2 Shell for Removal of Microcystins. J. Am. Chem. Soc. 2008, 130(1), 28–29. DOI: 10.1021/ja0777584.
  • Wu, L.; Zhang, H.; Wu, M.; Zhong, Y.; Liu, X.; Jiao, Z. Dual-templating Synthesis of Multi-shelled Mesoporous Silica Nanoparticles as Catalyst and Drug Carrier. Microporous Mesoporous Mater. 2016, 228, 318–328. DOI: 10.1016/j.micromeso.2016.03.040.
  • Lu, X.; Liu, Q.; Wang, L.; Jiang, W.; Zhang, W.; Song, X. Multifunctional Triple-porous Fe 3 O 4@ SiO 2 Superparamagnetic Microspheres for Potential Hyperthermia and Controlled Drug Release. RSC Adv. 2017, 7(51), 32049–32057. DOI: 10.1039/C7RA00899F.
  • Zhang, M.; Fang, K.; Lin, M.; Hou, B.; Zhong, L.; Zhu, Y.; Wei, W.; Sun, Y. Controlled Fabrication of Iron Oxide/mesoporous Silica Core–shell Nanostructures. J. Phys. Chem. C. 2013, 117(41), 21529–21538. DOI: 10.1021/jp4049583.
  • Abbas, M.; Torati, S. R.; Kim, C. A Novel Approach for the Synthesis of Ultrathin Silica-coated Iron Oxide Nanocubes Decorated with Silver Nanodots (fe 3 O 4/sio 2/ag) and Their Superior Catalytic Reduction of 4-nitroaniline. Nanoscale. 2015, 7(28), 12192–12204. DOI: 10.1039/c5nr02680f.
  • Liu, H.; Ji, S.; Yang, H.; Zhang, H.; Tang, M. Ultrasonic-assisted Ultra-rapid Synthesis of Monodisperse meso-SiO2@ Fe3O4 Microspheres with Enhanced Mesoporous Structure. Ultrason. Sonochem. 2014, 21(2), 505–512. DOI: 10.1016/j.ultsonch.2013.08.010.
  • Li, M.; Li, X.; Qi, X.; Luo, F.; He, G. Shape-controlled Synthesis of Magnetic Iron Oxide@ SiO2–Au@ C Particles with Core–shell Nanostructures. Langmuir. 2015, 31(18), 5190–5197. DOI: 10.1021/acs.langmuir.5b00800.
  • Zhang, X.; Niu, Y.; Li, Y.; Li, Y.; Zhao, J. Preparation and Thermal Stability of the Spindle α-Fe2O3@ SiO2 Core–shell Nanoparticles. J. Solid State Chem. 2014, 211, 69–74. DOI: 10.1016/j.jssc.2013.12.011.
  • Lu, C.; Puig, T.; Obradors, X.; Ricart, S.; Ros, J. Ultra-fast Microwave-assisted Reverse Microemulsion Synthesis of Fe 3 O 4@ SiO 2 Core–shell Nanoparticles as a Highly Recyclable Silver Nanoparticle Catalytic Platform in the Reduction of 4-nitroaniline. RSC Adv. 2016, 6(91), 88762–88769. DOI: 10.1039/C6RA19435D.
  • Cannas, C.; Musinu, A.; Ardu, A.; Orru, F.; Peddis, D.; Casu, M.; Sanna, R.; Angius, F.; Diaz, G.; Piccaluga, G. CoFe2O4 and CoFe2O4/SiO2 Core/shell Nanoparticles: Magnetic and Spectroscopic Study. Chem. Mater. 2010, 22(11), 3353–3361. DOI: 10.1021/cm903837g.
  • Selvan, S.; Patra, P. K.; Ang, C. Y.; Ying, J. Y. Synthesis of Silica‐coated Semiconductor and Magnetic Quantum Dots and Their Use in the Imaging of Live Cells. Angew. Chem. Int. Ed. 2007, 119(14), 2500–2504. DOI: 10.1002/ange.200604245.
  • Vestal, C. R.; Zhang, Z. J. Synthesis and Magnetic Characterization of Mn and Co Spinel Ferrite-silica Nanoparticles with Tunable Magnetic Core. Nano Lett. 2003, 3(12), 1739–1743. DOI: 10.1021/nl034816k.
  • Zhang, M.; Cushing, B. L.; O’Connor, C. J. Synthesis and Characterization of Monodisperse Ultra-thin Silica-coated Magnetic Nanoparticles. Nanotechnology. 2008, 19(8), 085601. DOI: 10.1088/0957-4484/19/8/085601.
  • Ding, H.; Zhang, Y.; Wang, S.; Xu, J.; Xu, S.; Li, G. Fe3O4@ SiO2 Core/Shell Nanoparticles: the Silica Coating Regulations with a Single Core for Different Core Sizes and Shell Thicknesses. Chem. Mater. 2012, 24(23), 4572–4580. DOI: 10.1021/cm302828d.
  • Li, L.; Choo, E. S. G.; Tang, X.; Ding, J.; Xue, J. A Facile One-step Route to Synthesize Cage-like Silica Hollow Spheres Loaded with Superparamagnetic Iron Oxide Nanoparticles in Their Shells. Chem. Comm. 2009, 8, 938–940. DOI: 10.1039/B817937A.
  • Zhu, Y.; Kockrick, E.; Ikoma, T.; Hanagata, N.; Kaskel, S. An Efficient Route to Rattle-type Fe3O4@ SiO2 Hollow Mesoporous Spheres Using Colloidal Carbon Spheres Templates. Chem. Mater. 2009, 21(12), 2547–2553. DOI: 10.1021/cm900956j.
  • Dai, J.; Zou, H.; Wang, R.; Wang, Y.; Shi, Z.; Qiu, S. Yolk–shell Fe 3 O 4@ SiO 2@ PMO: Amphiphilic Magnetic Nanocomposites as an Adsorbent and a Catalyst with High Efficiency and Recyclability. Green Chem. 2017, 19(5), 1336–1344. DOI: 10.1039/C6GC02926D.
  • Zeng, T.; Zhang, X.; Wang, S.; Ma, Y.; Niu, H.; Cai, Y. A Double-shelled Yolk-like Structure as an Ideal Magnetic Support of Tiny Gold Nanoparticles for Nitrophenol Reduction. J. Mater. Chem. A. 2013, 1(38), 11641–11647. DOI: 10.1039/c3ta12660a.
  • Tartaj, P.; Serna, C. J. Synthesis of Monodisperse Superparamagnetic Fe/silica Nanospherical Composites. J. Am. Chem. Soc. 2003, 125(51), 15754–15755. DOI: 10.1021/ja0380594.
  • Zhou, J.; Meng, L.; Lu, Q.; Fu, J.; Huang, X. Superparamagnetic Submicro-megranates: Fe3O4 Nanoparticles Coated with Highly Cross-linked Organic/inorganic Hybrids. Chem. Comm. 2009, 42, 6370–6372. DOI: 10.1039/b914394g.
  • Xuan, S.; Hao, L.; Jiang, W.; Gong, X.; Hu, Y.; Chen, Z. A Facile Method to Fabricate Carbon-encapsulated Fe3O4 Core/shell Composites. Nanotechnology. 2007, 18(3), 035602. DOI: 10.1088/0957-4484/18/49/495102.
  • Chen, Z.; Xu, W.; Jin, L.; Zha, J.; Tao, T.; Lin, Y.; Wang, Z. Synthesis of Amine-functionalized Fe 3 O 4@ C Nanoparticles for Lipase Immobilization. J. Mater. Chem. A. 2014, 2(43), 18339–18344. DOI: 10.1039/C4TA04117H.
  • Jin, C.; Wang, Y.; Tang, H.; Wei, H.; Liu, X.; Wang, J. Synthesis, Characterization, and Catalytic Applications of Core–shell Magnetic Carbonaceous Nanocomposites. J. Phys. Chem. C. 2014, 118(43), 25110–25117. DOI: 10.1021/jp508853a.
  • Liu, J.; Qiao, S. Z.; Liu, H.; Chen, J.; Orpe, A.; Zhao, D.; Lu, G. Q. M. Extension of the Stöber Method to the Preparation of Monodisperse Resorcinol–formaldehyde Resin Polymer and Carbon Spheres. Angew. Chem. Int. Ed. 2011, 50(26), 5947–5951. DOI: 10.1002/anie.201102011.
  • Tristao, J. C.; Oliveira, A. A.; Ardisson, J. D.; Dias, A.; Lago, R. M. Facile Preparation of Carbon Coated Magnetic Fe3O4 Particles by a Combined reduction/CVD Process. Mater. Res. Bull. 2011, 46(5), 748–754. DOI: 10.1016/j.materresbull.2011.01.008.
  • Wang, H.; Sun, Y.-B.; Chen, Q.-W.; Yu, Y.-F.; Cheng, K. Synthesis of Carbon-encapsulated Superparamagnetic Colloidal Nanoparticles with Magnetic-responsive Photonic Crystal Property. Dalton Trans. 2010, 39(40), 9565–9569. DOI: 10.1039/c0dt00621a.
  • Wang, M.; Wang, X.; Yue, Q.; Zhang, Y.; Wang, C.; Chen, J.; Cai, H.; Lu, H.; Elzatahry, A. A.; Zhao, D. Templated Fabrication of Core–shell Magnetic Mesoporous Carbon Microspheres in 3-dimensional Ordered Macroporous Silicas. Chem. Mater. 2014, 26(10), 3316–3321. DOI: 10.1021/cm501186e.
  • Zhang, J.; Du, J.; Qian, Y.; Yin, Q.; Zhang, D. Shape-controlled Synthesis and Their Magnetic Properties of Hexapod-like, Flake-like and Chain-like Carbon-encapsulated Fe3O4 Core/shell Composites. Mater. Sci. Eng. B. 2010, 170(1–3), 51–57. DOI: 10.1016/j.mseb.2010.02.025.
  • Zheng, J.; Liu, Z.; Zhao, X.; Liu, M.; Liu, X.; Chu, W. One-step Solvothermal Synthesis of Fe3O4@ C Core–shell Nanoparticles with Tunable Sizes. Nanotechnology. 2012, 23(16), 165601. DOI: 10.1088/0957-4484/23/16/165601.
  • Zhu, M.; Wang, C.; Meng, D.; Diao, G. In Situ Synthesis of Silver Nanostructures on Magnetic Fe 3 O 4@ C Core–shell Nanocomposites and Their Application in Catalytic Reduction Reactions. J. Mater. Chem. A. 2013, 1(6), 2118–2125. DOI: 10.1039/C2TA00669C.
  • Zhang, X.-B.; Tong, H.-W.; Liu, S.-M.; Yong, G.-P.; Guan, Y.-F. An Improved Stöber Method Towards Uniform and Monodisperse Fe 3 O 4@ C Nanospheres. J. Mater. Chem. A. 2013, 1(25), 7488–7493. DOI: 10.1039/c3ta11249g.
  • Kerdnawee, K.; Sano, N.; Tamon, H.; Charinpanitkul, T. Controlled Synthesis of Magnetic Carbon Nanoparticles via Glycerol/ferrocene Co-pyrolysis with Magnetic Induction. Particuology. 2018, 37, 9–16. DOI: 10.1016/j.partic.2017.09.002.
  • Siddiqui, M.; Nizamuddin, S.; Baloch, H. A.; Mubarak, N.; Dumbre, D. K.; Asiri, A. M.; Bhutto, A.; Srinivasan, M.; Griffin, G. Synthesis of Magnetic Carbon Nanocomposites by Hydrothermal Carbonization and Pyrolysis. Environ. Chem. Lett. 2018, 16, 1–24.
  • Mendonça, F. G.; Ardisson, J. D.; Rosmaninho, M. G.; Lago, R. M.; Tristão, J. C. Mössbauer Study of Carbon Coated Iron Magnetic Nanoparticles Produced by Simultaneous Reduction/pyrolysis. Hyperfine Interact. 2011, 202(1–3), 123–129. DOI: 10.1007/s10751-011-0374-9.
  • Bystrzejewski, M.; Klingeler, R.; Gemming, T.; Büchner, B.; Rümmeli, M. Synthesis of Carbon-encapsulated Iron Nanoparticles by Pyrolysis of Iron Citrate and Poly (vinyl Alcohol): a Critical Evaluation of Yield and Selectivity. Nanotechnology. 2011, 22(31), 315606. DOI: 10.1088/0957-4484/22/31/315606.
  • Wei, D.; Liu, Y.; Cao, L.; Fu, L.; Li, X.; Wang, Y.; Yu, G. A Magnetism-assisted Chemical Vapor Deposition Method to Produce Branched or Iron-encapsulated Carbon Nanotubes. J. Am. Chem. Soc. 2007, 129(23), 7364–7368. DOI: 10.1021/ja0702465.
  • Zhu, M.; Diao, G. Magnetically Recyclable Pd Nanoparticles Immobilized on Magnetic Fe3O4@ C Nanocomposites: Preparation, Characterization, and Their Catalytic Activity toward Suzuki and Heck Coupling Reactions. J. Phys. Chem. C. 2011, 115(50), 24743–24749. DOI: 10.1021/jp206116e.
  • Wu, T.; Liu, Y.; Zeng, X.; Cui, T.; Zhao, Y.; Li, Y.; Tong, G. Facile Hydrothermal Synthesis of Fe3O4/C Core–shell Nanorings for Efficient Low-frequency Microwave Absorption. ACS Appl. Mater. Interfaces. 2016, 8(11), 7370–7380. DOI: 10.1021/acsami.6b00264.
  • Sun, L.; Wu, W.; Yang, S.; Zhou, J.; Hong, M.; Xiao, X.; Ren, F.; Jiang, C. Template and Silica Interlayer Tailorable Synthesis of Spindle-like Multilayer α-Fe2O3/Ag/SnO2 Ternary Hybrid Architectures and Their Enhanced Photocatalytic Activity. ACS Appl. Mater. Interfaces. 2014, 6(2), 1113–1124. DOI: 10.1021/am404700h.
  • Li, L.; Wang, T.; Zhang, L.; Su, Z.; Wang, C.; Wang, R. Selected‐Control Synthesis of Monodisperse Fe3O4@ C Core–Shell Spheres, Chains, and Rings as High‐Performance Anode Materials for Lithium‐Ion Batteries. Chem. Eur. J. 2012, 18(36), 11417–11422. DOI: 10.1002/chem.201200791.
  • Wang, L.; Liang, J.; Zhu, Y.; Mei, T.; Zhang, X.; Yang, Q.; Qian, Y. Synthesis of Fe 3 O 4@ C Core–shell Nanorings and Their Enhanced Electrochemical Performance for Lithium-ion Batteries. Nanoscale. 2013, 5(9), 3627–3631. DOI: 10.1039/c3nr00353a.
  • Zhang, H.; Zhou, L.; Noonan, O.; Martin, D. J.; Whittaker, A. K.; Yu, C. Tailoring the Void Size of Iron Oxide@ Carbon Yolk–shell Structure for Optimized Lithium Storage. Adv. Funct. Mater. 2014, 24(27), 4337–4342. DOI: 10.1002/adfm.v24.27.
  • Qiao, M.; Lei, X.; Ma, Y.; Tian, L.; He, X.; Su, K.; Zhang, Q. Application of Yolk–shell Fe 3 O 4@ N-doped Carbon Nanochains as Highly Effective Microwave-absorption Material. Nano Res. 2018, 11(3), 1500–1519. DOI: 10.1007/s12274-017-1767-0.
