Publication Cover
Catalysis Reviews
Science and Engineering
Volume 65, 2023 - Issue 2
7,077
Views
13
CrossRef citations to date
0
Altmetric
Research Article

One-pot amination of aldehydes and ketones over heterogeneous catalysts for production of secondary amines

, &

References

  • Pintado-Sierra, M.; Rasero-Almansa, A. M.; Corma, A.; Iglesias, M.; Sanchez, F. Bifunctional Iridium-(2-aminoterephthalate)-Zr-MOF Chemoselective Catalyst for the Synthesis of Secondary Amines by One-Pot Three-Step Cascade Reaction. J. Catal. 2013, 299, 137–145. DOI: 10.1016/j.jcat.2012.12.004.
  • Ma, R.; Zhou, Y.-B.; He, L.-N. Carbon Dioxide Promoted Reductive Amination of Aldehydes in Water Mediated by Iron Powder and Catalytic Palladium on Activated Carbon. Catal. Today. 2016, 274, 35–39. DOI: 10.1016/j.cattod.2016.01.048.
  • Wang, C.; Yang, J.; Meng, X.; Sun, Y.; Man, X.; Li, J.; Sun, F. Manganese (Ii)-catalysed Dehydrogenative Annulation Involving C–C Bond Formation: Highly Regioselective Synthesis of Quinolines. Dalton Transact. 2019, 48(14), 4474–4478. DOI: 10.1039/C9DT00647H.
  • Blake, L. C.; Roy, A.; Neul, D.; Schoenen, F. J.; Aubé, J.; Scott, E. E. Benzylmorpholine Analogs as Selective Inhibitors of Lung Cytochrome P450 2A13 for the Chemoprevention of Lung Cancer in Tobacco Users. Pharm. Res. 2013, 30(9), 2290–2302. DOI: 10.1007/s11095-013-1054-z.
  • Al-Qawasmeh, R. A.; Lee, Y.; Cao, M. Y.; Gu, X.; Viau, S.; Lightfoot, J.; Wrigth, J. A.; Young, A. H. 11-Phenyl-[b, e]-Dibenzazepine Compounds: Novel Antitumor Agents. Bioorg. Med. Chem. Lett. 2009, 19(1), 104–107. DOI: 10.1016/j.bmcl.2008.11.001.
  • Wang, J.; Cai, P.; Yang, X. L.; Li, F.; Wu, J. J.; Kong, L. Y.; Wang, X. B. Novel Cinnamamide-dibenzylamine Hybrids: Potent Neurogenic Sgents with Antioxidant, Cholinergic, and Neuroprotective Properties as Innovative Drugs for Alzheimer’s Disease. Eur. J. Med. Chem. 2017, 139, 68–83. DOI: 10.1016/j.ejmech.2017.07.077.
  • Hunt-Painter, A. A.; Stocker, B. L.; Timmer, M. S. M. The Synthesis of the Molecular Chaperone 2,5-dideoxy-2,5-imino-Daltritol via Diastereoselective Reductive Amination and Carbamate Annulation. Tetrahedron. 2018, 74, 1307–1312.  DOI: 10-1016/j.tet.2018.01.011.
  • Hu, L.; Lin, L.; Wu, Z.; Zhou, S.; Liu, S. Recent Advances in Catalytic Transformation of Biomass-derived 5-hydroxymethylfurfural into the Innovative Fuels and Chemicals. Renew. Sust. Energ. Rev. 2017, 74, 230–257. DOI: 10.1016/j.rser.2017.02.042.
  • Froidevaux, V.; Negrell, C.; Caillol, S.; Pascault, J.-P.; Boutevin, B. Biobased Amines: From Synthesis to Polymers; Present and Future. Chem. Rev. 2016, 116, 14181–14224. DOI: 10.1021/acs.chemrev.6b00486.
  • Kolobova, E.; Mäki-Arvela, P.; Pestryakov, A.; Pakrieva, E.; Pascual, L.; Smeds, A.; Rahkila, J.; Sandberg, T.; Peltonen, J.; Murzin,D. Y. Reductive Amination of Ketones with Benzylamine over Gold Supported on Different Oxides. Catal. Lett. 2019, 149, 3432–3446. DOI: 10.1007/s10562-019-02917-1.
