Publication Cover
Catalysis Reviews
Science and Engineering
Volume 65, 2023 - Issue 2
274
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comparative green analysis between different catalytic methodologies used in stereoselective reduction reaction of acetophenone

, , , , & ORCID Icon
Pages 426-454 | Received 02 Nov 2020, Accepted 08 Apr 2021, Published online: 17 May 2021

References

  • Brunton, L. L.; Lazo, J. S.; Parker, K. L. The Pharmacological Basis of Therapeutics; McGraw Hill: New York, 2006; Vol. eleventh e. DOI: 10.1016/0022-3913(76)90337-1
  • Smith, M. B.; March, J. March’s Advanced Organic Chemistry; sixth ed; John Wiley & Sons, Inc.: Hoboken, New Jersey, 2007. Doi:10.3390/61201064.
  • Ni, Y.; Holtmann, D.; Hollmann, F. How Green Is Biocatalysis? To Calculate Is to Know. ChemCatChem. 2014, 6(4), 930–943. DOI: 10.1002/cctc.201300976.
  • Sheldon, R. A.; Metrics of Green Chemistry and Sustainability: Past, Present, and Future. ACS Sustain. Chem. Eng. 2018, 6(1), 32–48. DOI: 10.1021/acssuschemeng.7b03505.
  • Sheldon, R. A.; Brady, D. Broadening the Scope of Biocatalysis in Sustainable Organic Synthesis. ChemSusChem. 2019, 12(13), 2859–2881. DOI: 10.1002/cssc.201900351.
  • Štefane, B.; Požgan, F.; Advances in Catalyst Systems for the Asymmetric Hydrogenation and Transfer Hydrogenation of Ketones. Catal. Rev. - Sci. Eng. 2014, 561, 82–174. DOI:10.1080/01614940.2013.869461.
  • Farooqi, Z. H.; Begum, R.; Naseem, K.; Wu, W.; Irfan, A.; Zero Valent Iron Nanoparticles as Sustainable Nanocatalysts for Reduction Reactions. Catal. Rev. - Sci. Eng. 2020, 1–70. DOI:10.1080/01614940.2020.1807797.
  • Panić, M.; Delač, D.; Roje, M.; Radojčić Redovniković, I.; Cvjetko Bubalo, M. Green Asymmetric Reduction of Acetophenone Derivatives: Saccharomyces Cerevisiae and Aqueous Natural Deep Eutectic Solvent. Biotechnol. Lett. 2019, 41(2), 253–262. DOI: 10.1007/s10529-018-2631-3.
  • Li, A. Y.; Moores, A. Carbonyl Reduction and Biomass: A Case Study of Sustainable Catalysis. ACS Sustain. Chem. Eng. 2019, 7(12), 10182–10197. DOI: 10.1021/acssuschemeng.9b00811.
  • Anastas, P.; Eghbali, N. Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2010, 39(1), 301–312. DOI: 10.1039/b918763b.
  • Tickner, J. A.; Becker, M.; Mainstreaming Green Chemistry: The Need for Metrics. Current Opinion in Green and Sustainable Chemistry, Elsevier B.V. 2016, 1, 1–4. 10.1016/j.cogsc.2016.07.002
  • Tucker, J. L.;. Green Chemistry, a Pharmaceutical Perspective. Org. Process Res. Dev. 2006, 10(2), 315–319. DOI: 10.1021/op050227k.
  • Summerton, L.; Hunt, A. J.; Clark, J. H.; Green Chemistry for Postgraduates. Educ. Quim. 2013, 24SPL. 1, 150–155. DOI:10.1016/S0187-893X(13)72508-4.
  • Ribeiro, M. G. T. C.; Machado, A. A. S. C. Greenness of Chemical Reactions – Limitations of Mass Metrics. Green Chem. Lett. Rev. 2013, 6(1), 1–18. DOI: 10.1080/17518253.2012.669798.
  • Sheldon, R. A.;. Green and Sustainable Manufacture of Chemicals from Biomass: State of the Art. Green Chem. 2014, 16(3), 950–963. DOI: 10.1039/C3GC41935E.
  • Papadakis, E.; Anantpinijwatna, A.; Woodley, J. M.; Gani, R.; Reaction, A. Database for Small Molecule Pharmaceutical Processes Integrated with Process Information. Processes. 2017, 5, 4. DOI: 10.3390/pr5040058.
  • Trost, B. M.;. The Atom Economy—A Search for Synthetic Efficiency. Science. 1991, 254(5037), 1471–1477. DOI: 10.1021/ja003629a.