  • Dung, T.; Danh, T.; Hoa, L.; Chien, D.; Duc, N. Structural and Magnetic Properties of Starch-coated Magnetite Nanoparticles. J. Exp. Nanosci. 2009, 4(3), 259–267. DOI: 10.1080/17458080802570609.
  • Gaihre, B.; Aryal, S.; Khil, M. S.; Kim, H. Y. Encapsulation of Fe3O4 in Gelatin Nanoparticles: Effect of Different Parameters on Size and Stability of the Colloidal Dispersion. J. Microencapsul. 2008, 25(1), 21–30.
  • Kim, J.; Arifin, D. R.; Muja, N.; Kim, T.; Gilad, A. A.; Kim, H.; Arepally, A.; Hyeon, T.; Bulte, J. W. Multifunctional Capsule‐in‐Capsules for Immunoprotection and Trimodal Imaging. Angew. Chem. Int. Ed. 2011, 50(10), 2317–2321. DOI: 10.1002/anie.201007494.
  • Lan, F.; Liu, K.-X.; Jiang, W.; Zeng, X.-B.; Wu, Y.; Gu, Z.-W. Facile Synthesis of Monodisperse Superparamagnetic Fe3O4/PMMA Composite Nanospheres with High Magnetization. Nanotechnology. 2011, 22(22), 225604. DOI: 10.1088/0957-4484/22/22/225604.
  • Mukhopadhyay, A.; Joshi, N.; Chattopadhyay, K.; De, G. A Facile Synthesis of PEG-coated Magnetite (fe3o4) Nanoparticles and Their Prevention of the Reduction of Cytochrome C. ACS Appl. Mater. Interfaces. 2011, 4(1), 142–149. DOI: 10.1021/am201166m.
  • Wang, Q.; Zhang, J.; Wang, A. Spray-dried Magnetic chitosan/Fe 3 O 4/halloysite Nanotubes/Ofloxacin Microspheres for Sustained Release of Ofloxacin. RSC Adv. 2013, 3(45), 23423–23431. DOI: 10.1039/c3ra43874k.
  • Burke, N. A.; Stöver, H. D.; Dawson, F. P. Magnetic Nanocomposites: Preparation and Characterization of Polymer-coated Iron Nanoparticles. Chem. Mater. 2002, 14(11), 4752–4761. DOI: 10.1021/cm020126q.
  • Rocha, N.; Rodrigues, D. P.; Gaspar, A.; Durães, L.; Serra, A. C.; Coelho, J. F. Novel Nanoaggregates with Peripheric Superparamagnetic Iron Oxide Nanoparticles and Organic Cores through Self-assembly of Tailor-made Block Copolymers. RSC Adv. 2014, 4(47), 24428–24432. DOI: 10.1039/C4RA02639J.
  • Xuan, S.; Wang, Y.-X. J.; Leung, K. C.-F.; Shu, K. Synthesis of Fe3O4@ Polyaniline Core/shell Microspheres with Well-defined Blackberry-like Morphology. J. Phys. Chem. C. 2008, 112(48), 18804–18809. DOI: 10.1021/jp807124z.
  • Lattuada, M.; Hatton, T. A. Functionalization of Monodisperse Magnetic Nanoparticles. Langmuir. 2007, 23(4), 2158–2168. DOI: 10.1021/la062092x.
  • Tian, J.; Feng, Y. K.; Xu, Y. S. Ring Oxpening Polymerization of D, L-lactide on Magnetite Nanoparticles. Macromol. Res. 2006, 14(2), 209–213. DOI: 10.1007/BF03218511.
  • Wang, L.; Neoh, K.; Kang, E.; Shuter, B.; Wang, S. C. Superparamagnetic Hyperbranched Polyglycerol‐grafted Fe3O4 Nanoparticles as a Novel Magnetic Resonance Imaging Contrast Agent: an in Vitro Assessment. Adv. Funct. Mater. 2009, 19(16), 2615–2622. DOI: 10.1002/adfm.200801689.
  • Ho, K. M.; Li, P. J. L. Design and Synthesis of Novel Magnetic Core− Shell Polymeric Particles. Langmuir. 2008, 24(5), 1801–1807. DOI: 10.1021/la702887m.
  • Li, Y.; Dong, M.; Kong, J.; Chai, Z.; Fu, G. Synthesis of Fe3O4@ Poly (methacrylic Acid) Core–shell Submicrospheres via RAFT Precipitation Polymerization. J. Colloid Interface Sci. 2013, 394, 199–207. DOI: 10.1016/j.jcis.2012.12.007.
  • Liu, B.; Zhang, W.; Yang, F.; Feng, H.; Yang, X. Facile Method for Synthesis of Fe3O4@ Polymer Microspheres and Their Application as Magnetic Support for Loading Metal Nanoparticles. J. Phys. Chem. C. 2011, 115(32), 15875–15884. DOI: 10.1021/jp204976y.
  • Ma, W.; Xu, S.; Li, J.; Guo, J.; Lin, Y.; Wang, C. Hydrophilic Dual‐responsive magnetite/PMAA Core/shell Microspheres with High Magnetic Susceptibility and Ph Sensitivity via Distillation‐precipitation Polymerization. J. Polym. Sci. A. 2011, 49(12), 2725–2733. DOI: 10.1002/pola.24705.
  • Feyen, M.; Weidenthaler, C.; Schüth, F.; Lu, A.-H. Synthesis of Structurally Stable Colloidal Composites as Magnetically Recyclable Acid Catalysts. Chem. Mater. 2010, 22(9), 2955–2961. DOI: 10.1021/cm100277k.
  • Xu, H.; Cui, L.; Tong, N.; Gu, H. Development of High Magnetization Fe3O4/polystyrene/silica Nanospheres via Combined Miniemulsion/emulsion Polymerization. J. Am. Chem. Soc. 2006, 128(49), 15582–15583. DOI: 10.1021/ja066165a.
  • Guan, N.; Liu, C.; Sun, D.; Xu, J. A Facile Method to Synthesize Carboxyl-functionalized Magnetic Polystyrene Nanospheres. Colloids Surf. A Physicochem. Eng. Asp. 2009, 335(1–3), 174–180. DOI: 10.1016/j.colsurfa.2008.11.004.
  • Xu, S.; Ma, W.-F.; You, L.-J.; Li, J.-M.; Guo, J.; Hu, J. J.; Wang, -C.-C. Toward Designer Magnetite/polystyrene Colloidal Composite Microspheres with Controllable Nanostructures and Desirable Surface Functionalities. Langmuir. 2012, 28(6), 3271–3278. DOI: 10.1021/la2043137.
  • Tong, S.; Hou, S.; Ren, B.; Zheng, Z.; Bao, G. Self-assembly of phospholipid–PEG Coating on Nanoparticles through Dual Solvent Exchange. Nano Lett. 2011, 11(9), 3720–3726. DOI: 10.1021/nl201978c.
  • Lee, K. J.; Nallathamby, P. D.; Browning, L. M.; Osgood, C. J.; Xu, X.-H. N. In Vivo Imaging of Transport and Biocompatibility of Single Silver Nanoparticles in Early Development of Zebrafish Embryos. ACS Nano. 2007, 1(2), 133–143. DOI: 10.1021/nn700048y.
  • Lo, C. K.; Xiao, D.; Choi, M. M. Homocysteine-protected Gold-coated Magnetic Nanoparticles: Synthesis and Characterisation. J. Mater. Chem. 2007, 17(23), 2418–2427. DOI: 10.1039/b617500g.
  • Rudakovskaya, P. G.; Beloglazkina, E. K.; Majouga, A. G.; Zyk, N. V. Synthesis and Characterization of Terpyridine-type Ligand-protected Gold-coated Fe3O4 Nanoparticles. Mendeleev Commun. 2010, 3(20), 158–160. DOI: 10.1016/j.mencom.2010.05.012.
  • Tamer, U.; Gündoğdu, Y.; Boyacı, İ. H.; Pekmez, K. Synthesis of Magnetic Core–shell Fe 3 O 4–au Nanoparticle for Biomolecule Immobilization and Detection. J. Nanoparticle Res. 2010, 12(4), 1187–1196. DOI: 10.1007/s11051-009-9749-0.
  • Robinson, I.; Tung, L. D.; Maenosono, S.; Wälti, C.; Thanh, N. T. Synthesis of Core-shell Gold Coated Magnetic Nanoparticles and Their Interaction with Thiolated DNA. Nanoscale. 2010, 2(12), 2624–2630. DOI: 10.1039/c0nr00621a.
  • Xu, Z.; Hou, Y.; Sun, S. Magnetic Core/shell Fe3O4/Au and Fe3O4/Au/Ag Nanoparticles with Tunable Plasmonic Properties. J. Am. Chem. Soc. 2007, 129(28), 8698–8699. DOI: 10.1021/ja073057v.
  • Kouassi, G. K.; Irudayaraj, J. Magnetic and Gold-coated Magnetic Nanoparticles as a DNA Sensor. Anal. Chem. 2006, 78(10), 3234–3241. DOI: 10.1021/ac051621j.
  • Maleki, H.; Simchi, A.; Imani, M.; Costa, B. Size-controlled Synthesis of Superparamagnetic Iron Oxide Nanoparticles and Their Surface Coating by Gold for Biomedical Applications. J. Magn. Magn. Mater. 2012, 324(23), 3997–4005. DOI: 10.1016/j.jmmm.2012.06.045.
  • Kinoshita, T.; Seino, S.; Mizukoshi, Y.; Otome, Y.; Nakagawa, T.; Okitsu, K.; Yamamoto, T. A. Magnetic Separation of Amino Acids by Gold/iron-oxide Composite Nanoparticles Synthesized by Gamma-ray Irradiation. J. Magn. Magn. Mater. 2005, 293(1), 106–110. DOI: 10.1016/j.jmmm.2005.01.050.
  • Kawaguchi, K.; Jaworski, J.; Ishikawa, Y.; Sasaki, T.; Koshizaki, N. Preparation of Gold/iron-oxide Composite Nanoparticles by a Unique Laser Process in Water. J. Magn. Magn. Mater. 2007, 310(2), 2369–2371. DOI: 10.1016/j.jmmm.2006.11.109.
  • Wu, W.; He, Q.; Chen, H.; Tang, J.; Nie, L. Sonochemical Gold Coating of Fe~ 3O~ 4 Nanoparticles and Its Characterizations. Acta Chim. Sinica. 2007, 65(13), 1273.
  • Spasova, M.; Salgueiriño-Maceira, V.; Schlachter, A.; Hilgendorff, M.; Giersig, M.; Liz-Marzán, L. M.; Farle, M. Magnetic and Optical Tunable Microspheres with a Magnetite/gold Nanoparticle Shell. J. Mater. Chem. 2005, 15(21), 2095–2098. DOI: 10.1039/b502065d.
  • Wang, L.; Luo, J.; Maye, M. M.; Fan, Q.; Rendeng, Q.; Engelhard, M. H.; Wang, C.; Lin, Y.; Zhong, C.-J. Iron Oxide–gold Core–shell Nanoparticles and Thin Film Assembly. J. Mater. Chem. 2005, 15(18), 1821–1832. DOI: 10.1039/b501375e.
  • Freitas, M.; Sá Couto, M.; Barroso, M.; Pereira, C.; de-Los-Santos-Álvarez, N.; Miranda-Ordieres, A. J.; Lobo-Castañón, M.; Delerue-Matos, C. Highly Monodisperse Fe3O4@ Au Superparamagnetic Nanoparticles as Reproducible Platform for Genosensing Genetically Modified Organisms. ACS Sens. 2016, 1(8), 1044–1053. DOI: 10.1021/acssensors.6b00182.
  • Jin, C.; Qu, Y.; Wang, M.; Han, J.; Hu, Y.; Guo, R. Aqueous Solution-based Fe3O4 Seed-mediated Route to Hydrophilic Fe3O4–Au Janus Nanoparticles. Langmuir. 2016, 32(18), 4595–4601. DOI: 10.1021/acs.langmuir.6b01269.
  • Goon, I. Y.; Lai, L. M.; Lim, M.; Munroe, P.; Gooding, J. J.; Amal, R. Fabrication and Dispersion of Gold-shell-protected Magnetite Nanoparticles: Systematic Control Using Polyethyleneimine. Chem. Mater. 2009, 21(4), 673–681. DOI: 10.1021/cm8025329.
  • Hu, Y.; Meng, L.; Niu, L.; Lu, Q. Facile Synthesis of Superparamagnetic Fe3O4@ Polyphosphazene@ Au Shells for Magnetic Resonance Imaging and Photothermal Therapy. ACS Appl. Mater. Interfaces. 2013, 5(11), 4586–4591. DOI: 10.1021/am400843d.
  • Salgueiriño-Maceira, V.; Correa-Duarte, M. A.; Farle, M.; López-Quintela, A.; Sieradzki, K.; Diaz, R. Bifunctional Gold-coated Magnetic Silica Spheres. Chem. Mater. 2006, 18(11), 2701–2706. DOI: 10.1021/cm0603001.
  • Xuan, S.; Wang, Y.-X. J.; Yu, J. C.; Leung, K. C.-F. Preparation, Characterization, and Catalytic Activity of Core/shell Fe3O4@ Polyaniline@ Au Nanocomposites. Langmuir. 2009, 25(19), 11835–11843. DOI: 10.1021/la901462t.
  • Zhou, J.; Meng, L.; Lu, Q. Core@ Shell Nanostructures for Photothermal Conversion: Tunable Noble Metal Nanoshells on Cross-linked Polymer Submicrospheres. J. Mater. Chem. 2010, 20(26), 5493–5498. DOI: 10.1039/c0jm00117a.
  • Zhuo, Y.; Yuan, P.-X.; Yuan, R.; Chai, Y.-Q.; Hong, C.-L. Bienzyme Functionalized Three-layer Composite Magnetic Nanoparticles for Electrochemical Immunosensors. Biomaterials. 2009, 30(12), 2284–2290. DOI: 10.1016/j.biomaterials.2009.01.002.
  • Lu, L.; Zhang, W.; Wang, D.; Xu, X.; Miao, J.; Jiang, Y. Fe@ Ag Core–shell Nanoparticles with Both Sensitive Plasmonic Properties and Tunable Magnetism. Mater. Lett. 2010, 64(15), 1732–1734. DOI: 10.1016/j.matlet.2010.04.025.
  • Lu, L.; Wang, D.; Xu, X.; Wang, H.; Miao, J.; Jiang, Y. Low Temperature Magnetic Hardening in Self-assembled FePt/Ag Core-shell Nanoparticles. Mater. Chem. Phys. 2011, 129(3), 995–999. DOI: 10.1016/j.matchemphys.2011.05.048.
  • Bhoi, B.; Singh, V. Synthesis and Magnetic Properties of Core-shell Fe70Co30@ Ag Dendritic Nanostructures. J. Alloy. Compd. 2012, 541, 468–471. DOI: 10.1016/j.jallcom.2012.07.002.
  • Li, Q.; Tian, M.; Liu, L.; Zou, H.; Zhang, L.; Wang, W. C. Facile Preparation of α-Fe2O3@ Ag Core–shell Structured Nanoparticles. Electrochim. Acta. 2013, 91, 114–121. DOI: 10.1016/j.electacta.2012.12.137.
  • Hemmateenejad, B.; Shamsipur, M.; Jalili–Jahani, N. Charge Separation and Catalytic Activity of Fe3O4@ Ag “nanospheres”. Photochem. Photobiol. 2016, 92(1), 61–68. DOI: 10.1111/php.12534.
  • Mahmoudi, M.; Serpooshan, V. Silver-coated Engineered Magnetic Nanoparticles are Promising for the Success in the Fight against Antibacterial Resistance Threat. ACS Nano. 2012, 6(3), 2656–2664. DOI: 10.1021/nn300042m.