  • Patil, N. M.; Bhanage, B. M. Fe@Pd/C: An Efficient Magnetically Separable Catalyst for Direct Reductive Amination of Carbonyl Compounds Using Environment Friendly Molecular Hydrogen in Aqueous Reaction Medium. Catal. Today. 2015, 247, 182–189. DOI: 10.1016/j.cattod.2014.07.057.
  • Shokrolahi, A.; Zali, A.; Keshavarz, M. H. Reductive Amination of Aldehydes and Ketones by NaBH4 Using Carbon-based Solid Acid (CBSA) as Catalyst. Green Chem. Lett. Rev. 2011, 4(3), 195–203. DOI: 10.1080/17518253.2010.528051.
  • Liang, S.; Monsen, P.; Hammond, G. B.; Xu, B. Au/TiO2 Catalyzed Reductive Amination of Aldehydes and Ketones Using Formic Acid as Reductant. Org. Chem. Front. 2016, 3(4), 505–509. DOI: 10.1039/C5QO00439J.
  • Tamboli, A. H.; Chaugule, A. A.; Sheikh, F.-A.; Chung, W. J.; Hern, K. Synthesis, Characterization, and Application of Silica Supported Ionic Liquid as Catalyst for Reductive Amination of Cyclohexanone with Formic Acid and Triethyl Amine as Hydrogen Source. Chin. J. Catal. 2015, 36, 1365–1371. DOI: 10.1016/S1872-2067(15)60848-8.
  • Yang, H.; Cui, X.; Deng, Y.; Shi, F. Reductive Amination of Aldehydes and Amines with an Efficient Pd/NiO Catalyst. Synth. Commun. 2014, 44, 1314–1322. DOI: 10.1080/00397911.2013.857690.
  • Alinezhad, H.; Tajbakhsh, M.; Salehian, F.; Fazli, K. Reductive Amination of Aldehydes and Ketones to Their Corresponding Amines with N-Methylpyrrolidine Zinc Borohydride. Tetrahedron Lett. 2009, 50(6), 659–661. DOI: 10.1016/j.tetlet.2008.11.102.
  • Bagal, D. B.; Watile, R. A.; Khedkar, M. V.; Dhake, K. P.; Bhanage, B. M. PS-Pd-NHC: An Efficient and Heterogeneous Recyclable Catalyst for Reductive Amination of Carbonyl Compounds with Primary/Secondary Amines in Aqueous Medium. Catal. Sci. Technol. 2012, 2, 354–358. DOI: 10.1039/C1CY00392E.
  • Ichikawa, S.; Seki, T.; Ikariya, T. Carbon Dioxide-Promoted Selective Reductive Amination of Aliphatic Ketones with Aniline and Hydrogen Using a Pt/C Catalyst. Chem. Lett. 2012, 41, 1628–1629. DOI: 10.1246/cl.2012.1628.
  • Deng, J.; Mo, L.; Zhao, F.; Hou, L.; Yang, L.; Zhang, Z. Sulfonic Acid Supported on Hydroxyapatite-encapsulated-γ-Fe2O3 Nanocrystallites as a Magnetically Separable Catalyst for One-pot Reductive Amination of Carbonyl Compounds. Green Chem. 2011, 13(9), 2576–2584. DOI: 10.1039/c1gc15470b.
  • Genet, C.; Nguyen, X.; Bayatsarmadi, B.; Horne, M. D.; Gardiner, J.; Hornung, C. H. Reductive Aminations Using a 3D Printed Supported Metal(0) Catalyst System. J. Flow Chem. 2018, 8, 81–88. DOI: 10.1007/s41981-018-0013-6.
  • Levi, N.; Neumann, R. Diastereoselective and Enantiospecific Direct Reductive Amination in Water Catalyzed by Palladium Nanoparticles Stabilized by Polyethyleneimine Derivatives. ACS Catal. 2013, 3, 1915–1918. DOI: 10.1021/cs4005453.
  • Xing, L.; Cheng, C.; Zhu, R.; Zhang, B.; Wang, X.; Hu, Y. Self-Modulated Highly Chemoselective Direct-Reductive-Amination (DRA) of Benzaldehydes Straightforward to N-Monosubstituted Benzylamine Hydrochlorides. Tetrahedron. 2008, 64, 11783–11788. DOI: 10.1016/j.tet.2008.09.072.