  • Sheldon, R. A.;. The E Factor 25 Years On: The Rise of Green Chemistry and Sustainability. Green Chem. 2017, 19(1), 18–43. DOI: 10.1039/C6GC02157C.
  • Anastas, P. T.; Lankey, R. L. Life Cycle Assessment and Green Chemistry: The Yin and Yang of Industrial Ecology. Green Chem. 2000, 2(6), 289–295. DOI: 10.1039/b005650m.
  • Herrchen, M.; Klein, W. Use of the Life-Cycle Assessment (LCA) Toolbox for an Environmental Evaluation of Production Processes. Pure Appl. Chem. 2000, 72(7), 1247–1252. DOI: 10.1351/pac200072071247.
  • Andraos, J.; Sayed, M. On the Use of “Green” Metrics in the Undergraduate Organic Chemistry Lecture and Lab to Assess the Mass Efficiency of Organic Reactions. J. Chem. Educ. 2007, 84(6), 1004. DOI: 10.1021/ed084p1004.
  • Jimenez-Gonzalez, C.; Ponder, C. S.; Broxterman, Q. B.; Manley, J. B. Using the Right Green Yardstick: Why Process Mass Intensity Is Used in the Pharmaceutical Industry to Drive More Sustainable Processes. Org. Process Res. Dev. 2011, 15(4), 912–917. DOI: 10.1021/op200097d.
  • Kinen, C. O.; Rossi, L. I.; De Rossi, R. H. The Development of an Environmentally Benign Sulfide Oxidation Procedure and Its Assessment by Green Chemistry Metrics. Green Chem. 2009, 11(2), 2. DOI: 10.1039/b815986f.
  • Velasco, M. I.; Kinen, C. O.; Hoyos, D. R.; Rossi, R.; Green, L. I. A. Alternative to Synthetize Azo Compounds. Dye. Pigment. 2011, 90(3), 259–264. DOI: 10.1016/j.dyepig.2010.12.009.
  • Rossi, L. I.; Velasco, M. I. Alternatives to Free Molecular Halogens as Chemoselective Reactants: Catalysis of Organic Reactions with Reusable Complexes of Halogen Metal Salts. Pure Appl. Chem. 2012, 84(3), 819–826. DOI: 10.1351/PAC-CON-11-07-13.
  • Pinilla, D. C.; Rossi, L. I. The Sulfoxidation Reaction Catalyzed by CoBr 2 Complexes, under the Magnifying Glass of Green Parameters. Mol. Catal. 2018, 454, 44–54. DOI: 10.1016/j.mcat.2018.05.004.
  • Van Aken, K.; Strekowski, L.; Patiny, L. EcoScale, a Semi-Quantitative Tool to Select an Organic Preparation Based on Economical and Ecological Parameters. Beilstein J. Org. Chem. 2006, 2, 1–7. DOI: 10.1186/1860-5397-2-3.
  • Ribeiro, M. G. T. C.; Costa, D. A.; Machado, A. A. S. C. Green Star”: A Holistic Green Chemistry Metric for Evaluation of Teaching Laboratory Experiments. Green Chem. Lett. Rev. 2010, 3(2), 149–159. DOI: 10.1080/17518251003623376.
  • Krapacher, C. R.; Rossi, L. I. Green Analysis of the Bromination Reaction of Propiophenone Derivatives Mediated by Cu2+ Complexes. ChemistrySelect. 2020, 5(15), 4740–4747. DOI: 10.1002/slct.202000899.
  • Delgove, M. A. F.; Laurent, A. B.; Woodley, J. M.; De Wildeman, S. M. A.; Bernaerts, K. V.; Van Der Meer, Y. A Prospective Life Cycle Assessment (LCA) of Monomer Synthesis: Comparison of Biocatalytic and Oxidative Chemistry. ChemSusChem. 2019, 12(7), 1349–1360. DOI: 10.1002/cssc.201900007.
  • Huisman, G. W.; Liang, J.; Krebber, A. Practical Chiral Alcohol Manufacture Using Ketoreductases. Curr. Opin. Chem. Biol. 2010, 14(2), 122–129. DOI: 10.1016/j.cbpa.2009.12.003.
  • Barros-Filho, B. A.; Nunes, F. M.; de Oliveira, M. da C. F.; Lemos, T. L. G.; de Mattos, M. C.; de Gonzalo, G.; Gotor-Fernández, V.; Gotor, V.Bioreduction of Prochiral Ketones by Growing Cells of Lasiodiplodia Theobromae: Discovery of a Versatile Biocatalyst for Asymmetric Synthesis. J. Mol. Catal. B Enzym. 2010, 65(1–4), 37–40. DOI: 10.1016/j.molcatb.2010.01.023.