  • Sharma, G.; Jeevanandam, P. A Facile Synthesis of Multifunctional Iron Oxide@ Ag Core–shell Nanoparticles and Their Catalytic Applications. Eur. J. Inorg. Chem. 2013, 2013(36), 6126–6136. DOI: 10.1002/ejic.201301193.
  • Liu, Z.; Zhao, B.; Shi, Y.; Guo, C.; Yang, H.; Li, Z. Novel Nonenzymatic Hydrogen Peroxide Sensor Based on Iron Oxide–silver Hybrid Submicrospheres. Talanta. 2010, 81(4–5), 1650–1654. DOI: 10.1016/j.talanta.2010.03.019.
  • Fan, H.; Pan, Z.-Q.; Gu, H.-Y. The Self-assembly, Characterization and Application of Hemoglobin Immobilized on Fe 3 O 4@ Pt Core-shell Nanoparticles. Microchim. Acta. 2010, 168(3–4), 239–244. DOI: 10.1007/s00604-009-0279-3.
  • Figuerola, A.; Fiore, A.; Di Corato, R.; Falqui, A.; Giannini, C.; Micotti, E.; Lascialfari, A.; Corti, M.; Cingolani, R.; Pellegrino, T. One-pot Synthesis and Characterization of Size-controlled Bimagnetic FePt− Iron Oxide Heterodimer Nanocrystals. J. Am. Chem. Soc. 2008, 130(4), 1477–1487. DOI: 10.1021/ja078034v.
  • Liang, W.-I.; Zhang, X.; Zan, Y.; Pan, M.; Czarnik, C.; Bustillo, K.; Xu, J.; Chu, Y.-H.; Zheng, H. In Situ Study of Fe3Pt–Fe2O3 Core–Shell Nanoparticle Formation. J. Am. Chem. Soc. 2015, 137(47), 14850–14853.
  • Liu, S.; Guo, M.-X.; Shao, F.; Peng, Y.-H.; Bian, S.-W. Water-dispersible and Magnetically Recoverable Fe 3 O 4/pd@ Nitrogen-doped Carbon Composite Catalysts for the Catalytic Reduction of 4-nitrophenol. RSC Adv. 2016, 6(80), 76128–76131. DOI: 10.1039/C6RA14374A.
  • Lou, X. W.; Archer, L. A. A General Route to Nonspherical Anatase TiO2 Hollow Colloids and Magnetic Multifunctional Particles. Adv. Mater. 2008, 20(10), 1853–1858. DOI: 10.1002/(ISSN)1521-4095.
  • Xin, T.; Ma, M.; Zhang, H.; Gu, J.; Wang, S.; Liu, M.; Zhang, Q. A Facile Approach for the Synthesis of Magnetic Separable Fe3O4@ TiO2, Core–shell Nanocomposites as Highly Recyclable Photocatalysts. Appl. Surf. Sci. 2014, 288, 51–59. DOI: 10.1016/j.apsusc.2013.09.108.
  • Chiu, W.; Khiew, P.; Cloke, M.; Isa, D.; Lim, H.; Tan, T.; Huang, N.; Radiman, S.; Abd-Shukor, R.; Hamid, M. A. A. Heterogeneous Seeded Growth: Synthesis and Characterization of Bifunctional Fe3O4/ZnO Core/shell Nanocrystals. J. Phys. Chem. C. 2010, 114(18), 8212–8218. DOI: 10.1021/jp100848m.
  • Hong, R.; Zhang, S.; Di, G.; Li, H.; Zheng, Y.; Ding, J.; Wei, D. Preparation, Characterization and Application of Fe3O4/ZnO Core/shell Magnetic Nanoparticles. Mater. Res. Bull. 2008, 43(8–9), 2457–2468. DOI: 10.1016/j.materresbull.2007.07.035.
  • Wan, J.; Li, H.; Chen, K. Synthesis and Characterization of Fe3O4@ ZnO Core–shell Structured Nanoparticles. Mater. Chem. Phys. 2009, 114(1), 30–32. DOI: 10.1016/j.matchemphys.2008.10.039.
  • Kim, J.; Rong, C.; Lee, Y.; Liu, J. P.; Sun, S. From Core/shell Structured FePt/Fe3O4/MgO to Ferromagnetic FePt Nanoparticles. Chem. Mater. 2008, 20(23), 7242–7245. DOI: 10.1021/cm8024878.
  • Peng, H.; Wang, X.; Hu, C.; Hu, J.; Tian, X. A Simple Approach for the Synthesis of Bi-functional Fe 3 O 4@ MgO Core–shell Nanoparticles with Magnetic-microwave to Heat Responsive Properties. New J. Chem. 2016, 40(9), 7911–7916. DOI: 10.1039/C6NJ01651K.
  • Zhang, D.; Liu, Z.; Han, S.; Li, C.; Lei, B.; Stewart, M. P.; Tour, J. M.; Zhou, C. Magnetite (fe3o4) Core− Shell Nanowires: Synthesis and Magnetoresistance. Nano Lett. 2004, 4(11), 2151–2155. DOI: 10.1021/nl048758u.
  • Wang, H.; Hu, Y.; Jiang, Y.; Qiu, L.; Wu, H.; Guo, B.; Shen, Y.; Wang, Y.; Zhu, L.; Xie, A. Facile Synthesis and Excellent Recyclable Photocatalytic Activity of Pine Cone-like Fe 3 O 4@ Cu 2 O/Cu Porous Nanocomposites. Dalton Trans. 2013, 42(14), 4915–4921. DOI: 10.1039/c2dt32290k.
  • Wang, Z.; Hu, G.; Liu, J.; Liu, W.; Zhang, H.; Wang, B. Coordinated Assembly of a New 3D Mesoporous Fe 3 O 4@ Cu 2 O–graphene Oxide Framework as a Highly Efficient and Reusable Catalyst for the Synthesis of Quinoxalines. Chem. Comm. 2015, 51(24), 5069–5072. DOI: 10.1039/c5cc00250h.
  • Chen, Y.-J.; Gao, P.; Wang, R.-X.; Zhu, C.-L.; Wang, L.-J.; Cao, M.-S.; Jin, H.-B. Porous Fe3O4/SnO2 Core/shell Nanorods: Synthesis and Electromagnetic Properties. J. Phys. Chem. C. 2009, 113(23), 10061–10064. DOI: 10.1021/jp902296z.
  • Li, R.; Ren, X.; Zhang, F.; Du, C.; Liu, J. Synthesis of Fe 3 O 4@ SnO 2 Core–shell Nanorod Film and Its Application as a Thin-film Supercapacitor Electrode. Chem. Comm. 2012, 48(41), 5010–5012. DOI: 10.1039/c2cc31786a.
  • Zhu, L.-P.; Bing, N.-C.; Yang, -D.-D.; Yang, Y.; Liao, G.-H.; Wang, L.-J. Synthesis and Photocatalytic Properties of Core–shell Structured α-Fe 2 O 3@ SnO 2 Shuttle-like Nanocomposites. CrystEngComm. 2011, 13(14), 4486–4490. DOI: 10.1039/c1ce05238a.
  • Li, Y.; Liu, Y.; Tang, J.; Lin, H.; Yao, N.; Shen, X.; Deng, C.; Yang, P.; Zhang, X. Fe3O4@ Al2O3 Magnetic Core–shell Microspheres for Rapid and Highly Specific Capture of Phosphopeptides with Mass Spectrometry Analysis. J. Chromatogr. A. 2007, 1172(1), 57–71. DOI: 10.1016/j.chroma.2007.09.062.
  • Peng, H.-P.; Liang, R.-P.; Qiu, J.-D. Facile Synthesis of Fe3O4@ Al2O3 Core–shell Nanoparticles and Their Application to the Highly Specific Capture of Heme Proteins for Direct Electrochemistry. Biosens. Bioelectron. 2011, 26(6), 3005–3011. DOI: 10.1016/j.bios.2010.12.003.
  • Peng, H.; Cui, B.; Li, L.; Wang, Y. A Simple Approach for the Synthesis of Bifunctional Fe3O4@ Gd2O3: Eu3+ Core–shell Nanocomposites. J. Alloy. Compd. 2012, 531, 30–33. DOI: 10.1016/j.jallcom.2012.03.106.
  • Gowd, G. S.; Patra, M. K.; Mathew, M.; Shukla, A.; Songara, S.; Vadera, S. R.; Kumar, N. Synthesis of Fe3O4@ Y2O3: Eu3+ Core–shell Multifunctional Nanoparticles and Their Magnetic and Luminescence Properties. Opt. Mater. 2013, 35(9), 1685–1692. DOI: 10.1016/j.optmat.2013.04.029.
  • Xi, G.; Yue, B.; Cao, J.; Ye, J. Fe3O4/WO3 Hierarchical Core–Shell Structure: High‐Performance and Recyclable Visible‐Light Photocatalysis. Chem. Eur. J. 2011, 17(18), 5145–5154. DOI: 10.1002/chem.201002229.
  • Yuan, Y.; Chen, S.; Paunesku, T.; Gleber, S. C.; Liu, W. C.; Doty, C. B.; Mak, R.; Deng, J.; Jin, Q.; Lai, B. Epidermal Growth Factor Receptor Targeted Nuclear Delivery and High-resolution Whole Cell X-ray Imaging of Fe3O4@ TiO2 Nanoparticles in Cancer Cells. ACS Nano. 2013, 7(12), 10502–10517. DOI: 10.1021/nn4033294.
  • Zhu, C.-L.; Zhang, M.-L.; Qiao, Y.-J.; Xiao, G.; Zhang, F.; Chen, Y.-J. Fe3O4/TiO2 Core/shell Nanotubes: Synthesis and Magnetic and Electromagnetic Wave Absorption Characteristics. J. Phys. Chem. C. 2010, 114(39), 16229–16235. DOI: 10.1021/jp104445m.
  • Liu, J.; Xu, J.; Che, R.; Chen, H.; Liu, M.; Liu, Z. Hierarchical Fe3O4@ TiO2 Yolk–Shell Microspheres with Enhanced Microwave‐Absorption Properties. Chem. Eur. J. 2013, 19(21), 6746–6752. DOI: 10.1002/chem.201203557.
  • López-Ortega, A.; Tobia, D.; Winkler, E.; Golosovsky, I. V.; Salazar-Alvarez, G.; Estradé, S.; Estrader, M.; Sort, J.; González, M. A.; Surinach, S. Size-dependent Passivation Shell and Magnetic Properties in Antiferromagnetic/ferrimagnetic Core/shell MnO Nanoparticles. J. Am. Chem. Soc. 2010, 132(27), 9398–9407. DOI: 10.1021/ja1021798.
  • Liu, X.; Pichon, B. P.; Ulhaq, C.; Lefèvre, C.; Grenèche, J.-M.; Bégin, D.; Bégin-Colin, S. Systematic Study of Exchange Coupling in Core–shell Fe3− δO4@ CoO Nanoparticles. Chem. Mater. 2015, 27(11), 4073–4081. DOI: 10.1021/acs.chemmater.5b01103.
  • Baaziz, W.; Pichon, B. P.; Lefevre, C.; Ulhaq-Bouillet, C.; Greneche, J.-M.; Toumi, M.; Mhiri, T.; Bégin-Colin, S. High Exchange Bias in Fe3− δO4@ CoO Core Shell Nanoparticles Synthesized by a One-pot Seed-mediated Growth Method. J. Phys. Chem. C. 2013, 117(21), 11436–11443. DOI: 10.1021/jp402823h.
  • Leostean, C.; Pana, O.; Stefan, M.; Popa, A.; Toloman, D.; Senila, M.; Gutoiu, S.; Macavei, S. New Properties of Fe3O4@ SnO2 Core Shell Nanoparticles following Interface Charge/spin Transfer. Appl. Surf. Sci. 2018, 427, 192–201. DOI: 10.1016/j.apsusc.2017.07.267.
  • Yu, M.; Liang, C.; Liu, M.; Liu, X.; Yuan, K.; Cao, H.; Che, R. Yolk–shell Fe 3 O 4@ ZrO 2 Prepared by a Tunable Polymer Surfactant Assisted Sol–gel Method for High Temperature Stable Microwave Absorption. J. Mater. Chem. C. 2014, 2(35), 7275–7283. DOI: 10.1039/C4TC01285B.
  • McKenzie, K. J.; Marken, F.; Hyde, M.; Compton, R. G. Nanoporous Iron Oxide Membranes: Layer-by-layer Deposition and Electrochemical Characterisation of Processes within Nanopores. New J. Chem. 2002, 26(5), 625–629. DOI: 10.1039/b200912a.
  • Nomura, K.; Reuther, H. Nano Particles of Iron Oxides in SiO2 Glass Prepared by Ion Implantation. J. Radioanal. Nucl. Chem. 2010, 287(1), 341–346. DOI: 10.1007/s10967-010-0858-0.
  • Liu, X.; Hu, Q.; Zhang, X.; Fang, Z.; Wang, Q. Generalized and Facile Synthesis of Fe3O4/MS (M= Zn, Cd, Hg, Pb, Co, and Ni) Nanocomposites. J. Phys. Chem. C. 2008, 112(33), 12728–12735. DOI: 10.1021/jp8035617.
  • Peng, H.-P.; Liang, R.-P.; Zhang, L.; Qiu, J.-D. Sonochemical Synthesis of Magnetic Core–shell Fe3O4@ ZrO2 Nanoparticles and Their Application to the Highly Effective Immobilization of Myoglobin for Direct Electrochemistry. Electrochim. Acta. 2011, 56(11), 4231–4236. DOI: 10.1016/j.electacta.2011.01.090.
  • Sun, L.; Wu, W.; Zhang, S.; Zhou, J.; Cai, G.; Ren, F.; Xiao, X.; Dai, Z.; Jiang, C. Novel Doping for Synthesis Monodispersed TiO2 Grains Filled into Spindle-like Hematite Bi-component Nanoparticles by Ion Implantation. AIP Adv. 2012, 2(3), 032179. DOI: 10.1063/1.4755783.
  • Wang, Z.; Wu, L.; Chen, M.; Zhou, S. Facile Synthesis of Superparamagnetic Fluorescent Fe3O4/ZnS Hollow Nanospheres. J. Am. Chem. Soc. 2009, 131(32), 11276–11277. DOI: 10.1021/ja903246e.
  • Wu, W.; Zhang, S.; Ren, F.; Xiao, X.; Zhou, J.; Jiang, C. Controlled Synthesis of Magnetic Iron Oxides@ SnO 2 Quasi-hollow Core–shell Heterostructures: Formation Mechanism, and Enhanced Photocatalytic Activity. Nanoscale. 2011, 3(11), 4676–4684. DOI: 10.1039/c1nr10728c.
  • Zheng, J.; Wu, Y.; Zhang, Q.; Li, Y.; Wang, C.; Zhou, Y. Direct Liquid Phase Deposition Fabrication of Waxberry-like Magnetic Fe3O4@ TiO2 Core-shell Microspheres. Mater. Chem. Phys. 2016, 181, 391–396. DOI: 10.1016/j.matchemphys.2016.06.074.
  • Seong, S.; Jung, Y. C.; Lee, T.; Park I-S, A. J. Fabrication of Fe3O4-ZnO Core-shell Nanoparticles by Rotational Atomic Layer Deposition and Their Multi-functional Properties. Curr. Appl. Phys. 2016, 16(12), 1564–1570. DOI: 10.1016/j.cap.2016.09.014.