  • Zhou, J.; Dong, Z.; Wang, P.; Shi, Z.; Zhou, X.; Li, R. Palladium Supported on Hollow Magnetic Mesoporous Spheres as Recoverable Catalyst for One-Pot Reductive Amination of Aldehydes with Nitroarenes under Mild Conditions. J. Mol. Catal. A: Chem. 2014, 382, 15–22. DOI: 10.1016/j.molcata.2013.10.018.
  • Nuzhdin, A. L.; Simonov, P. A.; Bukhtiyarova, G. A.; Eltsov, I. V.; Bukhtiyarov, V. I. Reductive Amination of 5-Acetoxymethylfurfural over Pt/Al2O3 Catalyst in a Flow Reactor. Mol. Catal. 2020, 111297. DOI: 10.1016/j.mcat.2020.111297.
  • Song, S.; Wang, Y.; Yan, N. A Remarkable Solvent Effect on Reductive Amination of Ketones. Mol. Catal. 2018, 454, 87–93. DOI: 10.1016/j.mcat.2018.05.017.
  • Martínez, J. J.; Nope, E.; Rojas, H.; Brijaldo, M. H.; Passos, F.; Romanelli, G. Reductive Amination of Furfural over Me/SiO2-SO3H (Me: Pt, Ir, Au) Catalysts. J. Mol. Catal. A: Chem. 2014, 392, 235–240. DOI: 10.1016/j.molcata.2014.05.014.
  • Karageorge, G. N.; Macor, J. E. Synthesis of Novel Serotonergics and Other N-Alkylamines Using Simple Reductive Amination Using Catalytic Hydrogenation with Pd/C. Tetrahedron Lett. 2011, 52, 5117–5119. DOI: 10.1016/j.tetlet.2011.07.058.
  • Stemmler, T.; Surkus, A.-E.; Pohl,M.M.; Junge, K.; Beller, M. Iron-Catalyzed Synthesis of Secondary Amines: On the Way to Green Reductive Aminations. ChemSusChem. 2014, 7, 3012–3016. DOI: 10.1002/cssc.201402413.
  • Stemmler, T.; Westerhaus, F. A.; Surkus, A.-E.; Pohl,M.M.; Junge, K.; Beller, M. General and Selective Reductive Amination of Carbonyl Compounds Using a Core-Shell Structured Co3O4/NGr@C Catalyst. Green Chem. 2014, 16, 4535–4540. DOI: 10.1039/C4GC00536H.
  • Cirujano, F. G.; Leyva-Pérez, A.; Corma, A.; Xamena, F. X. L. MOFs as Multifunctional Catalysts: Synthesis of Secondary Arylamines, Quinolines, Pyrroles, and Arylpyrrolidines over Bifunctional MIL-101. ChemCatChem. 2013, 5, 538–549. DOI: 10.1002/cctc.201200878.
  • Pelckmans, M.; Renders, T.; Van De Vyver, S.; Sels, B. F. Biobased Amines through Sustainable Heterogeneous Catalysis. Green Chem. 2017, 19, 5303–5331. DOI: 10.1039/C7GC02299A.
  • Bähn, S.; Imm, S.; Neubert, L.; Zhang, M.; Neumann, H.; Beller, M. The Catalytic Amination of Alcohols. ChemCatChem. 2011, 3, 1853–1864. DOI: 10.1002/cctc.201100255.
  • Kimura, H.;. Progress in One-Step Amination of Long-Chain Fatty Alcohols with Dimethylamine: Development of Key Technologies for Industrial Applications, Innovations, and Future Outlook. Catal. Rev. Sci. Eng. 2011, 53, 1–90. DOI: 10.1080/01614940.2011.556913.
  • Pera-Titus, M.; Shi, F. Catalytic Amination of Biomass-Based Alcohols. ChemSusChem. 2014, 7, 720–722. DOI: 10.1002/cssc.201301095.
  • Simakova, I. L.; Simakov, A. V.; Murzin, D. Y. Valorization of Biomass Derived Terpene Compounds by Catalytic Amination. Catalysts. 2018, 8(9, 365), 1–36. DOI: 10.3390/catal8090365.
  • Demidova, Y. S.; Simakova, I. L.; Estrada, M.; Beloshapkin, S.; Suslov, E. V.; Korchagina, D. V.; Volcho, K. P.; Salakhutdinov, N. F.; Simakov, A. V.; Murzin, D. Y. One-Pot Myrtenol Amination over Au Nanoparticles Supported on Different Metal Oxides. Appl. Catal. A. Gen. 2013, 464-465, 348–356. DOI: 10.1016/j.apcata.2013.06.013.