  • Yadav, J. S.; Nanda, S.; Thirupathi Reddy, P.; Bhaskar Rao, A. Efficient Enantioselective Reduction of Ketones with Daucus Carota Root. J. Org. Chem. 2002, 67(11), 3900–3903. DOI: 10.1021/jo010399p.
  • Noyori, R.;. Asymmetric Catalysis in Organic Synthesis.; York: Wiley-Interscience., 1994; Vol. First.
  • Li, D. R.; He, A.; Falck, J. R. Enantioselective, Organocatalytic Reduction of Ketones Using Bifunctional Thiourea-Amine Catalysts. Org. Lett. 2010, 12(8), 1756–1759. DOI: 10.1021/ol100365c.
  • Brown, H. C.; Chandrasekharan, J.; Ramachandran, P. V. Chiral Synthesis via Organoboranes. 14. Selective Reductions. 41. Diisopinocampheylchloroborane, an Exceptionally Efficient Chiral Reducing Agent. J. Am. Chem. Soc. 1988, 110(5), 1539–1546. DOI: 10.1021/ja00213a030.
  • Guo, H.; Liu, D.; Butt, N. A.; Liu, Y.; Zhang, W. Efficient Ru(II)-Catalyzed Asymmetric Hydrogenation of Simple Ketones with C 2-Symmetric Planar Chiral Metallocenyl Phosphinooxazoline Ligands. Tetrahedron. 2012, 68(16), 3295–3299. DOI: 10.1016/j.tet.2012.02.075.
  • Fujii, A.; Hashiguchi, S.; Uematsu, N.; Ikariya, T.; Noyori, R. Ruthenium(II)-Catalyzed Asymmetric Transfer Hydrogenation of Ketones Using a Formic Acid-Triethylamine Mixture. J. Am. Chem. Soc. 1996, 118(10), 2521–2522. DOI: 10.1021/ja954126l.
  • Arakawa, Y.; Haraguchi, N.; Itsuno, S. Design of Novel Polymer-Supported Chiral Catalyst for Asymmetric Transfer Hydrogenation in Water. Tetrahedron Lett. 2006, 47(19), 3239–3243. DOI: 10.1016/j.tetlet.2006.03.041.
  • Geldbach, T. J.; Dyson, P. J.; Versatile Ruthenium, A. Precursor for Biphasic Catalysis and Its Application in Ionic Liquid Biphasic Transfer Hydrogenation: Conventional Vs Task-Specific Catalysts. J. Am. Chem. Soc. 2004, 126(26), 8114–8115. DOI: 10.1021/ja048886k.
  • Yu, S.; Shen, W.; Li, Y.; Dong, Z.; Xu, Y.; Li, Q.; Zhang, J.; Gao, J. Iron-Catalyzed Highly Enantioselective Reduction of Aromatic Ketones with Chiral P2N4-Type Macrocycles. Adv. Synth. Catal. 2012, 354(5), 818–822. DOI: 10.1002/adsc.201100733.
  • Meriç, N.; Aydemir, M. Enantioselective Transfer Hydrogenation of Various Ketones with Novel Efficient Iridium(III) Ferrocenyl-Phosphinite Catalysts. J. Organomet. Chem. 2016, 819, 120–128. DOI: 10.1016/j.jorganchem.2016.06.002.
  • Li, A.; Ye, L.; Guo, F.; Yang, X.; Yu, H. Biocatalytic Anti-Prelog Reduction of Prochiral Ketones with Whole Cells of a Newly Isolated Strain Empedobacter Brevis ZJUY-1401. J. Mol. Catal. B Enzym. 2015, 117, 31–37. DOI: 10.1016/j.molcatb.2015.04.004.
  • Hu, J.; Anti-Prelog, X. Y. Reduction of Prochiral Carbonyl Compounds by Oenococcus Oeni in a Biphasic System. Biotechnol. Lett. 2006, 28(14), 1115–1119. DOI: 10.1007/s10529-006-9062-2.
  • Decarlini, M. F.; Aimar, M. L.; Vázquez, A. M.; Vero, S.; Rossi, L. I.; Yang, P. Fungi Isolated from Food Samples for an Efficient Stereoselective Production of Phenylethanols. Biocatal. Agric. Biotechnol. 2017, 12, 275–285. DOI: 10.1016/j.bcab.2017.10.014.