  • Hedayati, K.; Kord, M.; Goodarzi, M.; Ghanbari, D.; Gharigh, S. Photo-catalyst and Magnetic Nanocomposites: Hydrothermal Preparation of Core–shell Fe 3 O 4@ PbS for Photo-degradation of Toxic Dyes. J. Mater. Sci. Mater. Electron. 2017, 28(2), 1577–1589. DOI: 10.1007/s10854-016-5698-4.
  • Yang, J.; Wang, J.; Li, X.; Wang, D.; Song, H. Synthesis of Urchin-like Fe 3 O 4@ SiO 2@ ZnO/CdS Core–shell Microspheres for the Repeated Photocatalytic Degradation of Rhodamine B under Visible Light. Catal. Sci. Technol. 2016, 6(12), 4525–4534. DOI: 10.1039/C5CY02090E.
  • Zhang, X.; Ding, P.; Sun, Y.; Wang, Y.; Wu, Y.; Guo, J. Shell-core MoS2 Nanosheets@ Fe3O4 Sphere Heterostructure with Exposed Active Edges for Efficient Electrocatalytic Hydrogen Production. J. Alloy. Compd. 2017, 715, 53–59. DOI: 10.1016/j.jallcom.2017.04.315.
  • Li, J.; Guo, L.; Shangguan, E.; Yue, M.; Xu, M.; Wang, D.; Chang, Z.; Li, Q. Synthesis of Novel Spherical Fe3O4@ Ni3S2 Composite as Improved Anode Material for Rechargeable Nickel-iron Batteries. Electrochim. Acta. 2017, 240, 456–465. DOI: 10.1016/j.electacta.2017.04.104.
  • Shi, W.; Du, D.; Shen, B.; Cui, C.; Lu, L.; Wang, L.; Zhang, J. Synthesis of Yolk–shell Structured Fe3O4@ Void@ CdS Nanoparticles: a General and Effective Structure Design for Photo-fenton Reaction. ACS Appl. Mater. Interfaces. 2016, 8(32), 20831–20838. DOI: 10.1021/acsami.6b07644.
  • Tian, Q.; Hu, J.; Zhu, Y.; Zou, R.; Chen, Z.; Yang, S.; Li, R.; Su, Q.; Han, Y.; Liu, X. Sub-10 Nm Fe3O4@ Cu2–x S Core–Shell Nanoparticles for Dual-Modal Imaging and Photothermal Therapy. J. Am. Chem. Soc. 2013, 135(23), 8571–8577. DOI: 10.1021/ja4013497.
  • Hong, Y.; Shu, X.; Qin, Y.; Cui, J.; Yong, Z.; Wu, Y. Facile Synthesis of Fe3O4@ ZnS Core-Shell Bifunctional Nanospheres with Superior Magnetic-Fluorescent Properties. J. Supercond Nov. Magn. 2016, 29(9), 2367–2371. DOI: 10.1007/s10948-016-3554-7.
  • Lin, T.; Wang, J.; Guo, L.; Fu, F. Fe3O4@ MoS2 Core–shell Composites: Preparation, Characterization, and Catalytic Application. J. Phys. Chem. C. 2015, 119(24), 13658–13664. DOI: 10.1021/acs.jpcc.5b02516.
  • Zhong, Y.; Liu, J.; Lu, Z.; Xia, H. Hierarchical FeS2 Nanosheet@ Fe2O3 Nanosphere Heterostructure as Promising Electrode Material for Supercapacitors. Mater. Lett. 2016, 166, 223–226. DOI: 10.1016/j.matlet.2015.12.092.
  • Yu, X.; Wan, J.; Shan, Y.; Chen, K.; Han, X. A Facile Approach to Fabrication of Bifunctional Magnetic-optical Fe3O4@ ZnS Microspheres. Chem. Mater. 2009, 21(20), 4892–4898. DOI: 10.1021/cm902667b.
  • Semenova, E.; Vorobyova, S.; Lesnikovich, A. Interphase Synthesis of Fe3O4/CdS Core–shell Nanoparticles. Opt. Mater. 2011, 34(1), 99–102. DOI: 10.1016/j.optmat.2011.07.008.
  • Ratanatawanate, C.; Tao, Y.; Balkus, J. K. Photocatalytic Activity of PbS Quantum dot/TiO2 Nanotube Composites. J. Phys. Chem. C. 2009, 113(24), 10755–10760. DOI: 10.1021/jp903050h.
  • Mosleh, S.; Rahimi, M. R.; Ghaedi, M.; Asfaram, A.; Javadian, H.; Sadeghfar, F.; Jannesar, R. Visible‐light‐driven Photocatalytic Degradation of Fenpyroximate in Rotating Packed Bed Reactor Using Fe3O4@ PbS@ Ni2P Magnetic Nanocomposite Photocatalyst: Response Surface Modelling and Optimization. Appl. Organomet. Chem. 2018, 32(10), e4513. DOI: 10.1002/aoc.4513.
  • Julkapli, N. M.; Bagheri, S. Graphene Supported Heterogeneous Catalysts: an Overview. Int. J. Hydrogen Energ. 2015, 40(2), 948–979. DOI: 10.1016/j.ijhydene.2014.10.129.
  • Craciun, M.; Khrapach, I.; Barnes, M.; Russo, S. Properties and Applications of Chemically Functionalized Graphene. J. Phys. Condens. Matter. 2013, 25(42), 423201. DOI: 10.1088/0953-8984/25/45/454219.
  • Ji, X.; Xu, Y.; Zhang, W.; Cui, L.; Liu, J. Review of Functionalization, Structure and Properties of Graphene/polymer Composite Fibers. Compos. Part A Appl. Sci. Manuf. 2016, 87, 29–45. DOI: 10.1016/j.compositesa.2016.04.011.
  • Karousis, N.; Suarez-Martinez, I.; Ewels, C. P.; Tagmatarchis, N. Structure, Properties, Functionalization, and Applications of Carbon Nanohorns. Chem. Rev. 2016, 116(8), 4850–4883. DOI: 10.1021/acs.chemrev.5b00611.
  • Ye, E.; Liu, B.; Fan, W. Y. Preparation of Graphite-coated Iron Nanoparticles Using Pulsed Laser Decomposition of Fe3 (CO) 12 and PPh3 in Hexane. Chem. Mater. 2007, 19(15), 3845–3849. DOI: 10.1021/cm0706797.
  • Alvand, M.; Shemirani, F. Fabrication of Fe 3 O 4@ Graphene Oxide Core-shell Nanospheres for Ferrofluid-based Dispersive Solid Phase Extraction as Exemplified for Cd (II) as a Model Analyte. Microchim. Acta. 2016, 183(5), 1749–1757. DOI: 10.1007/s00604-016-1805-8.
  • Hu, J.; Zheng, J.; Tian, L.; Duan, Y.; Lin, L.; Cui, S.; Peng, H.; Liu, T.; Guo, H.; Wang, X. A Core–shell nanohollow-γ-Fe 2 O 3@ Graphene Hybrid Prepared through the Kirkendall Process as A High Performance Anode Material for Lithium Ion Batteries. Chem. Comm. 2015, 51(37), 7855–7858. DOI: 10.1039/c5cc01195g.
  • Sarno, M.; Cirillo, C.; Scudieri, C.; Polichetti, M.; Ciambelli, P. Electrochemical Applications of Magnetic Core–shell Graphene-coated FeCo Nanoparticles. Ind. Eng. Chem. Res. 2016, 55(11), 3157–3166. DOI: 10.1021/acs.iecr.5b04499.
  • Liu, Z.; Wang, Y.; Deng, R.; Yang, L.; Yu, S.; Xu, S.; Xu, W. Fe3O4@ Graphene Oxide@ Ag Particles for Surface Magnet Solid-phase Extraction Surface-enhanced Raman Scattering (SMSPE-SERS): from Sample Pretreatment to Detection All-in-one. ACS Appl. Mater. Interfaces. 2016, 8(22), 14160–14168. DOI: 10.1021/acsami.6b02944.
  • Xu, T.; He, G.; Zhao, Y.; Gu, H.; Jiang, Z.; Chen, Q.; Sun, X.; Chen, H. Benzenoid-like CuFeO2@ Reduced Graphene Oxide: Facile Synthesis and Its Excellent Catalytic Performance in Selective Oxidation. Appl. Surf. Sci. 2016, 389, 840–848. DOI: 10.1016/j.apsusc.2016.08.017.
  • Dalpozzo, R.;. Magnetic Nanoparticle Supports for Asymmetric Catalysts. Green Chem. 2015, 17(7), 3671–3686. DOI: 10.1039/C5GC00386E.
  • Yi, D. K.; Lee, S. S.; Ying, J. Y. Synthesis and Applications of Magnetic Nanocomposite Catalysts. Chem. Mater. 2006, 18(10), 2459–2461. DOI: 10.1021/cm052885p.
  • Li, C. J.;. Organic Reactions in Aqueous Media-with a Focus on Carbon-carbon Bond Formation. Chem. Rev. 1993, 93(6), 2023–2035. DOI: 10.1021/cr00022a004.
  • Miyaura, N.; Suzuki, A. Palladium-catalyzed Cross-coupling Reactions of Organoboron Compounds. Chem. Rev. 1995, 95(7), 2457–2483. DOI: 10.1021/cr00039a007.
  • Li, W.; Zhang, B.; Li, X.; Zhang, H.; Zhang, Q. Preparation and Characterization of Novel Immobilized Fe3O4@ SiO2@ mSiO2–Pd (0) Catalyst with Large Pore-size Mesoporous for Suzuki Coupling Reaction. Appl. Catal. A Gen. 2013, 459, 65–72. DOI: 10.1016/j.apcata.2013.04.010.
  • Le, X.; Dong, Z.; Liu, Y.; Jin, Z.; Huy, T.-D.; Le, M.; Ma, J. Palladium Nanoparticles Immobilized on Core–shell Magnetic Fibers as a Highly Efficient and Recyclable Heterogeneous Catalyst for the Reduction of 4-nitrophenol and Suzuki Coupling Reactions. J. Mater. Chem. A. 2014, 2(46), 19696–19706. DOI: 10.1039/C4TA04919E.
  • Cheng, W.; Tang, K.; Qi, Y.; Sheng, J.; Liu, Z. One-step Synthesis of Superparamagnetic Monodisperse Porous Fe 3 O 4 Hollow and Core-shell Spheres. J. Mater. Chem. 2010, 20(9), 1799–1805. DOI: 10.1039/b919164j.
  • Zhang, K.; Zhang, X.; Chen, H.; Chen, X.; Zheng, L.; Zhang, J.; Yang, B. Hollow Titania Spheres with Movable Silica Spheres Inside. Langmuir. 2004, 20(26), 11312–11314. DOI: 10.1021/la047736k.
  • Xuan, S.; Jiang, W.; Gong, X. Immobilization of Pd Nanocatalysts on Magnetic Rattles and Their Catalytic Property. Dalton Trans. 2011, 40(31), 7827–7830. DOI: 10.1039/c1dt10715a.
  • Wang, P.; Zhang, F.; Long, Y.; Xie, M.; Li, R.; Ma, J. Stabilizing Pd on the Surface of Hollow Magnetic Mesoporous Spheres: a Highly Active and Recyclable Catalyst for Hydrogenation and Suzuki Coupling Reactions. Catal. Sci. Technol. 2013, 3(6), 1618–1624. DOI: 10.1039/c3cy20865f.
  • Heidari, F.; Hekmati, M.; Veisi, H. Magnetically Separable and Recyclable Fe3O4@ SiO2/isoniazide/Pd Nanocatalyst for Highly Efficient Synthesis of Biaryls by Suzuki Coupling Reactions. J. Colloid Interface Sci. 2017, 501, 175–184. DOI: 10.1016/j.jcis.2017.04.054.
  • Li, W.; Tian, Y.; Zhang, B.; Tian, L.; Li, X.; Zhang, H.; Ali, N.; Zhang, Q. Fabrication of a Fe 3 O 4@ SiO 2@ mSiO 2-hpg-cooh-pd (0) Supported Catalyst and Its Performance in Catalyzing the Suzuki Cross-coupling Reaction. New J. Chem. 2015, 39(4), 2767–2777. DOI: 10.1039/C4NJ02407A.
  • Kumar, B. S.; Anbarasan, R.; Amali, A. J.; Pitchumani, K. Isolable C@ Fe3O4 Nanospheres Supported Cubical Pd Nanoparticles as Reusable Catalysts for Stille and Mizoroki-Heck Coupling Reactions. Tetrahedron Lett. 2017, 58(33), 3276–3282. DOI: 10.1016/j.tetlet.2017.07.025.
  • Li, R.; Zhang, P.; Huang, Y.; Zhang, P.; Zhong, H.; Chen, Q. Pd–Fe 3 O 4@ C Hybrid Nanoparticles: Preparation, Characterization, and Their High Catalytic Activity toward Suzuki Coupling Reactions. J. Mater. Chem. 2012, 22(42), 22750–22755. DOI: 10.1039/c2jm35252d.
  • Nicolaou, K.; Bulger, P. G.; Sarlah, D. Palladium‐catalyzed Cross‐coupling Reactions in Total Synthesis. Angew. Chem. Int. Ed. 2005, 44(29), 4442–4489.
  • Suresh Kumar, B.; Amali, A. J.; Pitchumani, K. Fabrication of Pd Nanoparticles Embedded C@ Fe3O4 Core–Shell Hybrid Nanospheres: an Efficient Catalyst for Cyanation in Aryl Halides. ACS Appl. Mater. Interfaces. 2015, 7(41), 22907–22917. DOI: 10.1021/acsami.5b08875.
  • Dabiri, M.; Lehi, N. F.; Movahed, S. K. Fe3O4@ RGO@ Au@ C Composite with Magnetic Core and Au Enwrapped in Double-Shelled Carbon: an Excellent Catalyst in the Reduction of Nitroarenes and Suzuki–Miyaura Cross-Coupling. Catal. Lett. 2016, 146(9), 1674–1686. DOI: 10.1007/s10562-016-1792-8.
  • Karimi, B.; Mansouri, F.; Vali, H. A Highly Water-dispersible/magnetically Separable Palladium Catalyst Based on A Fe 3 O 4@ SiO 2 Anchored TEG-imidazolium Ionic Liquid for the Suzuki–Miyaura Coupling Reaction in Water. Green Chem. 2014, 16(5), 2587–2596. DOI: 10.1039/c3gc42311e.
  • Kaur, A.; Singh, V. Fe3O4@ SiO2@ Carbapalladacycle: A Highly Efficient and Magnetically Separable Catalyst for C–C Coupling Reactions in Ionic Liquid Media. Chem. Lett. 2015, 45(1), 83–85. DOI: 10.1246/cl.150868.
  • Zheng, Y.; Stevens, P. D.; Gao, Y. Magnetic Nanoparticles as an Orthogonal Support of Polymer Resins: Applications to Solid-phase Suzuki Cross-coupling Reactions. J. Org. Chem. 2006, 71(2), 537–542. DOI: 10.1021/jo051861z.
  • Liu, Y.; Wang, C.; Wei, Y.; Zhu, L.; Li, D.; Jiang, J. S.; Markovic, N. M.; Stamenkovic, V. R.; Sun, S. Surfactant-induced Postsynthetic Modulation of Pd Nanoparticle Crystallinity. Nano Lett. 2011, 11(4), 1614–1617. DOI: 10.1021/nl104548g.
  • Gawande, M.; Rathi, A.; Branco, P.; Varma, R. Sustainable Utility of Magnetically Recyclable Nano-catalysts in Water: Applications in Organic Synthesis. Appl. Sci. 2013, 3(4), 656–674. DOI: 10.3390/app3040656.