  • Demidova, Y. S.; Simakova, I. L.; Wärnå, J.; Simakov, A.; Murzin, D. Y. Kinetic Modeling of One-Pot Myrtenol Amination over Au/ZrO2 Catalyst. Chem. Eng. J. 2014, 238, 164–171. DOI: 10.1016/j.cej.2013.09.007.
  • Simakova, I. L.; Demidova, Y. S.; Estrada, M.; Beloshapkin, S.; Suslov, E. V.; Volcho, K. P.; Salakhutdinov, N. F.; Murzin, D. Y.; Simakov, A. Gold Catalyzed One-Pot Myrtenol Amination: Effect of Catalyst Redox Activation. Catal. Today. 2017, 279, 63–70. DOI: 10.1016/j.cattod.2016.01.044.
  • Demidova, Y. S.; Suslov, E. V.; Simakova, I. L.; Korchagina, D. V.; Mozhajcev, E. S.; Volcho, K. P.; Salakhutdinov, N. F.; Simakov, A.; Murzin, D. Y. Selectivity Control in One-Pot Amination of Au/ZrO2 by Molecular Hydrogen Addition. J. Mol. Catal. A Chem. 2017, 426, 60–67. DOI: 10.1016/j.molcata.2016.10.034.
  • Demidova, Y. S.; Suslov, E. V.; Simakova, I. L.; Volcho, K. P.; Salakhutdinov, N. F.; Simakov, A.; Murzin, D. Y. Promoting Effect of Alcohols and Formic Acid on Au-catalyzed One-pot Alcohol Amination. Mol. Catal. 2017, 433, 414–419. DOI: 10.1016/j.mcat.2017.02.040.
  • Demidova, Y. S.; Suslov, E. V.; Simakova, I. L.; Korchagina, D. V.; Mozhajcev, E. S.; Volcho, K. P.; Salakhutdinov, N. F.; Simakov, A.; Murzin, D. Y. One-pot Monoterpene Alcohol Amination over Au/ZrO2 Catalyst: Effect of the Substrates Structure. J. Catal. 2018, 360, 127–134. DOI: 10.1016/j.jcat.2018.01.020.
  • Demidova, Y. S.; Simakova, I. L.; Estrada, M.; Beloshapkin, S.; Suslov, E. V.; Volcho, K. P.; Salakhutdinov, N. F.; Simakov, A.; Murzin, D. Y. One-Pot Myrtenol Amination over Au, Au–Pd and Pd Nanoparticles Supported on Alumina. Catal. Lett. 2019, 149(12), 3454–3464. DOI: 10.1007/s10562-019-02958-6.
  • Demidova, Y. S.; Simakova, I. L.; Suslov, E. V.; Volcho, K. P.; Salakhutdinov, N. F.; Simakov, A.; Murzin, D. Y.; Catalytic Myrtenol Amination over Gold, Supported on Alumina Doped with Ceria and Zirconia. Catal. Sust. Energy. 2018, 5(1), 49–58. DOI:10.1515/cse-2018-0007.
  • De Jong, W.; Marcotullio, G. Overview of Biorefineries Based on Co-Production of Furfural, Existing Concepts and Novel Developments. Int. J. Chem. Reactor Eng. 2010, 8(1). DOI: 10.2202/1542-6580.2174.
  • He, J.; Chen, L.; Liu, S.; Song, K.; Yang, S.; Riisager, A. Sustainable Access to Renewable N-containing Chemicals from Reductive Amination of Biomass-derived Platform Compounds. Green Chem. 2020, 22, 6714–6747. DOI: 10.1039/D0GC01869D.
  • Dell’Anna, M. M.; Mastrorilli, P.; Rizzuti, A.; Leonelli, C. One-Pot Synthesis of Aniline Derivatives from Nitroarenes under Mild Conditions Promoted by a Recyclable Polymer-Supported Palladium Catalyst. Appl. Catal. A. Gen. 2011, 401, 134–140. DOI: 10.1016/j.apcata.2011.05.010.
  • Sreedhar, B.; Reddy, P. S.; Devi, D. K. Direct One-Pot Reductive Amination of Aldehydes with Nitroarenes in a Domino Fashion: Catalysis by Gum-Acacia-Stabilized Palladium Nanoparticles. J. Org. Chem. 2009, 74, 8806–8809. DOI: 10.1021/jo901787t.