  • Kansal, H.; Banerjee, U. C. Enhancing the Biocatalytic Potential of Carbonyl Reductase of Candida Viswanathii Using Aqueous-Organic Solvent System. Bioresour. Technol. 2009, 100(3), 1041–1047. DOI: 10.1016/j.biortech.2008.08.042.
  • Aimar, M. L.; Bordón, D. L.; Formica, S. M.; Cantero, J. J.; Vazquez, A. M.; Velasco, M. I.; Rossi, L. I.; Fruits of the Glossy Privet (Ligustrum lucidum—Oleaceae) as Biocatalysts for Producing Chiral Aromatic Alcohols. Biocatal. Biotransformation. 2014, 325–6, 5–6. DOI:10.3109/10242422.2014.976634.
  • Itoh, N.; Mizuguchi, N.; Mabuchi, M.; Production of Chiral Alcohols by Enantioselective Reduction with NADH- Dependent Phenylacetaldehyde Reductase from Corynebacterium Strain, ST-10. J. Mol. Catal. - B Enzym. 1999, 61–2, 41–50. DOI:10.1016/S1381-1177(98)00118-0.
  • Musa, M. M.; Lott, N.; Laivenieks, M.; Watanabe, L.; Vieille, C.; Phillips, R. S.; Single Point, A. Mutation Reverses the Enantiopreference of Thermoanaerobacter Ethanolicus Secondary Alcohol Dehydrogenase. ChemCatChem. 2009, 1(1), 89–93. DOI: 10.1002/cctc.200900033.
  • Selva, M.; Perosa, A. Green Chemistry Metrics: A Comparative Evaluation of Dimethyl Carbonate, Methyl Iodide, Dimethyl Sulfate and Methanol as Methylating Agents. Green Chem. 2008, 10(4), 457–464. DOI: 10.1039/b713985c.
  • Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice. Green Chem. Theory Pract; Oxford Univ. Press: New York, 1998; pp 30.
  • Rossi, L. I.; Krapacher, C. R.; Granados, A. M. α-Amination Reaction of Different Ketones Mediated by Carbohydrate Cu2+ Complexes. Mol. Catal. 2020, 493, 111058. DOI: 10.1016/j.mcat.2020.111058.
  • Noyori, R.;. Organometallic Ways for the Multiplication of Chirality. Tetrahedron. 1994, 50(15), 4259–4292. DOI: 10.1016/S0040-4020(01)89365-0.
  • Price Rh vs Ru 07 09 2019.Pdf.
  • Vandenberghe, A.; Markó, I. E.; Lucaccioni, F.; Lutts, S. Enantioselective Hydrolysis of Racemic 1-Phenylethyl Acetate by an Enzymatic System from Fresh Vegetables. Ind. Crops Prod. 2013, 42(1), 380–385. DOI: 10.1016/j.indcrop.2012.06.003.
  • Cordell, G. A.; Lemos, T. L. G.; Monte, F. J. Q.; De Mattos, M. C. Vegetables as Chemical Reagents. J. Nat. Prod. 2007, 70(3), 478–492. DOI: 10.1021/np0680634.
  • Bohman, B.; Cavonius, L. R.; Unelius, C. R. Vegetables as Biocatalysts in Stereoselective Hydrolysis of Labile Organic Compounds. Green Chem. 2009, 11(11), 1900–1905. DOI: 10.1039/b913936b.
  • Bordón, D. L.; Vázquez, A. M.; Decarlini, M. F.; Demmel, G. I.; Rossi, L. I.; Aimar, M. L.; Optimisation of the Bioreduction Process of Carbonyl Compounds Promoted by Seeds of Glossy Privet (Ligustrum Lucidum - Oleaceae) and Its Application to the Synthesis of Key Intermediates. Biocatal. Biotransformation, 2021, 39(1), 1–15. This publication was accepted and published in the course of the peer review of this manuscript. 10.1080/10242422.2020.1786070.
  • Prat, D.; Hayler, J.; Wells, A. A. Survey of Solvent Selection Guides. Green Chem. 2014, 16(10), 4546–4551. DOI: 10.1039/c4gc01149j.
  • Tobiszewski, M.; Namieśnik, J.; Pena-Pereira, F. Environmental Risk-Based Ranking of Solvents Using the Combination of a Multimedia Model and Multi-Criteria Decision Analysis. Green Chem. 2017, 19(4), 1034–1042. DOI: 10.1039/c6gc03424a.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.