  • Sharma, R. K.; Dutta, S.; Sharma, S.; Zboril, R.; Varma, R. S.; Gawande, M. B. Fe 3 O 4 (iron Oxide)-supported Nanocatalysts: Synthesis, Characterization and Applications in Coupling Reactions. Green Chem. 2016, 18(11), 3184–3209. DOI: 10.1039/C6GC00864J.
  • Soleimani, E.; Naderi Namivandi, M.; Sepahvand, H. ZnCl2 Supported on Fe3O4@ SiO2 Core–shell Nanocatalyst for the Synthesis of Quinolines via Friedländer Synthesis under Solvent‐free Condition. Appl. Organomet. Chem. 2017, 31(2). DOI: 10.1002/aoc.3566.
  • Bai, G.; Lan, X.; Liu, X.; Liu, C.; Shi, L.; Chen, Q.; Chen, G. An Ammonium Molybdate Deposited Amorphous Silica Coated Iron Oxide Magnetic Core–shell Nanocomposite for the Efficient Synthesis of 2-benzimidazoles Using Hydrogen Peroxide. Green Chem. 2014, 16(6), 3160–3168. DOI: 10.1039/C3GC42551G.
  • Ghasemzadeh, M. A.; Abdollahi-Basir, M. H.; Babaei, M. Fe3O4@ SiO2–NH2 Core-shell Nanocomposite as an Efficient and Green Catalyst for the Multi-component Synthesis of Highly Substituted Chromeno [2, 3-b] Pyridines in Aqueous Ethanol Media. Green Chem. Lett. Rev. 2015, 8(3–4), 40–49. DOI: 10.1080/17518253.2015.1107139.
  • Jun, S. W.; Shokouhimehr, M.; Lee, D. J.; Jang, Y.; Park, J.; Hyeon, T. One-pot Synthesis of Magnetically Recyclable Mesoporous Silica Supported Acid–base Catalysts for Tandem Reactions. Chem. Comm. 2013, 49(71), 7821–7823. DOI: 10.1039/c3cc43568g.
  • Qi, G.; Liu, W.; Bei, Z. Fe3O4/ZnS Hollow Nanospheres: A Highly Efficient Magnetic Heterogeneous Catalyst for Synthesis of 5‐substituted 1h‐tetrazoles from Nitriles and Sodium Azide. Chin. J. Chem. 2011, 29(1), 131–134. DOI: 10.1002/cjoc.201190039.
  • Sheykhan, M.; Yahyazadeh, A.; Ramezani, L. A Novel Cooperative Lewis acid/Brønsted Base Catalyst Fe3O4@ SiO2-APTMS-Fe (OH) 2: an Efficient Catalyst for the Biginelli Reaction. Mol. Catal. 2017, 435, 166–173. DOI: 10.1016/j.mcat.2017.03.032.
  • Ge, J.; Zhang, Q.; Zhang, T.; Yin, Y. Core–satellite Nanocomposite Catalysts Protected by a Porous Silica Shell: Controllable Reactivity, High Stability, and Magnetic Recyclability. Angew. Chem. Int. Ed. 2008, 120(46), 9056–9060. DOI: 10.1002/ange.200803968.
  • Guerrero, M.; Costa, N. J.; Vono, L. L.; Rossi, L. M.; Gusevskaya, E. V.; Philippot, K. Taking Advantage of a Terpyridine Ligand for the Deposition of Pd Nanoparticles onto a Magnetic Material for Selective Hydrogenation Reactions. J. Mater. Chem. A. 2013, 1(4), 1441–1449. DOI: 10.1039/C2TA00199C.
  • Lee, K. H.; Lee, B.; Lee, K. R.; Yi, M. H.; Hur, N. H.; Dual, P. CuFe 2 O 4 Nanoparticles Encapsulated in a Core/shell Silica Microsphere for Selective Hydrogenation of Arylacetylenes. Chem. Comm. 2012, 48(37), 4414–4416. DOI: 10.1039/c2cc30285c.
  • Liu, X.; Shi, L.; Feng, W.; Niu, L.; Liu, C.; Bai, G. Preparation of Magnetic Mesoporous Core–shell Nanocomposites for Cinnamic Acid Hydrogenation. RSC Adv. 2014, 4(83), 44302–44306. DOI: 10.1039/C4RA07176J.
  • Yadav, M.; Singh, A. K.; Tsumori, N.; Xu, Q. Palladium Silica Nanosphere-catalyzed Decomposition of Formic Acid for Chemical Hydrogen Storage. J. Mater. Chem. 2012, 22(36), 19146–19150. DOI: 10.1039/c2jm32776g.
  • Yang, L.; Chen, X.; Zhou, Z.; Zhang, R.; Li, L.; Cheng, Z.; Fang, X. Magnetic Fe3O4@ SiO2/Pd and Fe3O4@ SiO2/Pd‐M (M= Ag, Cu and Zn) Catalysts for Selective Hydrogenation of Phenylacetylene. ChemistrySelect. 2016, 1(18), 5599–5606. DOI: 10.1002/slct.201601422.
  • Feng, W.; Dong, H.; Niu, L.; Wen, X.; Huo, L.; Bai, G. A Novel Fe 3 O 4@ nSiO 2@ NiPd–PVP@ mSiO 2 Multi-shell Core–shell Nanocomposite for Cinnamic Acid Hydrogenation in Water. J. Mater. Chem. A. 2015, 3(39), 19807–19814. DOI: 10.1039/C5TA04894J.
  • Shil, A. K.; Das, P. Solid Supported Platinum (0) Nanoparticles Catalyzed Chemo-selective Reduction of Nitroarenes to N-arylhydroxylamines. Green Chem. 2013, 15(12), 3421–3428. DOI: 10.1039/c3gc41179f.
  • Babji, P.; Rao, V. L. Catalytic Reduction of 4-nitrophenol to 4-aminophenol by Using Fe2O3-Cu2O-TiO2 Nanocomposite. IJCS. 2016, 4(5), 123–127.
  • Dong, Z.; Yu, G.; Le, X. Gold Nanoparticle Modified Magnetic Fibrous Silica Microspheres as a Highly Efficient and Recyclable Catalyst for the Reduction of 4-nitrophenol. New J. Chem. 2015, 39(11), 8623–8629. DOI: 10.1039/C5NJ00713E.
  • Ghanbari, N.; Hoseini, S. J.; Bahrami, M. Ultrasonic Assisted Synthesis of Palladium-nickel/iron Oxide Core–shell Nanoalloys as Effective Catalyst for Suzuki-Miyaura and P-nitrophenol Reduction Reactions. Ultrason. Sonochem. 2017, 39, 467–477. DOI: 10.1016/j.ultsonch.2017.05.015.
  • Jiang, K.; Zhang, H.-X.; Yang, -Y.-Y.; Mothes, R.; Lang, H.; Cai, W.-B. Facile Synthesis of Ag@ Pd satellites–Fe 3 O 4 Core Nanocomposites as Efficient and Reusable Hydrogenation Catalysts. Chem. Comm. 2011, 47(43), 11924–11926. DOI: 10.1039/c1cc14675k.
  • Li, C.; Sun, -J.-J.; Chen, D.; Han, G.-B.; Yu, S.-Y.; Kang, -S.-S.; Mei, L.-M. Novel Fe3O4@ SiO2@ Ag@ Ni Trepang-like Nanocomposites: High-efficiency and Magnetic Recyclable Catalysts for Organic Dye Degradation. Chin. Phys. B. 2016, 25(8), 088201. DOI: 10.1088/1674-1056/25/8/088201.
  • Liu, Y.; Zhang, W.; Li, X.; Le, X.; Ma, J. Catalysis of the Hydro-dechlorination of 4-chlorophenol and the Reduction of 4-nitrophenol by Pd/Fe 3 O 4@ SiO 2@ m-SiO 2. New J. Chem. 2015, 39(8), 6474–6481. DOI: 10.1039/C5NJ01180A.
  • Bian, S.-W.; Liu, S.; Chang, L. Synthesis of Magnetically Recyclable Fe3O4@ polydopamine–Pt Composites and Their Application in Hydrogenation Reactions. J. Mater. Sci. 2016, 51(7), 3643–3649. DOI: 10.1007/s10853-015-9688-3.
  • Shah, M. T.; Balouch, A.; Pathan, A. A.; Mahar, A. M.; Sabir, S.; Khattak, R.; Umar, A. A. SiO 2 Caped Fe 3 O 4 Nanostructures as an Active Heterogeneous Catalyst for 4-nitrophenol Reduction. Microsyst. Technol. 2017, 23(12), 5745–5758. DOI: 10.1007/s00542-017-3431-8.
  • Han, J.; Lu, S.; Jin, C.; Wang, M.; Guo, R. Fe 3 O 4/pani/m-sio 2 as Robust Reactive Catalyst Supports for Noble Metal Nanoparticles with Improved Stability and Recyclability. J. Mater. Chem. A. 2014, 2(32), 13016–13023. DOI: 10.1039/C4TA01795A.
  • Wang, Q.; Jia, W.; Liu, B.; Dong, A.; Gong, X.; Li, C.; Jing, P.; Li, Y.; Xu, G.; Zhang, J. Hierarchical Structure Based on Pd (au) Nanoparticles Grafted onto Magnetite Cores and Double Layered Shells: Enhanced Activity for Catalytic Applications. J. Mater. Chem. A. 2013, 1(41), 12732–12741. DOI: 10.1039/c3ta12814h.
  • Hu, W.; Liu, B.; Wang, Q.; Liu, Y.; Liu, Y.; Jing, P.; Yu, S.; Liu, L.; Zhang, J. A Magnetic Double-shell Microsphere as A Highly Efficient Reusable Catalyst for Catalytic Applications. Chem. Comm. 2013, 49(69), 7596–7598. DOI: 10.1039/c3cc42687d.
  • Ding, L.; Zhang, M.; Zhang, Y.; Yang, J.; Zheng, J.; Hayat, T.; Alharbi, N. S.; Xu, J. Tailoring the Nickel Nanoparticles Anchored on the Surface of Fe3O4@ SiO2 Spheres for Nanocatalysis. Nanotechnology. 2017, 28(34), 345601. DOI: 10.1088/1361-6528/aa7b9c.
  • Kurtan, U.; Amir, M.; Baykal, A. A Fe3O4@ Nico@ Ag Nanocatalyst for the Hydrogenation of Nitroaromatics. Chinese J. Catal. 2015, 36(5), 705–711. DOI: 10.1016/S1872-2067(14)60316-8.
  • Bai, G.; Shi, L.; Zhao, Z.; Wang, Y.; Qiu, M.; Dong, H. Preparation of a Novel Fe3O4@ SiO2@ Ni–La–B Magnetic Core–shell Nanocomposite for Catalytic Hydrogenation. Mater. Lett. 2013, 96, 93–96. DOI: 10.1016/j.matlet.2013.01.018.
  • Lu, X.; Yang, L.; Bian, X.; Chao, D.; Wang, C. Rapid, Microwave‐Assisted, and One‐Pot Synthesis of Magnetic Palladium–CoFe2O4–Graphene Composite Nanosheets and Their Applications as Recyclable Catalysts. Part Part Syst. Char. 2014, 31(2), 245–251. DOI: 10.1002/ppsc.201300216.
  • Sun, W.; Lu, X.; Xue, Y.; Tong, Y.; Wang, C. One‐Step Preparation of CoFe2O4/Polypyrrole/Pd Ternary Nanofibers and Their Catalytic Activity toward p‐Nitrophenol Hydrogenation Reaction. Macromol. Mater. Eng. 2014, 299(3), 361–367. DOI: 10.1002/mame.201300171.
  • Wang, C.; Daimon, H.; Sun, S. Dumbbell-like Pt− Fe3O4 Nanoparticles and Their Enhanced Catalysis for Oxygen Reduction Reaction. Nano Lett. 2009, 9(4), 1493–1496. DOI: 10.1021/nl8034724.
  • Mei, N.; Liu, B. Pd Nanoparticles Supported on Fe3O4@ C: an Effective Heterogeneous Catalyst for the Transfer Hydrogenation of Nitro Compounds into Amines. Int. J. Hydrogen Energ. 2016, 41(40), 17960–17966. DOI: 10.1016/j.ijhydene.2016.07.229.
  • Guo, Y.; Zhang, L.; Liu, X.; Li, B.; Tang, D.; Liu, W.; Qin, W. Synthesis of Magnetic Core–shell Carbon Dot@ MFe 2 O 4 (M= Mn, Zn and Cu) Hybrid Materials and Their Catalytic Properties. J. Mater. Chem. A. 2016, 4(11), 4044–4055. DOI: 10.1039/C5TA10708C.
  • Liu, P.; Liu, S.; Bian, S.-W. Core–shell-structured Fe3O4/Pd@ ZIF-8 Catalyst with Magnetic Recyclability and Size Selectivity for the Hydrogenation of Alkenes. J. Mater. Sci. 2017, 52(20), 12121–12130. DOI: 10.1007/s10853-017-1357-2.
  • Hudson, R.; Riviere, A.; Cirtiu, C. M.; Luska, K. L.; Moores, A. Iron-iron Oxide Core–shell Nanoparticles are Active and Magnetically Recyclable Olefin and Alkyne Hydrogenation Catalysts in Protic and Aqueous Media. Chem. Comm. 2012, 48(27), 3360–3362. DOI: 10.1039/c2cc16438h.
  • Zhang, H.; Zhang, G.; Bi, X.; Chen, X. Facile Assembly of a Hierarchical Core@ Shell Fe 3 O 4@ CuMgAl-LDH (layered Double Hydroxide) Magnetic Nanocatalyst for the Hydroxylation of Phenol. J. Mater. Chem. A. 2013, 1(19), 5934–5942. DOI: 10.1039/c3ta10349h.
  • Zai, H.; Zhao, Y.; Chen, S.; Wang, R.; Ge, L.; Chen, C.; Li, Y. A Novel Hierachically-nanostructured Pt/SiO 2/fe 3 O 4 Catalyst with High Activity and Recyclability Towards Hydrosilylation. RSC Adv. 2016, 6(100), 98520–98527. DOI: 10.1039/C6RA16944A.
  • Baig, R. N.; Varma, R. S. Magnetic Silica-supported Ruthenium Nanoparticles: an Efficient Catalyst for Transfer Hydrogenation of Carbonyl Compounds. ACS Sustain. Chem. Eng. 2013, 1, 805–809. DOI: 10.1021/sc400032k.
  • Fang, J.; Zhang, Y.; Zhou, Y.; Zhao, S.; Zhang, C.; Yang, C.; Chen, W.; Huang, M.; Gao, Y. Synthesis of Novel Ultrasmall Au-loaded Magnetic SiO2/carbon Yolk-shell Ellipsoids as Highly Reactive and Recoverable Nanocatalysts. Carbon. 2017, 121, 602–611. DOI: 10.1016/j.carbon.2017.06.022.
  • Liu, H.; Wang, P.; Yang, H.; Niu, J.; Ma, J. Palladium Supported on Hollow Magnetic Mesoporous Spheres: a Recoverable Catalyst for Hydrogenation and Suzuki Reaction. New J. Chem. 2015, 39(6), 4343–4350. DOI: 10.1039/C5NJ00104H.
  • Shi, F.; Tse, M. K.; Pohl, M. M.; Brückner, A.; Zhang, S.; Beller, M. Tuning Catalytic Activity between Homogeneous and Heterogeneous Catalysis: Improved Activity and Selectivity of Free Nano‐Fe2O3 in Selective Oxidations. Angew. Chem. Int. Ed. 2007, 46(46), 8866–8868. DOI: 10.1002/anie.200703418.