  • Zhou, H.; Zhou, Y.; Liu, S.; Pi, D.; Shen, G. Water as a Hydrogen Source in Palladium-Catalyzed Reduction and Reductive Amination of Nitroarenes Mediated by Diboronic Acid. Tetrahedron. 2017, 73, 3898–3904. DOI: 10.1016/j.tet.2017.05.056.
  • Fiorio, J. L.; López, N.; Rossi, L. M. Gold–Ligand-Catalyzed Selective Hydrogenation of Alkynes into Cis-Alkenes via H2 Heterolytic Activation by Frustrated Lewis Pairs. ACS Catal. 2017, 7(4), 2973–2980. DOI: 10.1021/acscatal.6b03441.
  • Kalbasi, R. J.; Mazaheri, O. Synthesis and Characterization of Hierarchical ZSM-5 Zeolite Containing Ni Nanoparticles for One-Pot Reductive Amination of Aldehydes with Nitroarenes. Catal. Comm. 2015, 69, 86–91. DOI: 10.1016/j.catcom.2015.05.016.
  • Nasrollahzadeh, M.; Sajadi, S. M. Preparation of Pd/Fe3O4 Nanoparticles by Use of Euphorbia Stracheyi Boiss Root Extract: A Magnetically Recoverable Catalyst for One-Pot Reductive Amination of Aldehydes at Room Temperature. J. Coll. Interf. Sci. 2016, 464, 147–152. DOI: 10.1016/j.jcis.2015.11.020.
  • Bhardwaj, M.; Sharma, H.; Paul, S.; Clark, J. H. Fe3O4@SiO2/EDAC-Pd(0) as a Novel and Efficient Inorganic/Organic Magnetic Composite: Sustainable Catalyst for the Benzylic C-H Bond Oxidation and Reductive Amination under Mild Conditions. New J. Chem. 2016, 40, 4952–4961. DOI: 10.1039/C5NJ03413B.
  • Jiang, L.; Zhou, P.; Zhang, Z.; Jin, S.; Chi, Q. Synthesis of Secondary Amines from One-Pot Reductive Amination with Formic Acid as the Hydrogen Donor over an Acid-Resistant Cobalt Catalyst. Ind. Eng. Chem. Res. 2017, 56(44), 12556–12565. DOI: 10.1021/acs.iecr.7b03621.
  • Park, J. W.; Chung, Y. K. Hydrogen-Free Cobalt–Rhodium Heterobimetallic Nanoparticle-Catalyzed Reductive Amination of Aldehydes and Ketones with Amines and Nitroarenes in the Presence of Carbon Monoxide and Water. ACS Catal. 2015, 5(8), 4846–4850. DOI: 10.1021/acscatal.5b01198.
  • Sydnes, M. O.; Isobe, M. One-Pot Reductive Monoalkylation of Nitro Aryls with Hydrogen over Pd/C. Tetrahedron Lett. 2008, 49, 1199–1202. DOI: 10.1016/j.tetlet.2007.12.030.
  • Zhou, P.; Zhang, Z.; Jiang, L.; Yu, C.; Lv, K.; Sun, J.; Wang, S. A Versatile Cobalt Catalyst for the Reductive Amination of Carbonyl Compounds with Nitro Compounds by Transfer Hydrogenation. Appl. Catal. B: Env. 2017, 210, 522–532. DOI: 10.1016/j.apcatb.2017.04.026.
  • Murugesan, K.; Senthamarai, T.; Chandrashekhar, V. G.; Natte, K.; Kamer, P. C. J.; Beller, M.; Jagadeesh, R. V. Catalytic Reductive Aminations Using Molecular Hydrogen for Synthesis of Different Kinds of Amines. Chem. Soc. Rev. 2020, 49, 6273–6328. DOI: 10.1039/C9CS00286C.
  • Irrgang, T.; Kempe, R. Transition-Metal-Catalyzed Reductive Amination Employing Hydrogen. Chem. Rev. 2020, 120(17), 9583–9674. DOI: 10.1021/acs.chemrev.0c00248.
  • Nasrollahzadeh, M.;. Green Synthesis and Catalytic Properties of Palladium Nanoparticles for the Direct Reductive Amination of Aldehydes and Hydrogenation of Unsaturated Ketones. New J. Chem. 2014, 38, 5544–5550. DOI: 10.1039/C4NJ01440E.
  • Sharma, H.; Bhardwaj, M.; Kour, M.; Paul, S. Highly Efficient Magnetic Pd(0) Nanoparticles Stabilized by Amine Functionalized Starch for Organic Transformations under Mild Conditions. Mol. Catal. 2017, 435, 58–68. DOI: 10.1016/j.mcat.2017.03.019.
  • Anderson, A. E.; Baddeley, C. J.; Wright, P. A. Tuning Pd-nanoparticle@MIL-101 (Cr) Catalysts for Tandem Reductive Amination. Catal. Lett. 2018, 148(1), 154–163. DOI: 10.1007/s10562-017-2208-0.
  • Cui, X.; Liang, K.; Tian, M.; Zhu, Y.; Ma, J.; Dong, Z. Cobalt Nanoparticles Supported on N-Doped Mesoporous Carbon as a Highly Efficient Catalyst for the Synthesis of Aromatic Amines. J. Colloid Interface Sci. 2017, 501, 231–240. DOI: 10.1016/j.jcis.2017.04.053.
  • Artiukha, E. A.; Nuzhdin, A. L.; Bukhtiyarova, G. A.; Zaytsev, S. Y.; Plyusnin, P. E.; Shubin, Y. V.; Bukhtiyarov, V. I. One-Pot Reductive Amination of Aldehydes with Nitroarenes over an Au/Al2O3 Catalyst in a Continuous Flow Reactor. Catal. Sci. Technol. 2015, 5, 4741–4745. DOI: 10.1039/C5CY00964B.
  • Chen, Y. Z.; Zhou, Y. X.; Wang, H.; Lu, J.; Uchida, T.; Xu, Q.; Yu, S.-H.; Jiang, H. L. Multifunctional PdAg@ MIL-101 for One-Pot Cascade Reactions: Combination of Host–Guest Cooperation and Bimetallic Synergy in Catalysis. ACS Catal. 2015, 5(4), 2062–2069. doi:10.1021/cs501953d
  • Chen, Y. Z.; Zhou, Y. X.; Wang, H.; Lu, J.; Uchida, T.; Xu, Q.; Yu, S.-H.; Jiang, H. L. Multifunctional PdAg@ MIL-101 for One-Pot Cascade Reactions: Combination of Host–Guest Cooperation and Bimetallic Synergy in Catalysis. ACS Catal. 2015, 5(4), 2062–2069. DOI: 10.1021/cs501953d.
  • Gaudino, E. C.; Acciardo, E.; Tabasso, S.; Manzoli, M.; Cravotto, G.; Varma, R. S. Cross-Linked Cyclodextrins Bimetallic Nanocatalysts: Applications in Microwave-Assisted Reductive Aminations. Molecules. 2020, 25(2), 410. DOI: 10.3390/molecules25020410.
  • García-Ortiz, A.; Vidal, J. D.; Climent, M. J.; Concepción, P.; Corma, A.; Iborra, S. Chemicals from Biomass: Selective Synthesis of N-Substituted Furfuryl Amines by the One-Pot Direct Reductive Amination of Furanic Aldehydes. ACS Sust. Chem. Eng. 2019, 7, 6243–6250. DOI: 10.1021/acssuschemeng.8b06631.
  • Karve, V. V.; Sun, D. T.; Trukhina, O.; Yang, S.; Oveisi, E.; Luterbacher, J.; Queen, W. L. Efficient Reductive Amination of HMF with Well Dispersed Pd Nanoparticles Immobilized in a Porous MOF/polymer Composite. Green Chem. 2020, 22(2), 368–378. DOI: 10.1039/C9GC03140E.
  • Santoro, F.; Psaro, R.; Ravasio, N.; Zaccheria, F. Reductive Amination of Ketones or Amination of Alcohols over Heterogeneous Cu Catalysts: Matching the Catalyst Support with the N-Alkylating Agent. ChemCatChem. 2012, 4, 1249–1254. DOI: 10.1002/cctc.201200213.
  • Hu, L.; Cao, X.; Ge, D.; Hong, H.; Guo, Z.; Chen, L.; Sun, X.; Tang, J.; Zheng, J.; Lu, J.; Gu, H. Ultrathin Platinum Nanowire Catalysts for Direct C-N Coupling of Carbonyls with Aromatic Nitro Compounds under 1 Bar of Hydrogen. Chem. - Eur. J. 2011, 17, 14283–14287. DOI: 10.1002/chem.201100818.