  • Zhang, Y.; Li, Z.; Sun, W.; Xia, C. A Magnetically Recyclable Heterogeneous Catalyst: Cobalt Nano-oxide Supported on Hydroxyapatite-encapsulated γ-Fe2O3 Nanocrystallites for Highly Efficient Olefin Oxidation with H2O2. Catal. Commun. 2008, 10(2), 237–242. DOI: 10.1016/j.catcom.2008.08.030.
  • Mori, K.; Kanai, S.; Hara, T.; Mizugaki, T.; Ebitani, K.; Jitsukawa, K.; Kaneda, K. Development of Ruthenium− Hydroxyapatite-encapsulated Superparamagnetic γ-Fe2O3 Nanocrystallites as an Efficient Oxidation Catalyst by Molecular Oxygen. Chem. Mater. 2007, 19(6), 1249–1256. DOI: 10.1021/cm061388l.
  • Wang, S.; Liu, B.; Yuan, Z.; Zhang, Z. Aerobic Oxidation of 5-hydroxymethylfurfural into Furan Compounds over Mo-hydroxyapatite-encapsulated Magnetic γ-Fe2O3. J. Taiwan Inst. Chem. Engrs. 2016, 58, 92–96. DOI: 10.1016/j.jtice.2015.06.002.
  • Li, H.; Wan, J.; Ma, Y.; Wang, Y. Synthesis of Novel Core–shell Fe 0@ Fe 3 O 4 as Heterogeneous Activator of Persulfate for Oxidation of Dibutyl Phthalate under Neutral Conditions. Chem. Eng. J. 2016, 301, 315–324. DOI: 10.1016/j.cej.2016.04.147.
  • Fang, L.; Wang, G.; Guo, W. Rational Synthesis of Core-shell Fe3O4@ Thermally Crosslinked PANI Nanostructures Based on a PVP-mediated In-situ Polymerization Strategy: Towards a Stable Catalyst Support for 12-tungstophosphoric Acid. Colloids Surf. A Physicochem. Eng. Asp. 2017, 533, 204–212. DOI: 10.1016/j.colsurfa.2017.07.060.
  • Fan, S.; Dong, W.; Huang, X.; Gao, H.; Wang, J.; Jin, Z.; Tang, J.; Wang, G. In Situ-Induced Synthesis of Magnetic Cu-CuFe2O4@ HKUST-1 Heterostructures with Enhanced Catalytic Performance for Selective Aerobic Benzylic C–H Oxidation. ACS Catal. 2016, 7(1), 243–249. DOI: 10.1021/acscatal.6b02614.
  • Kirillova, M. V.; Santos, C. I.; Wu, W.; Tang, Y.; Kirillov, A. M. Mild Oxidative C− H Functionalization of Alkanes and Alcohols Using a Magnetic Core-shell Fe3O4@ mSiO2@ Cu4 Nanocatalyst. J. Mol. Catal A Chem. 2017, 426, 343–349. DOI: 10.1016/j.molcata.2016.06.028.
  • Liao, L.; Liu, Y.; Li, Z.; Zhuang, J.; Zhou, Y.; Chen, S. Catalytic Aerobic Oxidation of 5-hydroxymethylfurfural into 2, 5-diformylfuran over VO 2+ and Cu 2+ Immobilized on Amino-functionalized Core–shell Magnetic Fe 3 O 4@ SiO 2. RSC Adv. 2016, 6(97), 94976–94988. DOI: 10.1039/C6RA17932K.
  • Long, Y.; Yuan, B.; Niu, J.; Tong, X.; Ma, J. Distinctive Size Effects of Pt Nanoparticles Immobilized on Fe 3 O 4@ PPy Used as an Efficient Recyclable Catalyst for Benzylic Alcohol Aerobic Oxidation and Hydrogenation Reduction of Nitroaromatics. New J. Chem. 2015, 39(2), 1179–1185. DOI: 10.1039/C4NJ01869A.
  • Sharma, R. K.; Yadav, M.; Monga, Y.; Gaur, R.; Adholeya, A.; Zboril, R.; Varma, R. S.; Gawande, M. B. Silica-Based Magnetic Manganese Nanocatalyst–Applications in the Oxidation of Organic Halides and Alcohols. ACS Sustain. Chem. Eng. 2016, 4(3), 1123–1130. DOI: 10.1021/acssuschemeng.5b01183.
  • Silva, T. A.; Landers, R.; Rossi, L. M. Magnetically Recoverable AuPd Nanoparticles Prepared by a Coordination Capture Method as a Reusable Catalyst for Green Oxidation of Benzyl Alcohol. Catal. Sci. Technol. 2013, 3(11), 2993–2999. DOI: 10.1039/c3cy00261f.
  • Zhang, X.; Wang, G.; Yang, M.; Luan, Y.; Dong, W.; Dang, R.; Gao, H.; Yu, J. Synthesis of a Fe 3 O 4–cuo@ meso-SiO 2 Nanostructure as a Magnetically Recyclable and Efficient Catalyst for Styrene Epoxidation. Catal. Sci. Technol. 2014, 4(9), 3082–3089. DOI: 10.1039/C4CY00430B.
  • Yin, S.; Li, J.; Zhang, H. Hierarchical Hollow Nanostructured Core@ Shell Recyclable Catalysts γ-Fe 2 O 3@ LDH@ Au 25-x for Highly Efficient Alcohol Oxidation. Green Chem. 2016, 18(21), 5900–5914. DOI: 10.1039/C6GC01290F.
  • Zhang, Y.; Xue, Z.; Wang, J.; Zhao, X.; Deng, Y.; Zhao, W.; Mu, T. Controlled Deposition of Pt Nanoparticles on Fe 3 O 4@ Carbon Microspheres for Efficient Oxidation of 5-hydroxymethylfurfural. RSC Adv. 2016, 6(56), 51229–51237. DOI: 10.1039/C6RA06792A.
  • Sun, J.; Yu, G.; Liu, L.; Li, Z.; Kan, Q.; Huo, Q.; Guan, J. Core–shell Structured Fe 3 O 4@ SiO 2 Supported Cobalt (ii) or Copper (ii) Acetylacetonate Complexes: Magnetically Recoverable Nanocatalysts for Aerobic Epoxidation of Styrene. Catal. Sci. Technol. 2014, 4(5), 1246–1252. DOI: 10.1039/c4cy00017j.
  • Sharma, R.; Monga, Y. Silica Encapsulated Magnetic Nanoparticles-supported Zn (II) Nanocatalyst: A Versatile Integration of Excellent Reactivity and Selectivity for the Synthesis of Azoxyarenes, Combined with Facile Catalyst Recovery and Recyclability. Appl. Catal. A Gen. 2013, 454, 1–10. DOI: 10.1016/j.apcata.2012.12.046.
  • Rostami, A.; Pourshiani, O.; Darvishi, N.; Atashkar, B. Efficient and Green Oxidation of Alcohols with Tert-butyl Hydrogenperoxide Catalyzed by a Recyclable Magnetic Core-shell Nanoparticle-supported Oxo-vanadium Ephedrine Complex. C. R. Chim. 2017, 20(4), 435–439. DOI: 10.1016/j.crci.2016.08.003.
  • Bagherzadeh, M.; Haghdoost, M. M.; Moghaddam, F. M.; Foroushani, B. K.; Saryazdi, S.; Payab, E. Mn (III) Complex Supported on Fe3O4 Nanoparticles: Magnetically Separable Nanocatalyst for Selective Oxidation of Thiols to Disulfides. J. Coord. Chem. 2013, 66(17), 3025–3036. DOI: 10.1080/00958972.2013.821699.
  • Hadian-Dehkordi, L.; Hosseini-Monfared, H.; Aleshkevych, P. A Novel Chiral Manganese-tetraamide Macrocycle Complex Covalently Attached to Magnetite as Recyclable Catalyst for Aerobic Asymmetric Epoxidation of Olefins. Inorganica Chim. Acta. 2017, 462, 142–151. DOI: 10.1016/j.ica.2017.03.019.
  • Barbosa, I. A.; de Sousa Filho, P. C.; Da Silva, D. L.; Zanardi, F. B.; Zanatta, L. D.; de Oliveira, A. J.; Serra, O. A.; Iamamoto, Y. Metalloporphyrins Immobilized in Fe3O4@ SiO2 Mesoporous Submicrospheres: Reusable Biomimetic Catalysts for Hydrocarbon Oxidation. J. Colloid Interface Sci. 2016, 469, 296–309. DOI: 10.1016/j.jcis.2016.01.059.
  • Hou, J.; Luan, Y.; Yu, J.; Qi, Y.; Wang, G.; Lu, Y. Fabrication of Hierarchical Composite Microspheres of Copper-doped Fe 3 O 4@ P4VP@ ZIF-8 and Their Application in Aerobic Oxidation. New J. Chem. 2016, 40(12), 10127–10135. DOI: 10.1039/C6NJ02239A.
  • Rezaeifard, A.; Farshid, P.; Jafarpour, M.; Moghaddam, G. K. Silica-coated Magnetite Nanoparticles Stabilized Simple Mn-tetraphenylporphyrin for Aqueous Phase Catalytic Oxidations with Tert-butyl Hydroperoxide. RSC Adv. 2014, 4(18), 9189–9196. DOI: 10.1039/c3ra47288d.
  • Rezaeifard, A.; Jafarpour, M.; Farshid, P.; Naeimi, A. Nanomagnet‐Supported Partially Brominated Manganese–Porphyrin as a Promising Catalyst for the Selective Heterogeneous Oxidation of Hydrocarbons and Sulfides in Water. Eur. J. Inorg. Chem. 2012, 2012(33), 5515–5524. DOI: 10.1002/ejic.201200753.
  • Zolfigol, M. A.; Kiafar, M.; Yarie, M.; Taherpour, A. A.; Saeidi-Rad, M. Experimental and Theoretical Studies of the Nanostructured {fe3o4@ SiO2@(CH2) 3im} C (CN) 3 Catalyst for 2-amino-3-cyanopyridine Preparation via an Anomeric Based Oxidation. RSC Adv. 2016, 6(55), 50100–50111. DOI: 10.1039/C6RA12299J.
  • Yue, Q.; Zhang, Y.; Wang, C.; Wang, X.; Sun, Z.; Hou, X.-F.; Zhao, D.; Deng, Y. Magnetic Yolk–shell Mesoporous Silica Microspheres with Supported Au Nanoparticles as Recyclable High-performance Nanocatalysts. J. Mater. Chem. A. 2015, 3(8), 4586–4594. DOI: 10.1039/C4TA06967F.
  • Elmaci, G.; Frey, C. E.; Kurz, P.; Zümreoğlu-Karan, B. Water Oxidation Catalysis by Birnessite@ Iron Oxide Core–Shell Nanocomposites. Inorg. Chem. 2015, 54(6), 2734–2741. DOI: 10.1021/ic502908w.
  • Brookes, C.; Wells, P.; Cibin, G.; Dimitratos, N.; Jones, W.; Morgan, D. J.; Bowker, M. Molybdenum Oxide on Fe2O3 Core–shell Catalysts: Probing the Nature of the Structural Motifs Responsible for Methanol Oxidation Catalysis. ACS Catal. 2013, 4(1), 243–250. DOI: 10.1021/cs400683e.
  • Neal, L. M.; Shafiefarhood, A.; Li, F. Dynamic Methane Partial Oxidation Using a Fe2O3@ La0. 8sr0. 2FeO3-δ Core–shell Redox Catalyst in the Absence of Gaseous Oxygen. ACS Catal. 2014, 4(10), 3560–3569. DOI: 10.1021/cs5008415.
  • Liu, Y.-T.; Yuan, Q.-B.; Duan, D.-H.; Zhang, Z.-L.; Hao, X.-G.; Wei, G.-Q.; Liu, S.-B. Electrochemical Activity and Stability of Core–shell Fe2O3/Pt Nanoparticles for Methanol Oxidation. J. Power Sources. 2013, 243, 622–629. DOI: 10.1016/j.jpowsour.2013.06.029.
  • Lin, S.; Shen, C.; Lu, D.; Wang, C.; Gao, H.-J. Synthesis of Pt Nanoparticles Anchored on Graphene-encapsulated Fe3O4 Magnetic Nanospheres and Their Use as Catalysts for Methanol Oxidation. Carbon. 2013, 53, 112–119. DOI: 10.1016/j.carbon.2012.10.037.
  • Atar, N.; Eren, T.; Yola, M. L.; Karimi-Maleh, H.; Demirdögen, B. Magnetic Iron Oxide and Iron Oxide@ Gold Nanoparticle Anchored Nitrogen and Sulfur-functionalized Reduced Graphene Oxide Electrocatalyst for Methanol Oxidation. RSC Adv. 2015, 5(33), 26402–26409. DOI: 10.1039/C5RA03735B.
  • Fashedemi, O. O.; Miller, H. A.; Marchionni, A.; Vizza, F.; Ozoemena, K. I. Electro-oxidation of Ethylene Glycol and Glycerol at Palladium-decorated FeCo@ Fe Core–shell Nanocatalysts for Alkaline Direct Alcohol Fuel Cells: Functionalized MWCNT Supports and Impact on Product Selectivity. J. Mater. Chem. A. 2015, 3(13), 7145–7156. DOI: 10.1039/C5TA00076A.
  • Hou, Y.; Yuan, H.; Chen, H.; Shen, J.; Li, L. The Preparation and Lithium Battery Performance of Core-shell SiO2@ Fe3O4@ C Composite. Ceram. Int. 2017, 43(14), 11505–11510. DOI: 10.1016/j.ceramint.2017.05.357.
  • Zhao, R.; Shen, X.; Wu, Q.; Zhang, X.; Li, W.; Gao, G.; Zhu, L.; Ni, L.; Diao, G.; Chen, M. Heterogeneous Double-Shelled Constructed Fe3O4 Yolk–Shell Magnetite Nanoboxes with Superior Lithium Storage Performances. ACS Appl. Mater. Interfaces. 2017, 9(29), 24662–24670. DOI: 10.1021/acsami.7b07443.
  • Irandoust, M.; Haghighi, M. Fabrication of a New Modified Gold Electrode Based on Gold Nanoparticles and Nanomagnetic Fe 3 O 4/sio 2–(CH 2) 3–SH Core Shell for Electrochemical Evaluation and Determination of Dinitramine Herbicide in Water. RSC Adv. 2016, 6(55), 49798–49805. DOI: 10.1039/C6RA06187G.
  • Liu, B.; Zhang, Z. Catalytic Conversion of Biomass into Chemicals and Fuels over Magnetic Catalysts. ACS Catal. 2015, 6(1), 326–338. DOI: 10.1021/acscatal.5b02094.
  • Kuzminska, M.; Carlier, N.; Backov, R.; Gaigneaux, E. M. Magnetic Nanoparticles: Improving Chemical Stability via Silica Coating and Organic Grafting with Silanes for Acidic Media Catalytic Reactions. Appl. Catal. A Gen. 2015, 505, 200–212. DOI: 10.1016/j.apcata.2015.08.005.
  • Ngu, T. A.; Li, Z. Phosphotungstic Acid-functionalized Magnetic Nanoparticles as an Efficient and Recyclable Catalyst for the One-pot Production of Biodiesel from Grease via Esterification and Transesterification. Green Chem. 2014, 16(3), 1202–1210. DOI: 10.1039/c3gc41379a.
  • Tai, Z.; Isaacs, M. A.; Parlett, C. M.; Lee, A. F.; Wilson, K. High Activity Magnetic Core-mesoporous Shell Sulfonic Acid Silica Nanoparticles for Carboxylic Acid Esterification. Catal. Commun. 2017, 92, 56–60. DOI: 10.1016/j.catcom.2017.01.004.