  • Nuzhdin, A. L.; Bukhtiyarova, M. V.; Bukhtiyarov, V. A. Cu-Al Mixed Oxide Derived from Layered Double Hydroxide as an Efficient Catalyst for Continuous-Flow Reductive Amination of Aromatic Aldehydes. J. Chem. Technol. Biotechnol. 2020, 95, 3292–3299. DOI: 10.1002/jctb.6508.
  • Artiukha, E. A.; Nuzhdin, A. L.; Bukhtiyarova, G. A.; Gladkii, A. Y.; Bukhtiyarov, V. I. One-Pot Synthesis of Secondary Amines from Nitroarenes and Aldehydes on Supported Copper Catalysts in a Flow Reactor: The Effect of the Support. Kin. Catal. 2018, 59(5), 593–600. DOI: 10.1134/S0023158418050014.
  • Nuzhdin, A. L.; Artiukha, E. A.; Bukhtiyarova, G. A.; Derevyannikova, E. A.; Bukhtiyarov, V. I. Synthesis of Secondary Amines by Reductive Amination of Aldehydes with Nitroarenes over Supported Copper Catalysts in a Flow Reactor. Catal. Comm. 2017, 102, 108–113. DOI: 10.1016/j.catcom.2017.09.001.
  • Mokhov, V. M.; Popov, Y. V.; Paputina, A. N.; Nebykov, D. N.; Shishkin, E. V. Colloidal and Nanosized Catalysts in Organic Synthesis: XXIII. Reductive Amination of Carbonyl Compounds Catalyzed by Nickel Nanoparticles in a Plug-Flow Reactor. Russ. J. Gen. Chem. 2019, 89(12), 2333–2340. DOI: 10.1134/S1070363219120016.
  • Yagafarov, N. Z.; Usanov, D. L.; Moskovets, A. P.; Kagramanov, N. D.; Maleev, V. I.; Chusov, D. Reductive Transformations of Carbonyl Compounds Catalyzed by Rhodium Supported on a Carbon Matrix by Using Carbon Monoxide as a Deoxygenative Agent. ChemCatChem. 2015, 7(17), 2590–2593. DOI: 10.1002/cctc.201500493.
  • Wainwright, M. S.; Ahn, T.; Trimm, D. L.; Cant, N. W. Solubility of Hydrogen in Alcohols and Esters. J. Chem. Eng. Data. 1987, 32(1), 22–24. DOI: 10.1021/je00047a006.
  • Zhang, J.; Yan, N. Production of Glucosamine from Chitin by Co‐solvent Promoted Hydrolysis and Deacetylation. ChemCatChem. 2017, 9, 2790–2796. DOI: 10.1002/cctc.201601715.
  • Khodadadi-Moghaddam, M.; Habibi-Yangjeh, A.; Gholami, M. R. Kinetic Study of Heterogeneous Catalytic Hydrogenation of Cyclohexene to Cyclohexane in Ionic Liquid–Alcohols Mixtures. Appl. Catal. A. Gen. 2008, 341, 58–64. DOI: 10.1016/j.apcata.2008.02.002.
  • Cukalovic, A.; Stevens, C. V. Production of Biobased HMF Derivatives by Reductive Amination. Green Chem. 2010, 12, 1201–1206. DOI: 10.1039/C002340J.
  • Hizartzidis, L.; Cossar, P. J.; Robertson, M. J.; Simone, M. I.; Young, K. A.; McCluskey, A.; Gordon, C. P. Expanding the Utility of Flow Hydrogenation - a Robust Protocol Restricting Hydrodehalogenation. RSC Adv. 2014, 4, 56743–56748. DOI: 10.1039/C4RA09605C.
  • Augustine, R. L.;. Heterogeneous Catalysis for the Synthetic Chemistry; Marcel Dekker: New York, 1996; pp 499.
  • Romanazzi, G.; Petrelli, V.; Fiore, A. M.; Mastrorilli, P.; Dell’Anna, M. M. Metal-based Heterogeneous Catalysts for One-Pot Synthesis of Secondary Anilines from Nitroarenes and Aldehydes. Molecules. 2021, 26(4), 1120. DOI: 10.3390/molecules26041120.
  • Ciaccia, M.; Di Stefano, S. Mechanisms of Imine Exchange Reactions in Organic Solvents. Org. Biomol. Chem. 2015, 13(3), 646–654. DOI: 10.1039/C4OB02110J.