  • Wang, H.; Covarrubias, J.; Prock, H.; Wu, X.; Wang, D.; Bossmann, S. H. Acid-functionalized Magnetic Nanoparticle as Heterogeneous Catalysts for Biodiesel Synthesis. J. Phys. Chem. C. 2015, 119(46), 26020–26028. DOI: 10.1021/acs.jpcc.5b08743.
  • Manaenkov, O.; Matveeva, V.; Sinitzyna, P.; Ratkevich, E.; Kislitza, O.; Doluda, V. Y.; Sulman, E.; Sidorov, A.; Mann, J.; Losovyj, Y. Magnetically Recoverable Catalysts for Cellulose Conversion into Glycols. Chem. Eng. Trans. 2016, 52, 637–642.
  • Wang, S.; Zhang, Z.; Liu, B.; Li, J. Silica Coated Magnetic Fe 3 O 4 Nanoparticles Supported Phosphotungstic Acid: a Novel Environmentally Friendly Catalyst for the Synthesis of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and Fructose. Catal. Sci. Technol. 2013, 3(8), 2104–2112. DOI: 10.1039/c3cy00223c.
  • Zhang, X.; Wang, M.; Wang, Y.; Zhang, C.; Zhang, Z.; Wang, F.; Xu, J. Nanocoating of Magnetic Cores with Sulfonic Acid Functionalized Shells for the Catalytic Dehydration of Fructose to 5-hydroxymethylfurfural. Chinese J. Catal. 2014, 35(5), 703–708. DOI: 10.1016/S1872-2067(12)60739-6.
  • Liu, B.; Ren, Y.; Zhang, Z. Aerobic Oxidation of 5-hydroxymethylfurfural into 2, 5-furandicarboxylic Acid in Water under Mild Conditions. Green Chem. 2015, 17(3), 1610–1617. DOI: 10.1039/C4GC02019G.
  • Zhang, Z.; Zhen, J.; Liu, B.; Lv, K.; Deng, K. Selective Aerobic Oxidation of the Biomass-derived Precursor 5-hydroxymethylfurfural to 2, 5-furandicarboxylic Acid under Mild Conditions over a Magnetic Palladium Nanocatalyst. Green Chem. 2015, 17(2), 1308–1317. DOI: 10.1039/C4GC01833H.
  • Lima, T. M.; Lima, C. G.; Rathi, A. K.; Gawande, M. B.; Tucek, J.; Urquieta-González, E. A.; Zbořil, R.; Paixão, M. W.; Varma, R. S. Magnetic ZSM-5 Zeolite: a Selective Catalyst for the Valorization of Furfuryl Alcohol to γ-valerolactone, Alkyl Levulinates or Levulinic Acid. Green Chem. 2016, 18(20), 5586–5593. DOI: 10.1039/C6GC01296E.
  • Tiwari, M. S.; Gawade, A. B.; Yadav, G. D. Magnetically Separable Sulfated Zirconia as Highly Active Acidic Catalysts for Selective Synthesis of Ethyl Levulinate from Furfuryl Alcohol. Green Chem. 2017, 19(4), 963–976. DOI: 10.1039/C6GC02466A.
  • Opris, C.; Cojocaru, B.; Gheorghe, N.; Tudorache, M.; Coman, S. M.; Parvulescu, V. I.; Duraki, B.; Krumeich, F.; van Bokhoven, J. A. Lignin Fragmentation onto Multifunctional Fe3O4@ Nb2O5@ Co@ Re Catalysts: the Role of the Composition and Deposition Route of Rhenium. ACS Catal. 2017, 7(5), 3257–3267. DOI: 10.1021/acscatal.6b02915.
  • Insyani, R.; Verma, D.; Cahyadi, H. S.; Kim, S. M.; Kim, S. K.; Karanwal, N.; Kim, J. One-pot Di-and Polysaccharides Conversion to Highly Selective 2, 5-dimethylfuran over Cu-Pd/Amino-functionalized Zr-based Metal-organic Framework (uio-66 (NH2))@ SGO Tandem Catalyst. Appl. Catal B-Environ. 2019, 243, 337–354. DOI: 10.1016/j.apcatb.2018.10.036.
  • Takagaki, A.; Nishimura, M.; Nishimura, S.; Ebitani, K. Hydrolysis of Sugars Using Magnetic Silica Nanoparticles with Sulfonic Acid Groups. Chem. Lett. 2011, 40(10), 1195–1197. DOI: 10.1246/cl.2011.1195.
  • Yin, S.; Sun, J.; Liu, B.; Zhang, Z. Magnetic Material Grafted Cross-linked Imidazolium Based Polyionic Liquids: an Efficient Acid Catalyst for the Synthesis of Promising Liquid Fuel 5-ethoxymethylfurfural from Carbohydrates. J. Mater. Chem. A. 2015, 3(9), 4992–4999. DOI: 10.1039/C4TA06135G.
  • Manaenkov, O. V.; Mann, J. J.; Kislitza, O. V.; Losovyj, Y.; Stein, B. D.; Morgan, D. G.; Pink, M.; Lependina, O. L.; Shifrina, Z. B.; Matveeva, V. G. Ru-containing Magnetically Recoverable Catalysts: a Sustainable Pathway from Cellulose to Ethylene and Propylene Glycols. ACS Appl. Mater. Interfaces. 2016, 8(33), 21285–21293. DOI: 10.1021/acsami.6b05096.
  • Sajid, M.; Zhao, X.; Liu, D. J. G. C. Production of 2, 5-furandicarboxylic Acid (FDCA) from 5-hydroxymethylfurfural (HMF): Recent Progress Focusing on the Chemical-catalytic Routes. Green Chem. 2018, 20(24), 5427–5453. DOI: 10.1039/C8GC02680G.
  • Zhang, Z.; Yuan, Z.; Tang, D.; Ren, Y.; Lv, K.; Liu, B. Iron Oxide Encapsulated by Ruthenium Hydroxyapatite as Heterogeneous Catalyst for the Synthesis of 2, 5‐diformylfuran. ChemSusChem. 2014, 7(12), 3496–3504. DOI: 10.1002/cssc.201402402.
  • Xia, S.; Du, W.; Zheng, L.; Chen, P.; Hou, Z. A Thermally Stable and Easily Recycled Core–shell Fe 2 O 3@ CuMgAl Catalyst for Hydrogenolysis of Glycerol. Catal. Sci. Technol. 2014, 4(4), 912–916. DOI: 10.1039/C3CY00990D.
  • Ranaware, V.; Verma, D.; Insyani, R.; Riaz, A.; Kim, S. M.; Kim, J. Highly-efficient and Magnetically-separable ZnO/Co@ N-CNTs Catalyst for Hydrodeoxygenation of Lignin and Its Derived Species under Mild Conditions. Green Chem. 2019. DOI: 10.1039/C8GC03623C.
  • Jadhav, S. V.; Bringas, E.; Yadav, G. D.; Rathod, V. K.; Ortiz, I.; Marathe, K. V. Arsenic and Fluoride Contaminated Groundwaters: a Review of Current Technologies for Contaminants Removal. J. Environ. Manage. 2015, 162, 306–325. DOI: 10.1016/j.jenvman.2015.07.020.
  • Fu, W.; Yang, H.; Li, M.; Chang, L.; Yu, Q.; Xu, J.; Zou, G. Preparation and Photocatalytic Characteristics of Core-shell Structure TiO2/BaFe12O19 Nanoparticles. Mater. Lett. 2006, 60(21–22), 2723–2727. DOI: 10.1016/j.matlet.2006.01.078.
  • Linsebigler, A. L.; Lu, G.; Yates, J. J. T. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev. 1995, 95(3), 735–758. DOI: 10.1021/cr00035a013.
  • Devi, L. G.; Kavitha, R. A Review on Non Metal Ion Doped Titania for the Photocatalytic Degradation of Organic Pollutants under UV/solar Light: Role of Photogenerated Charge Carrier Dynamics in Enhancing the Activity. Appl. Catal B-Environ. 2013, 140, 559–587. DOI: 10.1016/j.apcatb.2013.04.035.
  • Han, F.; Kambala, V. S. R.; Srinivasan, M.; Rajarathnam, D.; Naidu, R. Tailored Titanium Dioxide Photocatalysts for the Degradation of Organic Dyes in Wastewater Treatment: a Review. Appl. Catal. A Gen. 2009, 359(1–2), 25–40. DOI: 10.1016/j.apcata.2009.02.043.
  • Beydoun, D.; Amal, R.; Low, G. K.-C.; McEvoy, S. Novel Photocatalyst: Titania-coated Magnetite. Activity and Photodissolution. J. Phys. Chem. B. 2000, 104(18), 4387–4396. DOI: 10.1021/jp992088c.
  • Daghrir, R.; Drogui, P.; Robert, D. Modified TiO2 for Environmental Photocatalytic Applications: a Review. Ind. Eng. Chem. Res. 2013, 52(10), 3581–3599. DOI: 10.1021/ie303468t.
  • Gómez-Pastora, J.; Dominguez, S.; Bringas, E.; Rivero, M. J.; Ortiz, I.; Dionysiou, D. D. Review and Perspectives on the Use of Magnetic Nanophotocatalysts (mnpcs) in Water Treatment. Chem. Eng. J. 2017, 310, 407–427. DOI: 10.1016/j.cej.2016.04.140.
  • Jing, J.; Li, J.; Feng, J.; Li, W.; William, W. Y. Photodegradation of Quinoline in Water over Magnetically Separable Fe3O4/TiO2 Composite Photocatalysts. Chem. Eng. J. 2013, 219, 355–360. DOI: 10.1016/j.cej.2012.12.058.
  • Jiang, W.; Zhang, X.; Gong, X.; Yan, F.; Zhang, Z. Sonochemical Synthesis and Characterization of Magnetic Separable Fe3O4–TiO2 Nanocomposites and Their Catalytic Properties. Int. J. Smart Nano Mater. 2010, 1(4), 278–287. DOI: 10.1080/19475411.2010.528873.
  • Abbas, M.; Rao, B. P.; Reddy, V.; Kim, C. Fe3O4/TiO2 Core/shell Nanocubes: Single-batch Surfactantless Synthesis, Characterization and Efficient Catalysts for Methylene Blue Degradation. Ceram. Int. 2014, 40(7), 11177–11186. DOI: 10.1016/j.ceramint.2014.03.148.
  • Liu, J.; Yang, S.; Wu, W.; Tian, Q.; Cui, S.; Dai, Z.; Ren, F.; Xiao, X.; Jiang, C. 3D Flowerlike α-Fe2O3@ TiO2 Core–shell Nanostructures: General Synthesis and Enhanced Photocatalytic Performance. ACS Sustain. Chem. Eng. 2015, 3(11), 2975–2984. DOI: 10.1021/acssuschemeng.5b00956.
  • Liu, S.-Q.; Feng, L.-R.; Xu, N.; Chen, Z.-G.; Wang, X.-M. Magnetic Nickel Ferrite as a Heterogeneous photo-Fenton Catalyst for the Degradation of Rhodamine B in the Presence of Oxalic Acid. Chem. Eng. J. 2012, 203, 432–439. DOI: 10.1016/j.cej.2012.07.071.
  • Mohapatra, S.; Rout, S. R.; Panda, A. B. One-pot Synthesis of Uniform and Spherically Assembled Functionalized MFe2O4 (M= Co, Mn, Ni) Nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2011, 384(1–3), 453–460. DOI: 10.1016/j.colsurfa.2011.05.001.
  • Wang, L.; Li, J.; Wang, Y.; Zhao, L.; Jiang, Q. Adsorption capability for Congo red on nanocrystalline MFe2O4(M=Mn, Fe, Co, Ni) spinal ferrites. Chem. Eng. J. 2012, 181, 72–79.
  • Rana, S.; Srivastava, R.; Sorensson, M.; Misra, R. Synthesis and Characterization of Nanoparticles with Magnetic Core and Photocatalytic Shell: Anatase TiO2–NiFe2O4 System. Mater. Sci. Eng. B. 2005, 119(2), 144–151. DOI: 10.1016/j.mseb.2005.02.043.
  • Cheng, P.; Li, W.; Zhou, T.; Jin, Y.; Gu, M. Physical and Photocatalytic Properties of Zinc Ferrite Doped Titania under Visible Light Irradiation. J. Photochem. Photobiol. 2004, 168(1–2), 97–101. DOI: 10.1016/j.jphotochem.2004.05.018.
  • Liu, G.-G.; Zhang, X.-Z.; Xu, Y.-J.; Niu, X.-S.; Zheng, L.-Q.; Ding, X.-J. Effect of ZnFe2O4 Doping on the Photocatalytic Activity of TiO2. Chemosphere. 2004, 55(9), 1287–1291. DOI: 10.1016/j.chemosphere.2004.01.035.
  • Zhang, G.-Y.; Sun, Y.-Q.; Gao, D.-Z.; Xu, -Y.-Y. Quasi-cube ZnFe2O4 Nanocrystals: Hydrothermal Synthesis and Photocatalytic Activity with TiO2 (degussa P25) as Nanocomposite. Mater. Res. Bull. 2010, 45(7), 755–760. DOI: 10.1016/j.materresbull.2010.03.025.
  • Fu, W.; Yang, H.; Chang, L.; Li, M.; Zou, G. Anatase TiO2 Nanolayer Coating on Strontium Ferrite Nanoparticles for Magnetic Photocatalyst. Colloids Surf. A Physicochem. Eng. Asp. 2006, 289(1–3), 47–52. DOI: 10.1016/j.colsurfa.2006.04.013.
  • Lee, S.-W.; Drwiega, J.; Wu, C.-Y.; Mazyck, D.; Sigmund, W. M. Anatase TiO2 Nanoparticle Coating on Barium Ferrite Using Titanium Bis-ammonium Lactato Dihydroxide and Its Use as a Magnetic Photocatalyst. Chem. Mater. 2004, 16(6), 1160–1164. DOI: 10.1021/cm0351902.
  • Beydoun, D.; Amal, R.; Low, G.; McEvoy, S. Occurrence and Prevention of Photodissolution at the Phase Junction of Magnetite and Titanium Dioxide. J. Mol. Catal A Chem. 2002, 180(1–2), 193–200. DOI: 10.1016/S1381-1169(01)00429-0.
  • Lucas, M. S.; Tavares, P. B.; Peres, J. A.; Faria, J. L.; Rocha, M.; Pereira, C.; Freire, C. Photocatalytic Degradation of Reactive Black 5 with TiO2-coated Magnetic Nanoparticles. Catal. Today. 2013, 209, 116–121. DOI: 10.1016/j.cattod.2012.10.024.
  • Yu, X.; Liu, S.; Superparamagnetic, Y. J. γ-Fe2O3@ SiO2@ TiO2 Composite Microspheres with Superior Photocatalytic Properties. Appl. Catal B-Environ. 2011, 104(1–2), 12–20. DOI: 10.1016/j.apcatb.2011.03.008.
  • Fan, Y.; Ma, C.; Li, W.; Yin, Y. Synthesis and Properties of Fe3O4/SiO2/TiO2 Nanocomposites by Hydrothermal Synthetic Method. Mat. Sci. Semicon. Proc. 2012, 15(5), 582–585. DOI: 10.1016/j.mssp.2012.04.013.