  • Zhu, M. M.; Tao, L.; Zhang, Q.; Dong, J.; Liu, Y. M.; He, H. Y.; Cao, Y. Versatile CO Assisted Direct Reductive Amination of 5-Hydroxymethylfurfural Catalyzed by a Supported Gold Catalyst. Green Chem. 2017, 19(16), 3880–3887. DOI: 10.1039/C7GC01579H.
  • Wang, S.; Li, J.; Zhang, M.; Bai, P.; Zhang, H.; Tong, X. The Selective Reductive Amination of Aliphatic Aldehydes and Cycloaliphatic Ketones with Tetragonal Zirconium Dioxide as the Heterogeneous Catalyst. Mol. Catal. 2020, 494, 111–108. DOI: 10.1016/j.mcat.2020.111108.
  • Demirci, U. B.; Akdim, O.; Andrieux, J.; Hannauer, J.; Chamoun, R.; Miele, P. Sodium Borohydride Hydrolysis as Hydrogen Generator: Issues, State of the Art and Applicability Upstream from a Fuel Cell. Fuel Cells. 2010, 10(3), 335–350. DOI: 10.1002/fuce.200800171.
  • Hara, M.; Yoshida, T.; Takagaki, A.; Takata, T.; Kondo, J. N.; Hayashi, S.; Domen, K. A Carbon Material as A Strong Protonic Acid. Angew. Chem. 2004, 116, 3015–3018. DOI: 10.1002/ange.200453947.
  • Nakajima, K.; Hara, M.; Hayashi, S. Environmentally Benign Production of Chemicals and Energy Using a Carbon‐Based Strong Solid Acid. J. Am. Ceram. Soc. 2007, 90(12), 3725–3734. DOI: 10.1111/j.1551-2916.2007.02082.x.
  • Vassiliou, S.; Grabowiecka, A.; Kosikowska, P.; Berlicki, Ł. Three Component Kabachnik-Fields Condensation Leading to Substituted Aminomethane-p-Hydroxy-Methylphosphonic Acids as a Tool for Screening of Bacterial Urease Inhibitors. Arkivoc. 2012, 4, 33–43. DOI: 10.3998/ark.5550190.0013.404.
  • Zhou, X.; Li, X.; Jiao, L.; Huo, H.; Li, R. Programmed Synthesis Palladium Supported on Fe3O4@ C: An Efficient and Heterogeneous Recyclable Catalyst for One-Pot Reductive Amination of Aldehydes with Nitroarenes in Aqueous Reaction Medium. Catal. Lett. 2015, 145(8), 1591–1599. DOI: 10.1007/s10562-015-1552-1.
  • Yamane, Y.; Liu, X.; Hamasaki, A.; Ishida, T.; Haruta, M.; Yokoyama, T.; Tokunaga, M. One-Pot Synthesis of Indoles and Aniline Derivatives from Nitroarenes under Hydrogenation Condition with Supported Gold Nanoparticles. Org. Lett. 2009, 11, 5162–5165. DOI: 10.1021/ol902061j.
  • Artyukha, E. A.; Nuzhdin, A. L.; Bukhtiyarova, G. A.; Bukhtiyarov, V. I. Flow Synthesis of Secondary Amines over Ag/Al2O3 Catalyst by One-Pot Reductive Amination of Aldehydes with Nitroarenes. RSC Adv. 2017, 7, 45856–45861. DOI: 10.1039/C7RA08986D.
  • Zhu, Q. L.; Li, J.; Xu, Q. Immobilizing Metal Nanoparticles to Metal-Organic Frameworks with Size and Location Control for Optimizing Catalytic Performance. J. Am. Chem. Soc. 2013, 135(28), 10210–10213. DOI: 10.1021/ja403330m.
  • Cisneros, L.; Serna, P.; Corma, A. Selective Reductive Coupling of Nitro Aliphatic Compounds with Aldehydes in Hydrogen Using Gold Catalyst. Chin. J. Catal. 2016, 37(10), 1756–1763. DOI: 10.1016/S1872-2067(16)62493-2.
  • Zhou, P.; Yu, C.; Jiang, L.; Lv, K.; Zhang, Z. One-pot Reductive Amination of Carbonyl Compounds with Nitro Compounds with CO/H2O as the Hydrogen Donor over non-Noble Cobalt Catalyst. J. Catal. 2017, 352, 264–273. DOI: 10.1016/j.jcat.2017.05.026.