  • Qiu, P.; Li, W.; Thokchom, B.; Park, B.; Cui, M.; Zhao, D.; Khim, J. Uniform Core–shell Structured Magnetic Mesoporous TiO 2 Nanospheres as a Highly Efficient and Stable Sonocatalyst for the Degradation of bisphenol-A. J. Mater. Chem. A. 2015, 3(12), 6492–6500. DOI: 10.1039/C4TA06891B.
  • Wang, C.; Yin, L.; Zhang, L.; Kang, L.; Wang, X.; Magnetic, G. R. (γ-Fe2O3@ SiO2) N@ TiO2 Functional Hybrid Nanoparticles with Actived Photocatalytic Ability. J. Phys. Chem. C. 2009, 113(10), 4008–4011. DOI: 10.1021/jp809835a.
  • Wang, F.; Li, M.; Yu, L.; Sun, F.; Wang, Z.; Zhang, L.; Zeng, H.; Xu, X. Corn-like, Recoverable γ-Fe 2 O 3@ SiO 2@ TiO 2 Photocatalyst Induced by Magnetic Dipole Interactions. Sci. Rep. 2017, 7(1), 6960. DOI: 10.1038/s41598-017-07417-z.
  • Ye, M.; Zhang, Q.; Hu, Y.; Ge, J.; Lu, Z.; He, L.; Chen, Z.; Yin, Y. Magnetically Recoverable Core–shell Nanocomposites with Enhanced Photocatalytic Activity. Chem. Eur. J. 2010, 16(21), 6243–6250. DOI: 10.1002/chem.200903516.
  • Yuan, Q.; Li, N.; Geng, W.; Chi, Y.; Li, X. Preparation of Magnetically Recoverable Fe3O4@ SiO2@ meso-TiO2 Nanocomposites with Enhanced Photocatalytic Ability. Mater. Res. Bull. 2012, 47(9), 2396–2402. DOI: 10.1016/j.materresbull.2012.05.031.
  • Su, W.; Zhang, T.; Li, L.; Xing, J.; He, M.; Zhong, Y.; Li, Z. Synthesis of Small Yolk–shell Fe 3 O 4@ TiO 2 Nanoparticles with Controllable Thickness as Recyclable Photocatalysts. RSC Adv. 2014, 4(17), 8901–8906. DOI: 10.1039/c3ra47461e.
  • Chi, Y.; Yuan, Q.; Li, Y.; Zhao, L.; Li, N.; Li, X.; Yan, W. Magnetically Separable Fe3O4@ SiO2@ TiO2-Ag Microspheres with Well-designed Nanostructure and Enhanced Photocatalytic Activity. J. Hazard. Mater. 2013, 262, 404–411. DOI: 10.1016/j.jhazmat.2013.08.077.
  • He, M.; Li, D.; Jiang, D.; Chen, M. Magnetically Separable γ-Fe2O3@ SiO2@ Ce-doped TiO2 Core–shell Nanocomposites: Fabrication and Visible-light-driven Photocatalytic Activity. J. Solid State Chem. 2012, 192, 139–143. DOI: 10.1016/j.jssc.2012.04.004.
  • Khojasteh, H.; Salavati-Niasari, M.; Mazhari, M.-P.; Hamadanian, M. Preparation and Characterization of Fe3O4@ SiO2@ TiO2@ Pd and Fe3O4@ SiO2@ TiO2@ Pd–Ag Nanocomposites and Their Utilization in Enhanced Degradation Systems and Rapid Magnetic Separation. RSC Adv. 2016, 6(81), 78043–78052. DOI: 10.1039/C6RA13613C.
  • Li, J.; Tan, L.; Wang, G.; Yang, M. Synthesis of Double-shelled Sea Urchin-like Yolk-shell Fe3O4/TiO2/Au Microspheres and Their Catalytic Applications. Nanotechnology. 2015, 26(9), 095601. DOI: 10.1088/0957-4484/26/9/095601.
  • Li, X.; Liu, D.; Song, S.; Zhang, H. Fe3O4@ SiO2@ TiO2@ Pt Hierarchical Core–shell Microspheres: Controlled Synthesis, Enhanced Degradation System, and Rapid Magnetic Separation to Recycle. Cryst. Growth Des. 2014, 14(11), 5506–5511. DOI: 10.1021/cg501164c.
  • Ma, J.; Guo, S.; Guo, X.; Ge, H. A Mild Synthetic Route to Fe3O4@ TiO2-Au Composites: Preparation, Characterization and Photocatalytic Activity. Appl. Surf. Sci. 2015, 353, 1117–1125. DOI: 10.1016/j.apsusc.2015.07.040.
  • Mortazavi-Derazkola, S.; Salavati-Niasari, M.; Amiri, O.; Abbasi, A. Fabrication and Characterization of Fe3O4@ SiO2@ TiO2@ Ho Nanostructures as a Novel and Highly Efficient Photocatalyst for Degradation of Organic Pollution. J. Energy Chem. 2017, 26(1), 17–23. DOI: 10.1016/j.jechem.2016.10.015.
  • Rana, S.; Rawat, J.; Sorensson, M.; Misra, R. Antimicrobial Function of Nd3+-doped Anatase Titania-coated Nickel Ferrite Composite Nanoparticles: a Biomaterial System. Acta Biomater. 2006, 2(4), 421–432. DOI: 10.1016/j.actbio.2006.03.005.
  • Shi, Z.-L.; Du, C.; Yao, S.-H. Preparation and Photocatalytic Activity of Cerium Doped Anatase Titanium Dioxide Coated Magnetite Composite. J. Taiwan Inst. Chem. Engrs. 2011, 42(4), 652–657. DOI: 10.1016/j.jtice.2010.10.001.
  • Shi, Z.; Lai, H.; Yao, S. Preparation and Photocatalytic Activity of Magnetic Samarium-doped Mesoporous Titanium Dioxide at the Decomposition of Methylene Blue under Visible Light. Russ. J. Phys. Chem. A. 2012, 86(8), 1326–1331. DOI: 10.1134/S0036024412060337.
  • Wang, D.; Yang, J.; Li, X.; Zhai, H.; Lang, J.; Song, H. Preparation of Magnetic Fe3O4@ SiO2@ mTiO2–Au Spheres with Well-designed Microstructure and Superior Photocatalytic Activity. J. Mater. Sci. 2016, 51(21), 9602–9612. DOI: 10.1007/s10853-016-0167-2.
  • Xu, M.-W.; Bao, S.-J.; Zhang, X.-G. Enhanced Photocatalytic Activity of Magnetic TiO2 Photocatalyst by Silver Deposition. Mater. Lett. 2005, 59(17), 2194–2198. DOI: 10.1016/j.matlet.2005.02.065.
  • Zhao, Y.; Tao, C.; Xiao, G.; Wei, G.; Li, L.; Liu, C.; Su, H. Controlled Synthesis and Photocatalysis of Sea Urchin-like Fe 3 O 4@ TiO 2@ Ag Nanocomposites. Nanoscale. 2016, 8(9), 5313–5326. DOI: 10.1039/c5nr08624h.
  • Zhang, Y.; Yu, X.; Jia, Y.; Jin, Z.; Liu, J.; Huang, X. A Facile Approach for the Synthesis of Ag‐Coated Fe3O4@ TiO2 Core/Shell Microspheres as Highly Efficient and Recyclable Photocatalysts. Eur. J. Inorg. Chem. 2011, 2011(33), 5096–5104. DOI: 10.1002/ejic.v2011.33.
  • Cui, B.; Peng, H.; Xia, H.; Guo, X.; Guo, H. Magnetically Recoverable Core–shell Nanocomposites γ-Fe2O3@ SiO2@ TiO2–Ag with Enhanced Photocatalytic Activity and Antibacterial Activity. Sep. Purif. Technol. 2013, 103, 251–257. DOI: 10.1016/j.seppur.2012.10.008.
  • Qin, S.; Cai, W.; Tang, X.; Yang, L. Sensitively Monitoring Photodegradation Process of Organic Dye Molecules by Surface-enhanced Raman Spectroscopy Based on Fe 3 O 4@ SiO 2@ TiO 2@ Ag Particle. Analyst. 2014, 139(21), 5509–5515. DOI: 10.1039/c4an01084a.
  • Su, J.; Zhang, Y.; Xu, S.; Wang, S.; Ding, H.; Pan, S.; Wang, G.; Li, G.; Zhao, H. Highly Efficient and Recyclable Triple-shelled Ag@ Fe 3 O 4@ SiO 2@ TiO 2 Photocatalysts for Degradation of Organic Pollutants and Reduction of Hexavalent Chromium Ions. Nanoscale. 2014, 6(10), 5181–5192. DOI: 10.1039/c4nr00534a.
  • He, Z.; Hong, T.; Chen, J.; Song, S. A Magnetic TiO2 Photocatalyst Doped with Iodine for Organic Pollutant Degradation. Sep. Purif. Technol. 2012, 96, 50–57. DOI: 10.1016/j.seppur.2012.05.005.
  • Xu, S.; Shangguan, W.; Yuan, J.; Chen, M.; Shi, J. Preparations and Photocatalytic Properties of Magnetically Separable Nitrogen-doped TiO2 Supported on Nickel Ferrite. Appl. Catal B-Environ. 2007, 71(3–4), 177–184. DOI: 10.1016/j.apcatb.2006.09.004.
  • Xia, J.; Wang, A.; Liu, X.; Su, Z. Preparation and Characterization of Bifunctional, Fe3O4/ZnO Nanocomposites and Their Use as Photocatalysts. Appl. Surf. Sci. 2011, 257(23), 9724–9732. DOI: 10.1016/j.apsusc.2011.05.114.
  • Liu, Y.; Yu, L.; Hu, Y.; Guo, C.; Zhang, F.; Lou, X. W. D. A Magnetically Separable Photocatalyst Based on Nest-like γ-Fe 2 O 3/zno Double-shelled Hollow Structures with Enhanced Photocatalytic Activity. Nanoscale. 2012, 4(1), 183–187. DOI: 10.1039/c1nr11114k.
  • Yusoff, N.; Kumar, S. V.; Pandikumar, A.; Huang, N.; Marlinda, A.; An’amt, M. Core-shell Fe3O4-ZnO Nanoparticles Decorated on Reduced Graphene Oxide for Enhanced Photoelectrochemical Water Splitting. Ceram. Int. 2015, 41(3), 5117–5128. DOI: 10.1016/j.ceramint.2014.12.084.
  • Xie, Y. P.; Yu, Z. B.; Liu, G.; Ma, X. L.; Cheng, H.-M. CdS–mesoporous ZnS Core–shell Particles for Efficient and Stable Photocatalytic Hydrogen Evolution under Visible Light. Energy Environ. Sci. 2014, 7(6), 1895–1901. DOI: 10.1039/c3ee43750g.
  • Liu, X.; Fang, Z.; Zhang, X.; Zhang, W.; Wei, X.; Geng, B. Preparation and Characterization of Fe3O4/CdS Nanocomposites and Their Use as Recyclable Photocatalysts. Cryst. Growth Des. 2008, 9(1), 197–202. DOI: 10.1021/cg800213w.
  • Niu, M.; Huang, F.; Cui, L.; Huang, P.; Yu, Y.; Wang, Y. Hydrothermal Synthesis, Structural Characteristics, and Enhanced Photocatalysis of SnO2/α-Fe2O3 Semiconductor Nanoheterostructures. ACS Nano. 2010, 4(2), 681–688. DOI: 10.1021/nn901119a.
  • Wang, -W.-W.; Yao, J.-L. Hydrothermal Synthesis of SnO2/Fe3O4 Nanocomposites and Their Magnetic Property. J. Phys. Chem. C. 2009, 113(8), 3070–3075. DOI: 10.1021/jp809349d.
  • Tian, Q.; Wu, W.; Sun, L.; Yang, S.; Lei, M.; Zhou, J.; Liu, Y.; Xiao, X.; Ren, F.; Jiang, C. Tube-like Ternary α-Fe2O3@ SnO2@ Cu2O Sandwich Heterostructures: Synthesis and Enhanced Photocatalytic Properties. ACS Appl. Mater. Interfaces. 2014, 6(15), 13088–13097. DOI: 10.1021/am5029439.
  • Zhang, S.; Fan, Q.; Gao, H.; Huang, Y.; Liu, X.; Li, J.; Xu, X.; Wang, X. Formation of Fe 3 O 4@ MnO 2 Ball-in-ball Hollow Spheres as a High Performance Catalyst with Enhanced Catalytic Performances. J. Mater. Chem. A. 2016, 4(4), 1414–1422. DOI: 10.1039/C5TA08400H.
  • Yao, Y. R.; Huang, W. Z.; Zhou, H.; Yin, H. Y.; Zheng, Y. F.; Song, X. C. A Novel Fe3O4@ SiO2@ BiOBr Photocatalyst with Highly Active Visible Light Photocatalytic Properties. Mater. Chem. Phys. 2014, 148(3), 896–902. DOI: 10.1016/j.matchemphys.2014.08.067.
  • Zhu, H.; Jiang, R.; Li, J.; Fu, Y.; Jiang, S.; Yao, J. Magnetically Recyclable Fe3O4/Bi2S3 Microspheres for Effective Removal of Congo Red Dye by Simultaneous Adsorption and Photocatalytic Regeneration. Sep. Purif. Technol. 2017, 179, 184–193. DOI: 10.1016/j.seppur.2016.12.051.
  • Acharya, S.; Padhi, D.; Parida, K. Visible Light Driven LaFeO3 Nano sphere/RGO Composite Photocatalysts for Efficient Water Decomposition Reaction. Catal. Today. 2017. DOI: 10.1016/j.cattod.2017.01.001.
  • Fu, Y.; Wang, X. Magnetically Separable ZnFe2O4–graphene Catalyst and Its High Photocatalytic Performance under Visible Light Irradiation. Ind. Eng. Chem. Res. 2011, 50(12), 7210–7218. DOI: 10.1021/ie200162a.
  • Zhang, S.; Li, J.; Zeng, M.; Zhao, G.; Xu, J.; Hu, W.; Wang, X. In Situ Synthesis of Water-soluble Magnetic Graphitic Carbon Nitride Photocatalyst and Its Synergistic Catalytic Performance. ACS Appl. Mater. Interfaces. 2013, 5(23), 12735–12743. DOI: 10.1021/am404123z.
  • Cui, Y.; Ding, Z.; Liu, P.; Antonietti, M.; Fu, X.; Wang, X. Metal-free Activation of H2O2 by g-C3N4 under Visible Light Irradiation for the Degradation of Organic Pollutants. Phys. Chem. Chem. Phys. 2012, 14(4), 1455–1462. DOI: 10.1039/c1cp22820j.
  • Yao, Y.; Cai, Y.; Lu, F.; Qin, J.; Wei, F.; Xu, C.; Wang, S. Magnetic ZnFe2O4–C3N4 Hybrid for Photocatalytic Degradation of Aqueous Organic Pollutants by Visible Light. Ind. Eng. Chem. Res. 2014, 53(44), 17294–17302. DOI: 10.1021/ie503437z.
  • Huang, S.; Xu, Y.; Xie, M.; Xu, H.; He, M.; Xia, J.; Huang, L.; Li, H. Synthesis of Magnetic CoFe2O4/g-C3N4 Composite and Its Enhancement of Photocatalytic Ability under Visible-light. Colloids Surf. A Physicochem. Eng. Asp. 2015, 478, 71–80. DOI: 10.1016/j.colsurfa.2015.03.035.
  • Wang, X.; Wang, A.; Ma, J. Visible-light-driven Photocatalytic Removal of Antibiotics by Newly Designed C3N4@ MnFe2O4-graphene Nanocomposites. J. Hazard. Mater. 2017, 336, 81–92. DOI: 10.1016/j.jhazmat.2017.04.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.